
IBM Engineering and Scientific Subroutine Library
for AIX, Version 5 Release 3, and
IBM Engineering and Scientific Subroutine Library
for Linux on POWER, Version 5 Release 4
Version 5 Release 4

ESSL Guide and Reference

SA23-2268-07

IBM

IBM Engineering and Scientific Subroutine Library
for AIX, Version 5 Release 3, and
IBM Engineering and Scientific Subroutine Library
for Linux on POWER, Version 5 Release 4
Version 5 Release 4

ESSL Guide and Reference

SA23-2268-07

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 1309.

This edition applies to:
v Version 5 Release 3 of the IBM Engineering and Scientific Subroutine Library (ESSL) for AIX licensed program,

program number 5765-H25

v Version 5 Release 4 of the IBM Engineering and Scientific Subroutine Library (ESSL) for Linux on POWER
licensed program, program number 5765-L51

and to all subsequent releases and modifications until otherwise indicated by new edition.

In this document ESSL refers to both of the above products (unless a differentiation between ESSL for AIX and
ESSL for Linux is explicitly specified).

Significant changes or additions to the text and illustrations are marked by a vertical line (|) to the left of the
change.

IBM welcomes your comments. see the topic “How to Send Your Comments” on page xxvi. When you send
information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1986, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables xi

About this information xv
How to Use This Information xv
Where to Find Related Publications xvi

Using Bibliography References xvii
IBM Request for Enhancement (RFE) Community xvii
How to Find a Subroutine Description xvii
How to Interpret the Subroutine Names with a
Prefix Underscore xvii
Special Terms xvii

Short and Long Precision xvii
Subroutines and Subprograms xviii

Abbreviated Names xviii
Conventions and terminology used. xviii

Fonts xix
Special Notations and Conventions xix
Special Characters, Symbols, Expressions, and
Abbreviations xxii

How to Interpret the Subroutine Descriptions .. xxiv
Description xxiv
Syntax xxiv
On Entry xxv
On Return xxv
Notes. xxvi
Function. xxvi
Special Usage xxvi
Error Conditions xxvi
Examples xxvi

How to Send Your Comments xxvi

Summary of Changes xxvii
Future Migration. xxxii

Part 1. Guide Information 1

Chapter 1. Introduction and
Requirements 3
Overview of ESSL 3

Performance and Functional Capability 3
Usability. 4
The Variety of Mathematical Functions 4
Accuracy of the Computations 6
High Performance of ESSL. 6
The Fortran Language Interface to the Subroutines 8

Software and Hardware Products That Can Be Used
with ESSL 8

Hardware Products Supported by ESSL 8
Operating Systems Supported by ESSL 8
Software Products Required by ESSL 8
Software Products for Installing and Customizing
ESSL 10
Software Products for Displaying ESSL
Documentation 10

List of ESSL Subroutines 11
Linear Algebra Subprograms 11
Matrix Operations 16
Linear Algebraic Equations 17
Eigensystem Analysis 23
Fourier Transforms, Convolutions and
Correlations, and Related Computations 23
Sorting and Searching 25
Interpolation 26
Numerical Quadrature. 26
Random Number Generation 26
Utilities. 27

Chapter 2. Planning Your Program . .. 29
Selecting an ESSL Subroutine 29

What ESSL Library Do You Want to Use? . .. 29
Use of SIMD Algorithms by Some Subroutines in
the Libraries Provided by ESSL 30
Multithreaded Subroutines Provided by ESSL .. 36
Using the ESSL SMP CUDA Library 41
NVIDIA GPU Power Capping 45
What Type of Data Are You Processing in Your
Program? 45
How Is Your Data Structured? And What Storage
Technique Are You Using? 46
What about Performance and Accuracy?. . .. 46

Avoiding Conflicts with Internal ESSL Routine
Names That are Exported. 46
Setting Up Your Data 46

How Do You Set Up Your Scalar Data? 46
How Do You Set Up Your Arrays?. 46
How Should Your Array Data Be Aligned? . .. 47
What Storage Mode Should You Use for Your
Data? 47
How Do You Convert from One Storage Mode to
Another? 47

Setting Up Your ESSL Calling Sequences 48
What Is an Input-Output Argument? 48
What Are the General Rules to Follow when
Specifying Data for the Arguments? 48
What Happens When a Value of 0 Is Specified
for N? 49
How Do You Specify the Beginning of the Data
Structure in the ESSL Calling Sequence? 49

Using Auxiliary Storage in ESSL 49
Dynamic Allocation of Auxiliary Storage . .. 50
Setting Up Auxiliary Storage When Dynamic
Allocation Is Not Used 51

Providing a Correct Transform Length to ESSL .. 56
Who Do You Want to Calculate the Transform
Length? You or ESSL? 56
How Do You Calculate the Transform Length
Using the Table or Formula?. 57
How Do You Get ESSL to Calculate the
Transform Length Using ESSL Error Handling? . 57

© Copyright IBM Corp. 1986, 2015 iii

||
||

Getting the Best Accuracy 61
What Precisions Do ESSL Subroutines Operate
On? 61
How does the Nature of the ESSL Computation
Affect Accuracy?. 62
What Data Type Standards Are Used by ESSL,
and What Exceptions Should You Know About? . 62
How is Underflow Handled? 63
Where Can You Find More Information on
Accuracy? 63
What about Bitwise-Identical Results? 63

Getting the Best Performance 63
What General Coding Techniques Can You Use
to Improve Performance? 63
Where Can You Find More Information on
Performance? 65

Dealing with Errors when Using ESSL 65
What Can You Do about Program Exceptions?.. 65
What Can You Do about ESSL Input-Argument
Errors? 65
What Can You Do about ESSL Computational
Errors? 66
What Can You Do about ESSL Resource Errors? 68
What Can You Do about ESSL Attention
Messages? 68
How Do You Control Error Handling by Setting
Values in the ESSL Error Option Table? 69
How does Error Handling Work in a Threaded
Environment? 71
Where Can You Find More Information on
Errors? 72

Chapter 3. Setting Up Your Data
Structures 73
Concepts 73
Vectors 73

Transpose of a Vector 74
Conjugate Transpose of a Vector 74
Vector Storage Representation 75
How Stride Is Used for Vectors 76
Sparse Vector 78

Matrices 79
Transpose of a Matrix 80
Conjugate Transpose of a Matrix 80
Matrix Storage Representation 80
How Leading Dimension Is Used for Matrices.. 81
Symmetric Matrix 83
Positive Definite or Negative Definite Symmetric
Matrix 87
Indefinite Symmetric Matrix 87
Complex Hermitian Matrix 88
Positive Definite or Negative Definite Complex
Hermitian Matrix 89
Indefinite Complex Hermitian Matrix. 89
Positive Definite or Negative Definite Symmetric
Toeplitz Matrix 89
Positive Definite or Negative Definite Complex
Hermitian Toeplitz Matrix 90
Triangular Matrix 91
Trapezoidal Matrix 94
General Band Matrix 98

Symmetric Band Matrix 103
Positive Definite Symmetric Band Matrix . .. 105
Complex Hermitian Band Matrix 106
Positive Definite Complex Hermitian Band
Matrix 106
Triangular Band Matrix 107
General Tridiagonal Matrix 110
Symmetric Tridiagonal Matrix 112
Positive Definite Symmetric Tridiagonal Matrix 113
Complex Hermitian Tridiagonal Matrix 114
Postive Definite Complex Hermitian Tridiagonal
Matrix 114
Sparse Matrix 114

Sequences 126
Real and Complex Elements in Storage 126
One-Dimensional Sequences 126
Two-Dimensional Sequences 126
Three-Dimensional Sequences 127
How Stride Is Used for Three-Dimensional
Sequences 129

Chapter 4. Coding Your Program . .. 131
Fortran Programs 131

Calling ESSL Subroutines and Functions in
Fortran 131
Setting Up a User-Supplied Subroutine for ESSL
in Fortran 131
Setting Up Scalar Data in Fortran. 132
Setting Up Arrays in Fortran 132
Creating Multiple Threads and Calling ESSL
from Your Fortran Program. 137
Handling Errors in Your Fortran Program . .. 138
Example of Handling Errors in a Multithreaded
Application Program 147

C Programs 149
Calling ESSL Subroutines and Functions in C 149
Passing Arguments in C 150
Setting Up a User-Supplied Subroutine for ESSL
in C 151
Setting Up Scalar Data in C 151
Setting Up Complex Data Types in C 152
Using Logical Data in C 153
Setting Up Arrays in C 153
Creating Multiple Threads and Calling ESSL
from Your C Program 154
Handling Errors in Your C Program 156

C++ Programs 165
Calling ESSL Subroutines and Functions in C++ 165
Passing Arguments in C++ 165
Setting Up a User-Supplied Subroutine for ESSL
in C++ 166
Setting Up Scalar Data in C++. 167
Using Complex Data in C++ 168
Using Logical Data in C++ 170
Setting Up Arrays in C++ 171
Creating Multiple Threads and Calling ESSL
from Your C++ Program. 171
Handling Errors in Your C++ Program 173

iv ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 5. Processing Your Program 183
Processing Your Program on AIX 183

Fortran Program Procedures on AIX. 183
C Program Procedures on AIX. 185
C++ Program Procedures on AIX 186

Processing Your Program on Linux (little endian
mode) 189

Fortran Program Procedures on Linux (little
endian mode) 190
C Program Procedures on Linux (little endian
mode) 191
C++ Program Procedures on Linux (little endian
mode) 194

Chapter 6. Migrating Your Programs 199
Migrating Programs from ESSL for Linux on Power
Version 5 Release 3.2 to Version 5 Release 4 . .. 199
Migrating Programs from ESSL for Linux on Power
Version 5 Release 3.1 to Version 5 Release 3.2. .. 199
Migrating Programs from ESSL for Linux on Power
Version 5 Release 2 or ESSL Version 5 Release 3 to
Version 5 Release 3.1 199
Migrating Programs from ESSL for Linux on Power
Version 5 Release 2 to Version 5 Release 3 199
Migrating Programs from ESSL for AIX 5.1 and
ESSL for Linux on Power Version 5 Release 1.1 to
Version 5 Release 2 199
Migrating Programs from ESSL for Linux on Power
Version 5 Release 1 to Version 5 Release 1.1 . .. 200
Migrating Programs from ESSL Version 4 Release 4
to Version 5 Release 1 200
Migrating Programs from ESSL Version 4 Release 3
to Version 4 Release 4 201
Migrating Programs from ESSL Version 4 Release
2.2 or Later to ESSL Version 4 Release 3 201
Migrating Programs from ESSL Version 4 Release
2.1 to Version 4 Release 2.2 201
Migrating Programs from ESSL Version 4 Release 2
to Version 4 Release 2.1 201
Migrating Programs from ESSL Version 4 Release 1
to Version 4 Release 2 202
Planning for Future Migration 202
Migrating From One Hardware Platform to
Another 202

Auxiliary Storage 202
Bitwise-Identical Results. 203

Migrating from Other Libraries to ESSL 203
Migrating from ESSL/370 203
Migrating from Another IBM Subroutine Library 203
Migrating from LAPACK 203
Migrating from FFTW Version 3.1.2 203
Migrating from a Non-IBM Subroutine Library 203

Chapter 7. Handling Problems 205
Where to Find More Information About Errors .. 205
Getting Help from IBM Support 205
National Language Support 206
Dealing with Errors 207

Program Exceptions 207
ESSL Input-Argument Error Messages 207

ESSL Computational Error Messages 208
ESSL Resource Error Messages 208
ESSL Informational and Attention Messages .. 209
Miscellaneous Error Messages 209

Messages 209
Message Conventions 210
Input-Argument Error Messages(2001-2099) .. 210
Computational Error Messages(2100-2199) . .. 215
Input-Argument Error Messages(2200-2299) .. 217
Resource Error Messages(2400-2499) 220
Informational and Attention Error
Messages(2600-2699) 220
Miscellaneous Error Messages(2700-2799) . .. 220

Part 2. Reference Information . .. 221

Chapter 8. Linear Algebra
Subprograms 223
Overview of the Linear Algebra Subprograms .. 223

Vector-Scalar Linear Algebra Subprograms .. 223
Sparse Vector-Scalar Linear Algebra
Subprograms 225
Matrix-Vector Linear Algebra Subprograms .. 225
Sparse Matrix-Vector Linear Algebra
Subprograms 227

Use Considerations 228
Performance and Accuracy Considerations . .. 228
Vector-Scalar Subprograms 229
ISAMAX, IDAMAX, ICAMAX, and IZAMAX
(Position of the First or Last Occurrence of the
Vector Element Having the Largest Magnitude) .. 230
ISAMIN and IDAMIN (Position of the First or Last
Occurrence of the Vector Element Having
Minimum Absolute Value) 233
ISMAX and IDMAX (Position of the First or Last
Occurrence of the Vector Element Having the
Maximum Value) 236
ISMIN and IDMIN (Position of the First or Last
Occurrence of the Vector Element Having
Minimum Value) 239
SASUM, DASUM, SCASUM, and DZASUM (Sum
of the Magnitudes of the Elements in a Vector) .. 242
SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a
Vector X by a Scalar, Add to a Vector Y, and Store
in the Vector Y). 245
SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a
Vector) 248
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and
ZDOTC (Dot Product of Two Vectors) 251
SNAXPY and DNAXPY (Compute SAXPY or
DAXPY N Times) 255
SNDOT and DNDOT (Compute Special Dot
Products N Times). 260
SNRM2, DNRM2, SCNRM2, and DZNRM2
(Euclidean Length of a Vector with Scaling of Input
to Avoid Destructive Underflow and Overflow) .. 265
SNORM2, DNORM2, CNORM2, and ZNORM2
(Euclidean Length of a Vector with No Scaling of
Input) 268

Contents v

|
||

SROTG, DROTG, CROTG, and ZROTG (Construct
a Given Plane Rotation) 271
SROT, DROT, CROT, ZROT, CSROT, and ZDROT
(Apply a Plane Rotation) 277
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and
ZDSCAL (Multiply a Vector X by a Scalar and
Store in the Vector X) 281
SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange
the Elements of Two Vectors) 284
SVEA, DVEA, CVEA, and ZVEA (Add a Vector X
to a Vector Y and Store in a Vector Z) 287
SVES, DVES, CVES, and ZVES (Subtract a Vector Y
from a Vector X and Store in a Vector Z) 291
SVEM, DVEM, CVEM, and ZVEM (Multiply a
Vector X by a Vector Y and Store in a Vector Z) .. 295
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX
(Multiply a Vector X by a Scalar and Store in a
Vector Y) 299
SZAXPY, DZAXPY, CZAXPY, and ZZAXPY
(Multiply a Vector X by a Scalar, Add to a Vector Y,
and Store in a Vector Z) 302
Sparse Vector-Scalar Subprograms 306
SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the
Elements of a Sparse Vector X in
Compressed-Vector Storage Mode into Specified
Elements of a Sparse Vector Y in Full-Vector
Storage Mode) 307
SGTHR, DGTHR, CGTHR, and ZGTHR (Gather
Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode) 310
SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ
(Gather Specified Elements of a Sparse Vector Y in
Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same
Specified Elements of Y). 313
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply
a Sparse Vector X in Compressed-Vector Storage
Mode by a Scalar, Add to a Sparse Vector Y in
Full-Vector Storage Mode, and Store in the Vector
Y) 316
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and
ZDOTCI (Dot Product of a Sparse Vector X in
Compressed-Vector Storage Mode and a Sparse
Vector Y in Full-Vector Storage Mode) 319
Matrix-Vector Subprograms 323
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX,
DGEMX, SGEMTX, and DGEMTX (Matrix-Vector
Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose). 324
SGER, DGER, CGERU, ZGERU, CGERC, and
ZGERC (Rank-One Update of a General Matrix).. 335
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV,
DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX
(Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix) 343
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER,
ZHER, SSLR1, and DSLR1 (Rank-One Update of a
Real Symmetric or Complex Hermitian Matrix) .. 352

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2,
CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two
Update of a Real Symmetric or Complex Hermitian
Matrix) 360
SGBMV, DGBMV, CGBMV, and ZGBMV
(Matrix-Vector Product for a General Band Matrix,
Its Transpose, or Its Conjugate Transpose) 369
SSBMV, DSBMV, CHBMV, and ZHBMV
(Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Band Matrix) 376
STRMV, DTRMV, CTRMV, ZTRMV, STPMV,
DTPMV, CTPMV, and ZTPMV (Matrix-Vector
Product for a Triangular Matrix, Its Transpose, or
Its Conjugate Transpose) 381
STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV,
CTPSV, and ZTPSV (Solution of a Triangular
System of Equations with a Single Right-Hand
Side) 388
STBMV, DTBMV, CTBMV, and ZTBMV
(Matrix-Vector Product for a Triangular Band
Matrix, Its Transpose, or Its Conjugate Transpose) . 395
STBSV, DTBSV, CTBSV, and ZTBSV (Triangular
Band Equation Solve). 401
Sparse Matrix-Vector Subprograms 407
DSMMX (Matrix-Vector Product for a Sparse
Matrix in Compressed-Matrix Storage Mode) . .. 408
DSMTM (Transpose a Sparse Matrix in
Compressed-Matrix Storage Mode) 411
DSDMX (Matrix-Vector Product for a Sparse Matrix
or Its Transpose in Compressed-Diagonal Storage
Mode) 415

Chapter 9. Matrix Operations. 419
Overview of the Matrix Operation Subroutines .. 419
Use Considerations 420

Specifying Normal, Transposed, or Conjugate
Transposed Input Matrices 420
Transposing or Conjugate Transposing: 421

Performance and Accuracy Considerations . .. 421
In General 421
For Large Matrices 421
For Combined Operations 422

Matrix Operation Subroutines 423
SGEADD, DGEADD, CGEADD, and ZGEADD
(Matrix Addition for General Matrices or Their
Transposes) 424
SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix
Subtraction for General Matrices or Their
Transposes) 430
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL
(Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes) 436
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS
(Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using
Winograd's Variation of Strassen's Algorithm) .. 445
SGEMM, DGEMM, CGEMM, and ZGEMM
(Combined Matrix Multiplication and Addition for
General Matrices, Their Transposes, or Conjugate
Transposes) 451

vi ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM,
and ZHEMM (Matrix-Matrix Product Where One
Matrix is Real or Complex Symmetric or Complex
Hermitian) 460
STRMM, DTRMM, CTRMM, and ZTRMM
(Triangular Matrix-Matrix Product) 468
STRSM, DTRSM, CTRSM, and ZTRSM (Solution of
Triangular Systems of Equations with Multiple
Right-Hand Sides) 476
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and
ZHERK (Rank-K Update of a Real or Complex
Symmetric or a Complex Hermitian Matrix) . .. 484
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K,
and ZHER2K (Rank-2K Update of a Real or
Complex Symmetric or a Complex Hermitian
Matrix) 491
SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI
and ZGECMI (General Matrix Transpose or
Conjugate Transpose [In-Place]) 499
SGETMO, DGETMO, CGETMO, ZGETMO,
CGECMO, and ZGECMO (General Matrix
Transpose or Conjugate Transpose [Out-of-Place]) . 502

Chapter 10. Linear Algebraic
Equations 507
Overview of the Linear Algebraic Equation
Subroutines 507

Dense Linear Algebraic Equation Subroutines 507
Banded Linear Algebraic Equation Subroutines 509
Sparse Linear Algebraic Equation Subroutines 511
Linear Least Squares Subroutines 511

Dense and Banded Linear Algebraic Equation
Considerations 512

Use Considerations 512
Performance and Accuracy Considerations .. 512

Sparse Matrix Direct Solver Considerations . .. 513
Use Considerations 513
Performance and Accuracy Considerations .. 513

Sparse Matrix Skyline Solver Considerations . .. 514
Use Considerations 514
Performance and Accuracy Considerations .. 514

Sparse Matrix Iterative Solver Considerations .. 515
Use Considerations 515
Performance and Accuracy Considerations .. 515

Linear Least Squares Considerations. 516
Use Considerations 516
Performance and Accuracy Considerations .. 516

Dense Linear Algebraic Equation Subroutines 517
SGESV, DGESV, CGESV, ZGESV (General Matrix
Factorization and Multiple Right-Hand Side Solve) . 518
SGETRF, DGETRF, CGETRF and ZGETRF (General
Matrix Factorization) 522
SGETRS, DGETRS, CGETRS, and ZGETRS (General
Matrix Multiple Right-Hand Side Solve) 527
SGEF, DGEF, CGEF, and ZGEF (General Matrix
Factorization) 531
SGES, DGES, CGES, and ZGES (General Matrix, Its
Transpose, or Its Conjugate Transpose Solve) . .. 534
SGESM, DGESM, CGESM, and ZGESM (General
Matrix, Its Transpose, or Its Conjugate Transpose
Multiple Right-Hand Side Solve) 538

SGECON, DGECON, CGECON, and ZGECON
(Estimate the Reciprocal of the Condition Number
of a General Matrix) 543
SGEFCD and DGEFCD (General Matrix
Factorization, Condition Number Reciprocal, and
Determinant) 547
SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and
DGEICD (General Matrix Inverse, Condition
Number Reciprocal, and Determinant) 551
SLANGE, DLANGE, CLANGE, and ZLANGE
(General Matrix Norm) 558
SPPSV, DPPSV, CPPSV, and ZPPSV (Positive
Definite Real Symmetric and Complex Hermitian
Matrix Factorization and Multiple Right-Hand Side
Solve) 561
SPOSV, DPOSV, CPOSV, and ZPOSV (Positive
Definite Real Symmetric or Complex Hermitian
Matrix Factorization and Multiple Right-Hand Side
Solve) 567
SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF,
DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF,
ZPPTRF, SPPF, and DPPF (Positive Definite Real
Symmetric or Complex Hermitian Matrix
Factorization) 573
SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM,
DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS,
CPPTRS, and ZPPTRS (Positive Definite Real
Symmetric or Complex Hermitian Matrix Multiple
Right-Hand Side Solve) 585
SPPS and DPPS (Positive Definite Real Symmetric
Matrix Solve) 593
SPOCON, DPOCON, CPOCON, ZPOCON,
SPPCON, DPPCON, CPPCON, and ZPPCON
(Estimate the Reciprocal of the Condition Number
of a Positive Definite Real Symmetric or Complex
Hermitian Matrix) 596
SPPFCD, DPPFCD, SPOFCD, and DPOFCD
(Positive Definite Real Symmetric Matrix
Factorization, Condition Number Reciprocal, and
Determinant) 604
SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD,
DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI,
SPPICD, and DPPICD (Positive Definite Real
Symmetric or Complex Hermitian Matrix Inverse,
Condition Number Reciprocal, and Determinant) . 610
SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP,
DLANSP, CLANHP, and ZLANHP (Real
Symmetric or Complex Hermitian Matrix Norm) . 621
SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV,
SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, ZHPSV
(Indefinite Real or Complex Symmetric or Complex
Hermitian Matrix Factorization and Multiple
Right-Hand Side Solve) 626
SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF,
ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF,
CHPTRF, ZHPTRF (Indefinite Real or Complex
Symmetric or Complex Hermitian Matrix
Factorization) 635

Contents vii

SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS,
ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS,
CHPTRS, ZHPTRS (Indefinite Real or Complex
Symmetric or Complex Hermitian Matrix Multiple
Right-Hand Side Solve) 643
DBSSV (Symmetric Indefinite Matrix Factorization
and Multiple Right-Hand Side Solve) 649
DBSTRF (Symmetric Indefinite Matrix
Factorization) 655
DBSTRS (Symmetric Indefinite Matrix Multiple
Right-Hand Side Solve) 660
STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI,
DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix
Inverse) 664
SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP,
DLANTP, CLANTP, and ZLANTP (Trapezoidal or
Triangular Matrix Norm) 672
Banded Linear Algebraic Equation Subroutines 678
SGBSV, DGBSV, CGBSV, and ZGBSV (General Band
Matrix Factorization and Multiple Right-Hand Side
Solve) 679
SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General
Band Matrix Factorization) 683
SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General
Band Matrix Multiple Right-Hand Side Solve) .. 687
SGBS and DGBS (General Band Matrix Solve) .. 693
SPBSV, DPBSV, CPBSV, and ZPBSV (Positive
Definite Real Symmetric or Complex Hermitian
Band Matrix Factorization and Multiple
Right-Hand Side Solve) 696
SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive
Definite Real Symmetric or Complex Hermitian
Band Matrix Factorization) 701
SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive
Definite Real Symmetric or Complex Hermitian
Band Matrix Multiple Right-Hand Side Solve) .. 706
SGTSV, DGTSV, CGTSV, and ZGTSV (General
Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve) 711
SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General
Tridiagonal Matrix Factorization) 715
SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General
Tridiagonal Matrix Multiple Right-Hand Side
Solve) 719
SPTSV, DPTSV, CPTSV, and ZPTSV (Positive
Definite Real Symmetric or Complex Hermitian
Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve) 725
SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive
Definite Real Symmetric or Complex Hermitian
Tridiagonal Matrix Factorization) 729
SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive
Definite Real Symmetric or Complex Hermitian
Tridiagonal Matrix Multiple Right-Hand Solve) .. 733
SGBF and DGBF (General Band Matrix
Factorization) 739
SGBS and DGBS (General Band Matrix Solve) .. 743
SPBF, DPBF, SPBCHF, and DPBCHF (Positive
Definite Symmetric Band Matrix Factorization) .. 746
SPBS, DPBS, SPBCHS, and DPBCHS (Positive
Definite Symmetric Band Matrix Solve). 750

SGTF and DGTF (General Tridiagonal Matrix
Factorization) 753
SGTS and DGTS (General Tridiagonal Matrix
Solve) 756
SGTNP, DGTNP, CGTNP, and ZGTNP (General
Tridiagonal Matrix Combined Factorization and
Solve with No Pivoting) 758
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF
(General Tridiagonal Matrix Factorization with No
Pivoting) 761
SGTNPS, DGTNPS, CGTNPS, and ZGTNPS
(General Tridiagonal Matrix Solve with No
Pivoting) 764
SPTF and DPTF (Positive Definite Symmetric
Tridiagonal Matrix Factorization) 767
SPTS and DPTS (Positive Definite Symmetric
Tridiagonal Matrix Solve) 769
Sparse Linear Algebraic Equation Subroutines 771
DGSF (General Sparse Matrix Factorization Using
Storage by Indices, Rows, or Columns) 772
DGSS (General Sparse Matrix or Its Transpose
Solve Using Storage by Indices, Rows, or Columns) 778
DGKFS (General Sparse Matrix or Its Transpose
Factorization, Determinant, and Solve Using
Skyline Storage Mode) 782
DSKFS (Symmetric Sparse Matrix Factorization,
Determinant, and Solve Using Skyline Storage
Mode) 799
DSRIS (Iterative Linear System Solver for a General
or Symmetric Sparse Matrix Stored by Rows). .. 817
DSMCG (Sparse Positive Definite or Negative
Definite Symmetric Matrix Iterative Solve Using
Compressed-Matrix Storage Mode) 828
DSDCG (Sparse Positive Definite or Negative
Definite Symmetric Matrix Iterative Solve Using
Compressed-Diagonal Storage Mode) 836
DSMGCG (General Sparse Matrix Iterative Solve
Using Compressed-Matrix Storage Mode) 844
DSDGCG (General Sparse Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode) . .. 851
Linear Least Squares Subroutines 858
SGESVD, DGESVD, CGESVD, and ZGESVD
(Singular Value Decomposition for a General
Matrix) 859
SGEQRF, DGEQRF, CGEQRF, and ZGEQRF
(General Matrix QR Factorization) 868
SGELS, DGELS, CGELS, and ZGELS (Linear Least
Squares Solution for a General Matrix) 874
SGELSD, DGELSD, CGELSD, and ZGELSD (Linear
Least Squares Solution for a General Matrix Using
the Singular Value Decomposition) 884
SGESVF and DGESVF (Singular Value
Decomposition for a General Matrix) 891
SGESVS and DGESVS (Linear Least Squares
Solution for a General Matrix Using the Singular
Value Decomposition) 899
SGELLS and DGELLS (Linear Least Squares
Solution for a General Matrix with Column
Pivoting) 904

viii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 11. Eigensystem Analysis .. 911
Overview of the Eigensystem Analysis Subroutines 911
Performance and Accuracy Considerations . .. 911
Eigensystem Analysis Subroutines 912
SGEEVX, DGEEVX, CGEEVX, and ZGEEVX
(Eigenvalues and, Optionally, Right Eigenvectors,
Left Eigenvectors, Reciprocal Condition Numbers
for Eigenvalues, and Reciprocal Condition
Numbers for Right Eigenvectors of a General
Matrix) 913
SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX,
DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues
and, Optionally, the Eigenvectors of a Real
Symmetric or Complex Hermitian Matrix) 927
SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD,
DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues
and, Optionally the Eigenvectors, of a Real
Symmetric or Complex Hermitian Matrix Using a
Divide-and-Conquer Algorithm) 942
SGGEV, DGGEV, CGGEV, and ZGGEV
(Eigenvalues and, Optionally, Left and/or Right
Eigenvectors of a General Matrix Generalized
Eigenproblem) 955
SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX,
DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues
and, Optionally, the Eigenvectors of a Positive
Definite Real Symmetric or Complex Hermitian
Generalized Eigenproblem) 965

Chapter 12. Fourier Transforms,
Convolutions and Correlations, and
Related Computations 981
Overview of the Signal Processing Subroutines .. 981

Fourier Transforms Subroutines 981
Convolution and Correlation Subroutines . .. 982
Related-Computation Subroutines 982

Fourier Transforms, Convolutions, and Correlations
Considerations 983

Use Considerations 983
Initializing Auxiliary Working Storage 986
Determining the Amount of Auxiliary Working
Storage That You Need 986

Performance and Accuracy Considerations . .. 986
When Running on the Workstation Processors 987
Defining Arrays 987
Fourier Transform Considerations 987
How the Fourier Transform Subroutines Achieve
High Performance 988
Convolution and Correlation Considerations 988

Related Computation Considerations 990
Accuracy Considerations 990

Fourier Transform Subroutines 991
SCFTD and DCFTD (Multidimensional Complex
Fourier Transform) 992
SRCFTD and DRCFTD (Multidimensional
Real-to-Complex Fourier Transform) 1000
SCRFTD and DCRFTD (Multidimensional
Complex-to-Real Fourier Transform) 1008
SCFT and DCFT (Complex Fourier Transform) 1016

SRCFT and DRCFT (Real-to-Complex Fourier
Transform) 1025
SCRFT and DCRFT (Complex-to-Real Fourier
Transform) 1033
SCOSF and DCOSF (Cosine Transform) 1041
SSINF and DSINF (Sine Transform) 1049
SCFT2 and DCFT2 (Complex Fourier Transform in
Two Dimensions). 1057
SRCFT2 and DRCFT2 (Real-to-Complex Fourier
Transform in Two Dimensions) 1064
SCRFT2 and DCRFT2 (Complex-to-Real Fourier
Transform in Two Dimensions) 1071
SCFT3 and DCFT3 (Complex Fourier Transform in
Three Dimensions) 1079
SRCFT3 and DRCFT3 (Real-to-Complex Fourier
Transform in Three Dimensions) 1086
SCRFT3 and DCRFT3 (Complex-to-Real Fourier
Transform in Three Dimensions) 1093
Convolution and Correlation Subroutines . .. 1100
SCON and SCOR (Convolution or Correlation of
One Sequence with One or More Sequences) .. 1101
SCOND and SCORD (Convolution or Correlation
of One Sequence with Another Sequence Using a
Direct Method) 1107
SCONF and SCORF (Convolution or Correlation
of One Sequence with One or More Sequences
Using the Mixed-Radix Fourier Method) 1113
SDCON, DDCON, SDCOR, and DDCOR
(Convolution or Correlation with Decimated
Output Using a Direct Method) 1123
SACOR (Autocorrelation of One or More
Sequences) 1128
SACORF (Autocorrelation of One or More
Sequences Using the Mixed-Radix Fourier
Method) 1132
Related-Computation Subroutines 1138
SPOLY and DPOLY (Polynomial Evaluation) .. 1139
SIZC and DIZC (I-th Zero Crossing) 1142
STREC and DTREC (Time-Varying Recursive
Filter) 1145
SQINT and DQINT (Quadratic Interpolation) .. 1148
SWLEV, DWLEV, CWLEV, and ZWLEV
(Wiener-Levinson Filter Coefficients) 1152

Chapter 13. Sorting and Searching 1157
Overview of the Sorting and Searching
Subroutines 1157
Use Considerations 1157
Performance and Accuracy Considerations . .. 1157
Sorting and Searching Subroutines 1159
ISORT, SSORT, and DSORT (Sort the Elements of
a Sequence) 1160
ISORTX, SSORTX, and DSORTX (Sort the
Elements of a Sequence and Note the Original
Element Positions) 1162
ISORTS, SSORTS, and DSORTS (Sort the Elements
of a Sequence Using a Stable Sort and Note the
Original Element Positions) 1165
IBSRCH, SBSRCH, and DBSRCH (Binary Search
for Elements of a Sequence X in a Sorted
Sequence Y) 1169

Contents ix

ISSRCH, SSSRCH, and DSSRCH (Sequential
Search for Elements of a Sequence X in the
Sequence Y) 1173

Chapter 14. Interpolation 1177
Overview of the Interpolation Subroutines . .. 1177
Use Considerations 1177
Performance and Accuracy Considerations . .. 1177
Interpolation Subroutines 1178
SPINT and DPINT (Polynomial Interpolation) 1179
STPINT and DTPINT (Local Polynomial
Interpolation) 1184
SCSINT and DCSINT (Cubic Spline Interpolation) 1188
SCSIN2 and DCSIN2 (Two-Dimensional Cubic
Spline Interpolation). 1193

Chapter 15. Numerical Quadrature 1199
Overview of the Numerical Quadrature
Subroutines 1199
Use Considerations 1199

Choosing the Method 1199
Performance and Accuracy Considerations . .. 1199
Programming Considerations for the SUBF
Subroutine 1200

Designing SUBF 1200
Coding and Setting Up SUBF in Your Program 1201

Numerical Quadrature Subroutines 1202
SPTNQ and DPTNQ (Numerical Quadrature
Performed on a Set of Points) 1203
SGLNQ and DGLNQ (Numerical Quadrature
Performed on a Function Using Gauss-Legendre
Quadrature) 1206
SGLNQ2 and DGLNQ2 (Numerical Quadrature
Performed on a Function Over a Rectangle Using
Two-Dimensional Gauss-Legendre Quadrature) . 1209
SGLGQ and DGLGQ (Numerical Quadrature
Performed on a Function Using Gauss-Laguerre
Quadrature) 1215
SGRAQ and DGRAQ (Numerical Quadrature
Performed on a Function Using Gauss-Rational
Quadrature) 1218
SGHMQ and DGHMQ (Numerical Quadrature
Performed on a Function Using Gauss-Hermite
Quadrature) 1222

Chapter 16. Random Number
Generation 1225
Overview of the Random Number Generation
Subroutines 1225
Use Considerations 1225
Random Number Generation Subroutines . .. 1226
INITRNG (Initialize Random Number Generators) 1227
SURNG and DURNG (Generate a Vector of
Uniformly Distributed Pseudo-Random Numbers) 1232
SNRNG and DNRNG (Generate a Vector of
Normally Distributed Pseudo-Random numbers) . 1235
SURAND and DURAND (Generate a Vector of
Uniformly Distributed Random Numbers) . .. 1239
SNRAND and DNRAND (Generate a Vector of
Normally Distributed Random Numbers) . .. 1242

SURXOR and DURXOR (Generate a Vector of
Long Period Uniformly Distributed Random
Numbers) 1245

Chapter 17. Utilities 1249
Overview of the Utility Subroutines 1249
Use Considerations 1249

Determining the Level of ESSL Installed . .. 1249
Finding the Optimal Stride(s) for Your Fourier
Transforms 1249
Converting Sparse Matrix Storage 1250

Utility Subroutines 1251
EINFO (ESSL Error Information-Handler
Subroutine). 1252
ERRSAV (ESSL ERRSAV Subroutine) 1255
ERRSET (ESSL ERRSET Subroutine) 1256
ERRSTR (ESSL ERRSTR Subroutine) 1258
IESSL (Determine the Level of ESSL Installed) 1259
SETGPUS (Set the Number of GPUs and Identify
Which GPUs ESSL Should Use) 1261
STRIDE (Determine the Stride Value for Optimal
Performance in Specified Fourier Transform
Subroutines) 1263
DSRSM (Convert a Sparse Matrix from
Storage-by-Rows to Compressed-Matrix Storage
Mode) 1279
DGKTRN (For a General Sparse Matrix, Convert
Between Diagonal-Out and Profile-In Skyline
Storage Mode). 1283
DSKTRN (For a Symmetric Sparse Matrix,
Convert Between Diagonal-Out and Profile-In
Skyline Storage Mode) 1288

Part 3. Appendixes 1293

Appendix A. Basic Linear Algebra
Subprograms (BLAS) 1295

Appendix B. LAPACK 1299

Appendix C. FFTW Version 3.1.2 to
ESSL Wrapper Libraries 1303

Accessibility Features for ESSL 1307
Accessibility Features 1307
IBM and Accessibility 1307

Notices 1309
Trademarks. 1311
Software Update Protocol 1311
Programming Interfaces 1311

Bibiography 1313

Index 1321

x ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Tables

1. Abbreviated names xviii
2. Summary of typographic conventions xviii
3. Translating character argument values to

CBLAS enumerated types xxv
4. Summary of ESSL Subroutines 5
5. Operating systems supported by ESSL 8
6. Required Software Products for ESSL for AIX 9
7. Required Software Products for ESSL 9
8. Software needed to display various formats of

ESSL online information 10
9. List of Vector-Scalar Linear Algebra

Subprograms 12
10. List of Sparse Vector-Scalar Linear Algebra

Subprograms 13
11. List of Matrix-Vector Linear Algebra

Subprograms 14
12. List of Sparse Matrix-Vector Linear Algebra

Subprograms 16
13. List of Matrix Operation Subroutines 16
14. List of LAPACK Dense Linear Algebraic

Equation Subroutines 17
15. List of Dense Linear Algebraic Equation

Subroutines 19
16. List of LAPACK Banded Linear Algebraic

Equation Subroutines 20
17. List of non-LAPACK Banded Linear Algebraic

Equation Subroutines 21
18. List of Sparse Linear Algebraic Equation

Subroutines 21
19. List of LAPACK Linear Least Squares

Subroutines 22
20. List of Non–LAPACK Linear Least Squares

Subroutines 22
21. List of LAPACK Eigensystem Analysis

Subroutines 23
22. List of Fourier Transform Subroutines 23
23. List of Convolution and Correlation

Subroutines 24
24. List of Related-Computation Subroutines 25
25. List of Sorting and Searching Subroutines 25
26. List of Interpolation Subroutines 26
27. List of Numerical Quadrature Subroutines 26
28. List of Random Number Generation

Initialization Subroutines 27
29. List of Random Number Generation

Subroutines 27
30. List of Utility Subroutines 27
31. VSX Alignment Requirements for SIMD

Algorithms in Linear Algebra Subroutines .. 31
32. VSX Alignment Requirements for SIMD

Algorithms in Fourier Transform Subroutines
and Convolution and Correlation Subroutines . 31

33. ESSL Subroutines that Automatically Use
SIMD Algorithms When Alignment
Restrictions are Met on VSX-enabled
Processors 32

34. AltiVec-Enabled Processor Alignment
Restrictions for SIMD Algorithms in Linear
Algebra Subroutines 34

35. AltiVec-Enabled Processor Alignment
Restrictions for SIMD Algorithms in Fourier
Transform and Fourier Method Convolution
and Correlation Subroutines 34

36. ESSL Subroutines that Automatically Use
SIMD Algorithms When Alignment
Restrictions are Met on POWER 6
AltiVec-Enabled Processors 35

37. Multithreaded Subroutines 37
38. ESSL Subroutines Requiring Auxiliary Working

Storage 49
39. Example of Input-Argument Error Recovery

for Auxiliary Storage Sizes 55
40. ESSL Subroutines Requiring Transform

Lengths 56
41. Example of Input-Argument Error Recovery

for Transform Lengths 60
42. ESSL Error Option Table Default Values 69
43. Scalar Data Types in Fortran Programs 132
44. Scalar Data Types in C Programs 151
45. Scalar Data Types in C++ Programs 167
46. Fortran Compile Commands on AIX 184
47. Fortran Compile Commands on AIX for use

with FFTW Wrapper libraries 184
48. C Compile and Link Commands on AIX 185
49. C Compile and Link Commands on AIX for

use with FFTW Wrapper Libraries 185
50. C++ Compile and Link Commands on AIX 187
51. C++ Compile and Link Commands on AIX

for Use with FFTW Wrapper Libraries . .. 188
52. Fortran Compile Commands on Linux (little

endian mode) 190
53. Fortran Compile Commands on Linux for

Use with FFTW Wrapper Libraries 191
54. C Compile and Link Commands on Linux

(little endian mode) 191
55. C Compile and Link Commands on Linux for

Use with FFTW Wrapper Libraries (little
endian mode) 192

56. gcc Compile and Link Commands on Linux
(little endian mode) 192

57. gcc Compile and Link Commands on Linux
for Use with FFTW Wrapper Libraries (little
endian mode) 193

58. C++ Compile and Link Commands on Linux
(little endian mode) 194

59. C++ Compile and Link Commands on Linux
for Use with FFTW Wrapper Libraries (little
endian mode) 195

60. g++ Compile and Link Commands on Linux
(little endian mode) 195

© Copyright IBM Corp. 1986, 2015 xi

|
||

||

|
||

|
||

61. g++ Compile and Link Commands on Linux
for Use with FFTW Wrapper Libraries (little
endian mode) 196

62. Replacing Non-LAPACK-Conforming
subroutines with LAPACK subroutines . .. 200

63. Product File Set and Package Names 206
64. List of Vector-Scalar Linear Algebra

Subprograms. 223
65. List of Sparse Vector-Scalar Linear Algebra

Subprograms. 225
66. List of Matrix-Vector Linear Algebra

Subprograms. 226
67. List of Sparse Matrix-Vector Linear Algebra

Subprograms. 227
68. Data Types 230
69. Data Types 233
70. Data Types 236
71. Data Types 239
72. Data Types 242
73. Data Types 245
74. Data Types 248
75. Data Types 251
76. Data Types 255
77. Data Types 260
78. Data Types 265
79. Data Types 268
80. Data Types 271
81. Data Types 277
82. Data Types 281
83. Data Types 284
84. Data Types 287
85. Data Types 291
86. Data Types 295
87. Data Types 299
88. Data Types 302
89. Data Types 307
90. Data Types 310
91. Data Types 313
92. Data Types 316
93. Data Types 319
94. Data Types 324
95. Data Types 335
96. Data Types 343
97. Data Types 352
98. Data Types 360
99. Data Types 369

100. Data Types 376
101. Data Types 381
102. Data Types 388
103. Data Types 395
104. Data Types 401
105. List of Matrix Operation Subroutines 419
106. Data Types 424
107. Data Types 430
108. Data Types 436
109. Data Types 445
110. Data Types 451
111. Data Types 460
112. Data Types 468
113. Data Types 476
114. Data Types 484

115. Data Types 491
116. Data Types 499
117. Data Types 502
118. List of LAPACK Dense Linear Algebraic

Equation Subroutines 507
119. List of Dense Linear Algebraic Equation

Subroutines 509
120. List of LAPACK Banded Linear Algebraic

Equation Subroutines 510
121. List of non-LAPACK Banded Linear Algebraic

Equation Subroutines 510
122. List of Sparse Linear Algebraic Equation

Subroutines 511
123. List of LAPACK Linear Least Squares

Subroutines 512
124. List of Non–LAPACK Linear Least Squares

Subroutines 512
125. Data Types 518
126. Data Types 522
127. Data Types 527
128. Data Types 531
129. Data Types 534
130. Data Types 538
131. Data Types 543
132. Data Types 547
133. Data Types 551
134. Data Types 558
135. Data Types 561
136. Data Types 567
137. Data Types 574
138. Data Types 585
139. Data Types 593
140. Data Types 596
141. Data Types 604
142. Data Types 610
143. Data Types 621
144. Data Types 626
145. Data Types 635
146. Data Types 643
147. Data Types 649
148. Data Types 655
149. Data Types 660
150. Data Types 664
151. Data Types 672
152. Data Types 679
153. Data Types 683
154. Data Types 687
155. Data Types 693
156. Data Types 696
157. Data Types 701
158. Data Types 706
159. Data Types 711
160. Data Types 715
161. Data Types 719
162. Data Types 725
163. Data Types 729
164. Data Types 733
165. Data Types 739
166. Data Types 743
167. Data Types 746
168. Data Types 750

xii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
||

|
||

169. Data Types 753
170. Data Types 756
171. Data Types 758
172. Data Types 761
173. Data Types 764
174. Data Types 767
175. Data Types 769
176. Data Types 859
177. Data Types 868
178. Data Types 874
179. Data Types 884
180. Data Types 891
181. Data Types 899
182. Data Types 904
183. List of LAPACK Eigensystem Analysis

Subroutines 911
184. Data Types 913
185. Data Types 927
186. Data Types 942
187. Data Types 955
188. Data Types 965
189. List of Fourier Transform Subroutines 981
190. List of Convolution and Correlation

Subroutines 982
191. List of Related-Computation Subroutines 982
192. Fourier Transform subroutines allowing all

lengths between 0 and 1073479680 983
193. Fourier Transform subroutines whose lengths

are limited to those in Figure 13 on page 985 . 984
194. Data Types 992
195. Data Types 1000
196. Data Types 1008
197. Data Types 1016
198. Data Types 1025
199. Data Types 1033
200. Data Types 1041
201. Data Types 1049
202. Data Types 1057
203. Data Types 1064
204. Data Types 1071
205. Data Types 1079
206. Data Types 1086
207. Data Types 1093

208. Data Types 1123
209. Data Types 1139
210. Data Types 1142
211. Data Types 1145
212. Data Types 1148
213. Data Types 1152
214. List of Sorting and Searching Subroutines 1157
215. Data Types 1160
216. Data Types 1162
217. Data Types 1165
218. Data Types 1169
219. Data Types 1173
220. List of Interpolation Subroutines 1177
221. Data Types 1179
222. Data Types 1184
223. Data Types 1188
224. Data Types 1193
225. List of Numerical Quadrature Subroutines 1199
226. Data Types 1203
227. Data Types 1206
228. Data Types 1209
229. How to Assign Your Variables for x-y

Integration Versus y-x Integration 1211
230. Data Types 1215
231. Data Types 1218
232. Data Types 1222
233. List of Random Number Generation

Initialization Subroutines 1225
234. List of Random Number Generation

Subroutines 1225
235. Data Types 1232
236. Data Types 1235
237. Data Types 1239
238. Data Types 1242
239. Data Types 1245
240. List of Utility Subroutines 1249
241. Computational Error Information Returned

by EINFO 1252
242. Level 1 BLAS Included in ESSL 1295
243. Level 2 BLAS Included in ESSL 1296
244. Level 3 BLAS Included in ESSL 1297
245. LAPACK subroutines included in ESSL 1299
246. List of available C and Fortran wrappers 1303

Tables xiii

||
||
||

xiv ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

About this information

This provides guide and reference information for using ESSL in doing application
programming. It includes:
v An overview of ESSL and guidance information for designing, coding, and

processing your program, as well as migrating existing programs, and
diagnosing problems

v Reference information for coding each ESSL calling sequence

This documentation is written for a wide class of ESSL users: scientists,
mathematicians, engineers, statisticians, computer scientists, and system
programmers. It assumes a basic knowledge of mathematics in the areas of ESSL
computation. It also assumes that users are familiar with Fortran, C, and C++
programming.

How to Use This Information
Part 1, “Guide Information,” on page 1 provides guidance information for using
ESSL. It covers the user-oriented tasks of learning, designing, coding, migrating,
processing, and diagnosing. Refer to the following when performing any of these
tasks:
v Chapter 1, “Introduction and Requirements,” on page 3 gives an introduction

to ESSL, providing highlights and general information. Read this first to
determine the aspects of ESSL you want to use.

v Chapter 2, “Planning Your Program,” on page 29 provides ESSL-specific
information that helps you design your program. Read this before designing
your program.

v Chapter 3, “Setting Up Your Data Structures,” on page 73 describes all types of
data structures, such as vectors, matrices, and sequences. Use this information
when designing and coding your program.

v Chapter 4, “Coding Your Program,” on page 131 tells you how to code your
scalar and array data, how to code calls to ESSL in Fortran, C, and C++
programs, and how to do the coding necessary to handle errors. Use this
information when coding your program.

v Chapter 5, “Processing Your Program,” on page 183 describes how to process
your program under your particular operating system on your hardware. Use
this information after you have coded your program and are ready to run it.

v Chapter 6, “Migrating Your Programs,” on page 199 explains all aspects of
migration to ESSL, to this version of ESSL, to different processors, and to future
releases and future processors. Read this before starting to design your program.

v Chapter 7, “Handling Problems,” on page 205 provides diagnostic procedures
for analyzing all ESSL problems. When you encounter a problem, use the
symptom indexes at the beginning to guide you to the appropriate diagnostic
procedure.

Part 2, “Reference Information,” on page 221 provides reference information you
need to code the ESSL calling sequences. It covers each of the mathematical areas
of ESSL, and the utility subroutines. The information for each subroutine area
begins with an introduction, followed by the subroutine descriptions. Each
introduction applies to all the subroutines in that area and is especially important

© Copyright IBM Corp. 1986, 2015 xv

in planning your use of the subroutines and avoiding problems. Use the
appropriate information when coding your program:
v Chapter 8, “Linear Algebra Subprograms,” on page 223

v Chapter 9, “Matrix Operations,” on page 419

v Chapter 10, “Linear Algebraic Equations,” on page 507

v Chapter 11, “Eigensystem Analysis,” on page 911

v Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related
Computations,” on page 981

v Chapter 13, “Sorting and Searching,” on page 1157

v Chapter 14, “Interpolation,” on page 1177

v Chapter 15, “Numerical Quadrature,” on page 1199

v Chapter 16, “Random Number Generation,” on page 1225

v Chapter 17, “Utilities,” on page 1249

Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1295
provides a list of the Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS)
included in ESSL.

Appendix B, “LAPACK,” on page 1299 provides a list of the LAPACK subroutines
included in ESSL.

Appendix C, “FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303
provides a list of the FFTW subroutines included in ESSL.

“Bibiography” on page 1313 provides information about publications related to
ESSL. Use it when you need more information than this documentation provides.

Where to Find Related Publications
ESSL documentation, as well as other related information, can be displayed or
downloaded from the Internet at the following URL:
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html

Related Publications

The related Web sites listed below may be useful to you when using ESSL.

Product Web site URL

AIX® http://www.ibm.com/servers/aix

Linux For general information and documentation on Linux:

http://www.tldp.org/

For information about the standard Linux installation procedure using the
RPM Package Manager (RPM):

http://www.rpm.org/

For information about IBM-related offerings for Linux:

http://www.ibm.com/linux/

C and C++
XL Fortran

http://www.ibm.com/support/knowledgecenter/, under 'Rational' on the
left hand pane.

xvi ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Product Web site URL

NVIDIA http://www.nvidia.com

For information about CUDA, see:

http://developer.nvidia.com/cuda-toolkit

For the CUDA Toolkit Documentation site, see:

http://docs.nvidia.com/cuda/#axzz3VafCSAvr

Using Bibliography References
Special references are made throughout this documentation to mathematical
background publications and software libraries, available through IBM®,
publishers, or other companies. All of these are described in detail in the
bibliography. A reference to one of these is made by using a bracketed number.
The number refers to the item listed under that number in the bibliography. For
example, reference [1] cites the first item listed in the bibliography.

IBM Request for Enhancement (RFE) Community
The IBM Requests for Enhancements (RFEs) Community provides an opportunity
to collaborate directly with the IBM product development teams and other product
users on RFEs.

You can submit ESSL RFEs at the Servers and Systems Software RFE Community:
https://www.ibm.com/developerworks/rfe/?BRAND_ID=352

How to Find a Subroutine Description
If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines, ESSL” in the
Index.

How to Interpret the Subroutine Names with a Prefix Underscore
A name specified with an underscore (_) prefix, such as _GEMUL, refers to all the
versions of the subroutine with that name. To get the entire list of subroutines that
name refers to, substitute the first letter for each version of the subroutine. For
example, _GEMUL, refers to all versions of the matrix multiplication subroutine:
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do not use the underscore in
coding the names of the ESSL subroutines in your program. You code a complete
name, such as SGEMUL. For details about these names, see “The Variety of
Mathematical Functions” on page 4.

Special Terms
Standard data processing and mathematical terms are used in this documentation.
Terminology is generally consistent with that used for Fortran. See the Glossary for
definitions of terms used.

Short and Long Precision
Because ESSL can be used with more than one programming language, the terms
short precision and long precision are used in place of the Fortran terms single
precision and double precision.

About this information xvii

Subroutines and Subprograms
An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call. A subroutine can be called in one or
more user programs and at one or more times within each program. The ESSL
subroutines are referred to as subprograms in the area of linear algebra
subprograms. The term subprograms is used because it is consistent with the
BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are
listed in Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1295.

Abbreviated Names
The abbreviated names used are defined below.

Table 1. Abbreviated names

Short Name Full Name

AIX Advanced Interactive Executive

AltiVec* A tradename, owned solely by Freescale Semiconductor,
Inc., for a floating point and integer SIMD instruction set
designed and owned by Apple, IBM, and Freescale
(formerly the Semiconductor Products Sector of Motorola).

BLAS Basic Linear Algebra Subprograms (see Appendix A, “Basic
Linear Algebra Subprograms (BLAS),” on page 1295)

CBLAS C interface to the BLAS (see Appendix A, “Basic Linear
Algebra Subprograms (BLAS),” on page 1295)

CUDA Parallel computing platform and programming model
invented by NVIDIA

ESSL IBM Engineering and Scientific Subroutine Library

FFTW Fastest Fourier Transform in the West (see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page
1303)

GPU Graphics processing unit

HTML Hypertext Markup Language

LAPACK Linear Algebra Package (see Appendix B, “LAPACK,” on
page 1299)

OpenMP Open Multi-Processing

SL MATH Subroutine Library—Mathematics

SMP Symmetric Multi-Processing

SSP Scientific Subroutine Package

*AltiVec is a trademark of
Freescale Semiconductor, Inc.

Conventions and terminology used
Table 2 describes the typographic conventions used.

Table 2. Summary of typographic conventions

Typographic Usage

Bold Bold words or characters represent system elements that you must use
literally, such as commands, flags, and path names.

xviii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

Table 2. Summary of typographic conventions (continued)

Typographic Usage

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for book titles and for general emphasis in text.

Constant
width

Examples and information that the system displays appear in constant
width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means
“or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on
the keyboard. For example, <Enter> refers to the key on your terminal or
workstation that is labeled with the word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more
times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example,
<Ctrl-c> means that you hold down the control key while pressing <c>.

\ The continuation character is used in coding examples for formatting
purposes.

Conventions that are consistent with traditional mathematical usage are followed.

Fonts
A variety of special fonts are used to distinguish between many mathematical and
programming items. These are defined below.

Special Font Example Description

Italic with no subscripts m, inc1x, aux, iopt Calling sequence argument or
mathematical variable

Italic with subscripts x1, amn, xj1,j2 Element of a vector, matrix, or
sequence

Bold italic lowercase x, y, z Vector or sequence

Bold italic uppercase A, B, C Matrix

Gothic uppercase A, B, C, AGB

IM=ISMAX(4,X,2)

Array

Fortran statement

Special Notations and Conventions
This explains the special notations and conventions used to describe various types
of data.

Scalar Data
Following are the special notations used in the examples for scalar data items.
These notations are used to simplify the examples, and they do not imply usage of
any precision. For a definition of scalar data in Fortran, C, and C++, see Chapter 4,
“Coding Your Program,” on page 131.

About this information xix

Data Item Example Description

Character item ’T’ Character(s) in single quotation marks

Hexadecimal string X’97FA00C1’ String of 4-bit hexadecimal characters

Logical item .TRUE. .FALSE. True or false logical value, as indicated

Integer data 1 Number with no decimal point

Real data 1.6 Number with a decimal point

Complex data (1.0,–2.9) Real part followed by the imaginary part

Continuation
-

1.6666 Continue the last digit
(1.6666666... and so forth)

Vectors
A vector is represented as a single row or column of subscripted elements enclosed
in square brackets. The subscripts refer to the element positions within the vector:

For a definition of vector, see “Vectors” on page 73.

Matrices
A matrix is represented as a block of elements enclosed in square brackets.
Subscripts refer to the row and column positions, respectively:

For a definition of matrix, see “Matrices” on page 79.

Sequences
Sequences are used in the areas of sorting, searching, Fourier transforms,
convolutions, and correlations. For a definition of sequences, see “Sequences” on
page 126.

One-Dimensional Sequences: A one-dimensional sequence is represented as a
series of elements enclosed in parentheses. Subscripts refer to the element position
within the sequence:

xx ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

(x1, x2, x3, ..., xn)

Two-Dimensional Sequences: A two-dimensional sequence is represented as a
series of columns of elements. (They are represented in the same way as a matrix
without the square brackets.) Subscripts refer to the element positions within the
first and second dimensions, respectively:

Three-Dimensional Sequences: A three-dimensional sequence is represented as a
series of blocks of elements. Subscripts refer to the elements positions within the
first, second, and third dimensions, respectively:

Arrays
Arrays contain vectors, matrices, or sequences. For a definition of array, see “How
Do You Set Up Your Arrays?” on page 46.

One-Dimensional Arrays: A one-dimensional array is represented as a single row
of numeric elements enclosed in parentheses:

(1.0, 2.0, 3.0, 4.0, 5.0)

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. In the following array, five elements
are significant to the computation, and two elements not used in the computation
exist between each of the elements shown:

(1.0, . , . ,2.0, . , . ,3.0, . , . ,4.0, . , . ,5.0)

This notation is used to show vector elements inside an array.

Two-Dimensional Arrays: A two-dimensional array is represented as a block of
numeric elements enclosed in square brackets:

┌ ┐
| 1.0 11.0 5.0 25.0 |
| 2.0 12.0 6.0 26.0 |

About this information xxi

| 3.0 13.0 7.0 27.0 |
| 4.0 14.0 8.0 28.0 |
└ ┘

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. The following array contains three
rows and two columns not used in the computation:

┌ ┐
| |
| |
| . 1.0 2.0 5.0 4.0 . |
| . 2.0 3.0 6.0 3.0 . |
| . 3.0 4.0 7.0 2.0 . |
| . 4.0 5.0 8.0 1.0 . |
| |
└ ┘

This notation is used to show matrix elements inside an array.

Three-Dimensional Arrays: A three-dimensional array is represented as a series
of blocks of elements separated by ellipses. Each block appears like a
two-dimensional array:

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations
The mathematical and programming notations used are consistent with traditional
mathematical and programming usage. These conventions are explained below,
along with special abbreviations that are associated with specific values.

Item Description

Greek letters: α, σ, ω, Ω Symbolic scalar values

|a| The absolute value of a

av b The dot product of a and b

xi The i-th element of vector x

cij The element in matrix C at row i and column j

x1 ... xn Elements from x1 to xn

i = 1, n i is assigned the values 1 to n

y ← x Vector y is replaced by vector x

xy Vector x times vector y

AX≅B AX is congruent to B

ak a raised to the k power

ex Exponential function of x

AT; xT The transpose of matrix A; the transpose of vector x

┌ ┐ ┌ ┐ ┌ ┐
1.0 11.0 5.0 25.0		10.0 111.0 15.0 125.0		100.0 11.0 15.0 25.0
2.0 12.0 6.0 26.0		20.0 112.0 16.0 126.0	...	200.0 12.0 16.0 26.0
3.0 13.0 7.0 27.0		30.0 113.0 17.0 127.0		300.0 13.0 17.0 27.0
4.0 14.0 8.0 28.0		40.0 114.0 18.0 128.0		400.0 14.0 18.0 28.0
└ ┘ └ ┘ └ ┘

xxii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Item Description

The complex conjugate of vector x; the complex conjugate of
matrix A

The complex conjugate of the complex vector element xi, where:

The complex conjugate of the complex matrix element cjk

xH; AH The complex conjugate transpose of vector x; the complex
conjugate transpose of matrix A

The sum of elements x1 to xn

The square root of a+b

The integral from a to b of f(x) dx

{x{2

The Euclidean norm of vector x, defined as:

{A{1

The one norm of matrix A, defined as:

{A{2

The spectral norm of matrix A, defined as:

max{{Ax{2 : {x{2 = 1}

{A{F

The Frobenius or Euclidean norm of matrix A, defined as:

{A{∞

The infinity norm of matrix A, defined as:

A-1
The inverse of matrix A

A-T
The transpose of A inverse

|A| The determinant of matrix A

m by n matrix A Matrix A has m rows and n columns

About this information xxiii

Item Description

sin a The sine of a

cos b The cosine of b

SIGN (a) The sign of a; the result is either + or -

address {a} The storage address of a

max(x) The maximum element in vector x

min(x) The minimum element in vector x

ceiling(x) The smallest integer that is greater than or equal to x

floor(x) The largest integer that is not greater than x

int(x) The largest integer that is less than or equal to x

x mod(m) x modulo m; the remainder when x is divided by m

∞ Infinity

π Pi, 3.14159265...

How to Interpret the Subroutine Descriptions
This explains how to interpret the information in the subroutine descriptions.

Description
Each subroutine description begins with a brief explanation of what the subroutine
does. When we combine the description of multiple versions of a subroutine, we
give enough information to enable you to easily tell the differences among the
subroutines. Differences usually occur in either the function performed or the data
types required for each subroutine.

For subroutines with CBLAS calling sequences, the Data Types table lists only the
Fortran name. The data types used for the CBLAS are the same as that used for
Fortran.

Syntax
This shows the syntax for the Fortran, C and C++ calling sequences. BLAS
subroutine descriptions also show the syntax for the CBLAS calling sequences.

Note:

v For information about the CBLAS calling sequence, see [10 on page 1314].
v For a list of BLAS, see Appendix A, “Basic Linear Algebra Subprograms

(BLAS),” on page 1295.

Fortran CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...)

C and C++ name-1 | name-2 | ... | name-n (arg-1, ... ,arg-m);

CBLAS cblas_name-1 | cblas_name-2 | ... | cblas_name-n (arg-1, ... ,arg-m);

The syntax indicates:
v Each possible subroutine or subprogram name that you can code in the calling

sequence. Each name is separated by the | (or) symbol. You specify only one of
these names in your calling sequence. (You do not code the | in the calling
sequence.)

xxiv ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|

|

|
|

|

|

|
|

|||

||

||
|

|

|
|
|
|

v The arguments, listed in the order in which you code them in the calling
sequence. You must code them all in your calling sequence.
You can distinguish between input arguments and output arguments by looking
at “On Entry” and “On Return”, respectively. An argument used for both input
and output is described in both “On Entry” and “On Return”. In this case, the
input value for the argument is overlaid with the output value.
The names of the arguments give an indication of the type of data that you
should specify for the argument; for example:
– Names beginning with the letters i through n, such as m, incx, iopt, and isign,

indicate that you specify integer data.
– Names beginning with the letters a through h and o through z, such as b, t,

alpha, sigma, and omega, indicate that you specify real or complex data.
– Names beginning with cblas_ indicate that you specify enumerated types.

These are used only for CBLAS.

Note: If you code a CBLAS calling sequence, there are times when an argument
description references a character argument. In that situation, you should
translate the character argument to its equivalent CBLAS enumerated type, as
shown in Table 3.

Table 3. Translating character argument values to CBLAS enumerated types

Character argument
Character
Argument Value CBLAS Argument Enumerated Type Value

trans, transa, transb 'N'
'T'
'C'

cblas_trans, cblas_transa, cblas_transb CblasNoTrans
CblasTrans
CblasConjTrans

side 'L'
'R'

cblas_side CblasLeft
CblasRight

uplo 'U'
'L'

cblas_uplo CblasUpper
CblasLower

diag 'U'
'N'

cblas_diag CblasUnit
CblasNonUnit

On Entry
This lists the input arguments, which are the arguments you pass to the ESSL
subroutine. Each argument description first gives the meaning of the argument,
and then gives the form of data required for the argument.

The calling sequences for the Level 2 CBLAS and the Level 3 CBLAS include input
arguments that are enumerated types defined in essl.h. Argument cblas_order
indicates whether the input and output matrices are stored in column-major order
or row-major order. All other enumerated type arguments replace the character
arguments found in the Fortran, C and C++ calling sequences (see Table 3). Unlike
the C and C++ interfaces to ESSL, complex scalar arguments are passed by
reference instead of being passed by value.

On Return
This lists the output arguments, which are the arguments passed back to your
program from the ESSL subroutine. Each argument description first gives the
meaning of the argument, and then gives the form of data passed back to your
program for the argument.

About this information xxv

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

||

|
|
|||

||
|
|

||
|
|

||
|
||
|

||
|
||
|

||
|
||
|
|

|

|
|
|

|
|
|
|
|
|
|

Notes
The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments.

Function
This is a functional, or mathematical, description of the function performed by this
subroutine. It explains what computation is performed, not the implementation.
It explains the variations in the computation depending on the input arguments.
References are made, where appropriate, to mathematical background books listed
in the bibliography. References appear as a number enclosed in square brackets,
where the number refers to the item listed under that number in the bibliography.
For example, reference [1] cites the first item listed.

Special Usage
These are unique ways you can use the subroutine in your application. In most
cases, this does not address applications of the ESSL subroutines; however, in
special situations where the functional capability of the subroutine can be extended
by following certain rules for its use, these rules are described.

Error Conditions
These are all the ESSL run-time errors that can occur in the subroutine. They are
organized under three headings; Computational Errors, Input-Argument Errors,
and Resource Errors. The return code values resulting from these errors are also
explained.

Examples
The examples show how you would call the subroutine from a Fortran program
using 32-bit integers. If you are using 64-bit integers, you may need to use a larger
workspace and therefore you may need to increase the size of naux and lwork. (See
“Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used” on page 51.)

The examples provided for each subroutine show a variety of uses of the
subroutine. Except where it is important to show differences in use between the
various versions of the subroutine, the simplest version of the subroutine is used in
the examples. In most cases, this is the short-precision real version of the
subroutine. Each example provides a description of the important features of the
example, followed by the Fortran calling sequence, the input data, and the
resulting output data.

How to Send Your Comments
Your feedback is important in helping us to produce accurate, high-quality
information. If you have any comments about this information or any other ESSL
documentation, send your comments to the following e-mail address:

mhvrcfs@us.ibm.com

Include the publication title and order number, and, if applicable, the specific
location of the information about which you have comments (for example, a page
number or a table number).

xxvi ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Summary of Changes

The following sections summarize changes to ESSL and the ESSL documentation
for each new release or major service update for a given product version. Within
each book in the library, a vertical line to the left of text and illustrations indicates
technical changes or additions made to the previous edition of the book.

Summary of changes
for ESSL for AIX, Version 5 Release 3
and ESSL for Linux on POWER®, Version 5 Release 4
as updated, December 2015

ESSL 5.4 now supports the following:
v IBM Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running

Red Hat Enterprise Linux 7.2 (RHEL7.2) or later (little endian mode).

Note: The ESSL SMP CUDA library is only supported on this model.
v Power8 Servers running RHEL 7.2 or later (little endian mode).
v CBLAS, a C Interface to the Basic Linear Algebra Subprograms (BLAS).
v Compiling ESSL C++ applications using the g++ compiler.

ESSL 5.4 does not support the following:
v Ubuntu (little endian mode)
v SUSE Linux Enterprise Server 12 (SLES12) (little endian mode)
v RHEL7 (big endian mode)
v IBM Power System S824L server Model 42L with NVIDIA K40 GPUs
v IBM Power7+ and Power7 servers and blades.

If you require any of the above support, order ESSL for Linux V5.3.2 instead.

Summary of changes
for ESSL for AIX, Version 5 Release 3
and ESSL for Linux on POWER, Version 5 Release 3.2
as updated, July 2015

ESSL 5.3.2 provides new support for the ESSL SMP CUDA 32-bit integer/64-bit
pointer environment library. The ESSL SMP CUDA Library is supported only on
IBM Power® System S824L server (8247-42L) with one or two NVIDIA Tesla K40
GPUs running Ubuntu 14.04.2 or Ubuntu 14.10.

You can use the ESSL SMP CUDA Library in two ways for the subset of ESSL
Subroutines that are GPU-enabled:
v Using NVIDIA GPUs for the bulk of the computation.
v Using a hybrid combination of POWER8® CPUs and NVIDIA GPUs.

The ESSL SMP CUDA library leverages ESSL BLAS and NVIDIA cuBLAS and
blocking techniques to handle problem sizes larger than the GPU memory size.
The algorithms support multiple GPUs and are designed for use in both SMP and
MPI applications.

For information, see “Using the ESSL SMP CUDA Library” on page 41.

© Copyright IBM Corp. 1986, 2015 xxvii

Subroutines
The following new SETGPUS utility subroutine is now included; See
“SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL
Should Use)” on page 1261.

Summary of changes
for ESSL for AIX, Version 5 Release 3
and ESSL for Linux on POWER, Version 5 Release 3.1
as updated, December 2014

ESSL 5.3.1 (little endian mode) provides the following new support:
v 64-bit applications running on Power8 servers in little endian mode
v C99 complex floating point types for complex arithmetic when the ESSL header

file is used to call ESSL from C and C++ applications

Operating systems

Support has been added for the following operating systems:
v SUSE Linux Enterprise Server 12 (SLES12)
v Ubuntu Server 14.04.01 for IBM Power
v Ubuntu Server 14.10 for IBM Power

For a complete list of operating system versions and distributions on
which this release of ESSL is supported, see “Operating Systems Supported
by ESSL” on page 8.

Summary of changes
for ESSL for AIX, Version 5 Release 3
and ESSL for Linux on POWER, Version 5 Release 3
as updated, August 2014

This release of ESSL provides the changes described below.

Operating systems

Support has been added for the following operating systems:
v Red Hat Linux Enterprise Server 7 (RHEL7)

Support is no longer provided for the following operating systems:
v Red Hat Linux Enterprise Server 6 (RHEL6)
v SUSE Linux Enterprise Server 11 SP1 (SLES11 SP1)

For a complete list of operating system versions and distributions on
which this release of ESSL is supported, see “Operating Systems Supported
by ESSL” on page 8.

Servers and processors
This document has been updated to include support for the IBM Power8
processors.

For a complete list of servers and processors on which this release of ESSL
is supported, see “Hardware Products Supported by ESSL” on page 8.

Subroutines
The following new subroutines are now included:

Dense Linear Algebraic Equation Subroutines:
v SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV,

ZSPSV, CHPSV, and ZHPSV; See “SSYSV, DSYSV, CSYSV, ZSYSV,

xxviii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, ZHPSV
(Indefinite Real or Complex Symmetric or Complex Hermitian Matrix
Factorization and Multiple Right-Hand Side Solve)” on page 626.

v SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF,
DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF; See “SSYTRF,
DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or Complex
Symmetric or Complex Hermitian Matrix Factorization)” on page 635.

v SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS,
DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS; “SSYTRS, DSYTRS,
CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS,
ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or Complex Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page
643.

v SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP,
and ZLANTP: See “SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP,
DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix
Norm)” on page 672.

Banded Linear Algebraic Equation Subroutines:
v SGBSV, DGBSV, CGBSV, and ZGBSV; See “SGBSV, DGBSV, CGBSV, and

ZGBSV (General Band Matrix Factorization and Multiple Right-Hand
Side Solve)” on page 679.

v SGBTTRF, DGBTTRF, CGBTTRF, and ZGBTTRF; See “SGBTRF, DGBTRF,
CGBTRF and ZGBTRF (General Band Matrix Factorization)” on page
683.

v SGBTTRS, DGBTTRS, CGBTTRS, and ZGBTTRS; See “SGBTRS, DGBTRS,
CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side
Solve)” on page 687.

v SGTSV, DGTSV, CGTSV, and ZGTSV; See “SGTSV, DGTSV, CGTSV, and
ZGTSV (General Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve)” on page 711.

v SGTTRF, DGTTRF, CGTTRF, and ZGTTRF; See “SGTTRF, DGTTRF,
CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)” on
page 715.

v SGTTRS, DGTTRS, CGTTRS, and ZGTTRS; See “SGTTRS, DGTTRS,
CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand
Side Solve)” on page 719.

Linear Least Squares Subroutines:
v SGESVD, DGESVD, CGESVD, and ZGESVD; See “SGESVD, DGESVD,

CGESVD, and ZGESVD (Singular Value Decomposition for a General
Matrix)” on page 859.

v SGELSD, DGELSD, CGELSD, and ZGELSD; See “SGELSD, DGELSD,
CGELSD, and ZGELSD (Linear Least Squares Solution for a General
Matrix Using the Singular Value Decomposition)” on page 884.

Random Number Generation Subroutines:
v INITRNG; See “INITRNG (Initialize Random Number Generators)” on

page 1227.
v SURNG and DURNG; See “SURNG and DURNG (Generate a Vector of

Uniformly Distributed Pseudo-Random Numbers)” on page 1232.
v SNRNG and DNRNG; See “SNRNG and DNRNG (Generate a Vector of

Normally Distributed Pseudo-Random numbers)” on page 1235.

Summary of Changes xxix

Summary of changes
for ESSL for AIX, Version 5 Release 2
and ESSL for Linux on POWER, Version 5 Release 2
as updated, February 2013

This release of ESSL provides the changes described below.

Operating systems

Support is no longer provided for the following operating systems:
v AIX 5.3

For a complete list of operating system versions and distributions on
which this release of ESSL is supported, see “Operating Systems Supported
by ESSL” on page 8.

Servers and processors
This document has been updated to include support for the IBM
POWER7® processors. This support was added to ESSL after the July 2012
publication of this document.

Support is no longer provided for the following servers and processors:
v IBM BlueGene/Q

For a complete list of servers and processors on which this release of ESSL
is supported, see “Hardware Products Supported by ESSL” on page 8.

Subroutines
The following new subroutines are now included:

Matrix Operations:
v CGECMI and ZGECMI; See “SGETMI, DGETMI, CGETMI, ZGETMI,

CGECMI and ZGECMI (General Matrix Transpose or Conjugate
Transpose [In-Place])” on page 499.

v CGECMO and ZGECMO; See “SGETMO, DGETMO, CGETMO,
ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or
Conjugate Transpose [Out-of-Place])” on page 502.

Banded Linear Algebraic Equation Subroutines:
v SPBSV, DPBSV, CPBSV, and ZPBSV; See “SPBSV, DPBSV, CPBSV, and

ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band
Matrix Factorization and Multiple Right-Hand Side Solve)” on page 696.

v SPBTRF, DPBTRF, CPBTRF, and ZPBTRF; See “SPBTRF, DPBTRF,
CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex
Hermitian Band Matrix Factorization)” on page 701.

v SPBTRS, DPBTRS, CPBTRS, and ZPBTRS; See “SPBTRS, DPBTRS,
CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex
Hermitian Band Matrix Multiple Right-Hand Side Solve)” on page 706.

v SPTSV, DPTSV, CPTSV, and ZPTSV; See “SPTSV, DPTSV, CPTSV, and
ZPTSV (Positive Definite Real Symmetric or Complex Hermitian
Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)”
on page 725.

v SPTTRF, DPTTRF, CPTTRF, and ZPTTRF; See “SPTTRF, DPTTRF,
CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex
Hermitian Tridiagonal Matrix Factorization)” on page 729.

v SPTTRS, DPTTRS, CPTTRS, and ZPTTRS; See “SPTTRS, DPTTRS,
CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex
Hermitian Tridiagonal Matrix Multiple Right-Hand Solve)” on page 733.

xxx ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Eigensystem Analysis Subroutines:
v SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD

and ZHEEVD; See “SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD,
DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the
Eigenvectors, of a Real Symmetric or Complex Hermitian Matrix Using a
Divide-and-Conquer Algorithm)” on page 942.

v SGGEV, DGGEV, CGGEV, and ZGGEV; See “SGGEV, DGGEV, CGGEV,
and ZGGEV (Eigenvalues and, Optionally, Left and/or Right
Eigenvectors of a General Matrix Generalized Eigenproblem)” on page
955.

v SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, CHEGVX, and
ZHEGVX; See “SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX,
DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the
Eigenvectors of a Positive Definite Real Symmetric or Complex
Hermitian Generalized Eigenproblem)” on page 965.

The ESSL 5.1 non-LAPACK-conforming subroutines, that is, those
subroutines whose name is the same as an existing LAPACK subroutine,
but whose calling-sequence arguments and functionality are different from
that LAPACK subroutine have been removed from ESSL 5.2. For details,
see “Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on
Power Version 5 Release 1.1 to Version 5 Release 2” on page 199.

Summary of changes
for ESSL for AIX, Version 5 Release 1
and ESSL for Linux on POWER, Version 5 Release 1.1
as updated, July 2012

This release of ESSL for Linux on POWER provides the following new libraries:
v ESSL Blue Gene® Serial Library and ESSL Blue Gene SMP Library, which provide

versions of the ESSL subroutines for use on Blue Gene®/Q and run in a 32-bit
integer, 64-bit pointer environment on RHEL6.2.
These libraries can also be used with the FFTW Wrappers Support.

Support has been added for the following compiler levels:
v IBM XL Fortran for AIX 14.1 and IBM XL C/C++ for AIX 12.1
v IBM XL Fortran for Linux 14.1 and IBM XL C/C++ for Linux 12.1

This document has also been updated to include support for RHEL6 for Power
platforms. This support was added to ESSL 5.1 after the October 2010 publication
of this document.

Summary of changes
for ESSL for AIX, Version 5 Release 1
and ESSL for Linux on POWER, Version 5 Release 1
as updated, October 2010

The ESSL 5.1 Serial Library and the ESSL SMP Library contain:
v A VSX (SIMD) version of selected subroutines for use on POWER7

processor-based servers
v An AltiVec (SIMD) version of selected subroutines for use on POWER6®

processor-based servers

This release of ESSL provides the changes described below.

Operating systems

Summary of Changes xxxi

Support has been added for the following operating system version:
v AIX 7.1

Support is no longer provided for the following operating systems:
v SUSE Linux Enterprise Server 10 for POWER (SLES10)
v Red Hat Enterprise Linux 5 (RHEL5)

For a complete list of operating system versions and distributions on
which this release of ESSL is supported, see “Operating Systems Supported
by ESSL” on page 8.

Servers and processors
Support has been added for the POWER7 processor.

Support is no longer provided for the following servers and processors:
v IBM BladeCenter JS21, IBM POWERPC 450, IBM POWERPC 450D, IBM

POWER5, IBM POWER5+, IBM POWERPC970 processors, IBM Blue
Gene®/P.

For a complete list of servers and processors on which this release of ESSL
is supported, see “Hardware Products Supported by ESSL” on page 8.

Subroutines

ESSL 5.1 is the last release to support non-LAPACK-conforming-
subroutines; that is, those ESSL subroutines whose name is the same as an
existing LAPACK subroutine, but whose calling-sequence arguments and
functionality are different from that LAPACK subroutine.

This new LAPACK subroutine is now included:
v DSYGVX. See “SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX,

DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the
Eigenvectors of a Positive Definite Real Symmetric or Complex
Hermitian Generalized Eigenproblem)” on page 965

These new Fourier Transform subroutines are now included:
v SRCFTD and DRCFTD. See “SRCFTD and DRCFTD (Multidimensional

Real-to-Complex Fourier Transform)” on page 1000
v SCRFTD and DCRFTD. See “SCRFTD and DCRFTD (Multidimensional

Complex-to-Real Fourier Transform)” on page 1008

FFTW Wrappers

Support has been added to the ESSL FFTW Wrapper Libraries
corresponding to the new ESSL Fourier Transform subroutines. See
Appendix C, “FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page
1303 for the list of FFTW subroutines supported, restrictions on their use,
and instructions on how to build, install, and use the ESSL FFTW
Wrappers Library.

Documentation for FFTW Version 3.1.2 can be found at:
http://www.fftw.org.

Future Migration
If you are concerned with migration to possible future releases of ESSL or possible
future hardware, you should read “Planning for Future Migration” on page 202,
which explains what you can do now to prevent future migration problems.

xxxii ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

http://www.fftw.org

Part 1. Guide Information

The following types of guidance information about how to use ESSL are available:
v Learning how to use ESSL documentation
v Learning what is new in ESSL
v Learning about the ESSL product
v Designing your program
v Setting up your data structures
v Coding your program
v Processing your program
v Migrating your programs
v Handling problems

© Copyright IBM Corp. 1986, 2015 1

2 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 1. Introduction and Requirements

This introduces you to the Engineering and Scientific Subroutine Library (ESSL)
product.

Overview of ESSL
IBM Engineering and Scientific Subroutine Library (ESSL) is a state-of-the-art
collection of high-performance subroutines providing a wide range of
mathematical functions for many different scientific and engineering applications.
Its primary characteristics are performance, functional capability, and usability.

ESSL is provided as run-time libraries that run on the servers and processors listed
in “Hardware Products Supported by ESSL” on page 8.

ESSL can be used with Fortran, C, and C++ programs operating under the AIX and
Linux operating systems.

To order ESSL, specify one of the program numbers below:

ESSL for AIX
5765-H25

ESSL for Linux
5765-L51

Performance and Functional Capability
The mathematical subroutines, in nine computational areas, are tuned for
performance. The computational areas are:
v Linear Algebra Subprograms
v Matrix Operations
v Linear Algebraic Equations
v Eigensystem Analysis
v Fourier Transforms, Convolutions and Correlations, and Related Computations
v Sorting and Searching
v Interpolation
v Numerical Quadrature
v Random Number Generation

ESSL runs under the AIX and Linux operating systems.

ESSL provides the following run-time libraries (described in detail in “What ESSL
Library Do You Want to Use?” on page 29):
v ESSL Serial Libraries and ESSL SMP Libraries, which run in the following

environments:
– 32-bit integer, 32-bit pointer environment (AIX only)
– 32-bit integer, 64-bit pointer environment
– 64-bit integer, 64-bit pointer environment

v ESSL SMP CUDA Library which runs in the following environment
– 32-bit integer, 64-bit pointer environment (little endian only)

Notes:

© Copyright IBM Corp. 1986, 2015 3

v For the 32-bit integer, 64-bit pointer environment, in accordance with the LP64
data model, all ESSL integer arguments remain 32 bits except for the iusadr
argument for ERRSET.

v To avoid 32-bit integer overflow problems (for example, matrices of order n
where N > 46340), use the ESSL 64-bit integer, 64-bit pointer environment
libraries.

These libraries contain:
v a VSX (SIMD) version of selected subroutines for use on VSX enabled

processor-based servers.
v an AltiVec version of selected subroutines for use on POWER6 processors (AIX

only).

These ESSL libraries are described in detail in “What ESSL Library Do You Want to
Use?” on page 29.

All these libraries are designed to provide high levels of performance for
numerically intensive computing jobs. All versions provide mathematically
equivalent results.

The ESSL subroutines can be called from application programs written in Fortran,
C, and C++.

Usability
ESSL is designed for usability:
v It has an easy-to-use call interface.
v If your existing application programs use the Serial Libraries, you only need to

re-link your program to take advantage of the increased performance of the SMP
Libraries.

v It has informative error-handling capabilities, enabling you to calculate auxiliary
storage sizes and transform lengths.

v Online documentation that can be displayed using a Hypertext Markup
Language (HTML) document browser is available for use with ESSL.

The Variety of Mathematical Functions
ESSL includes several different types of mathematical functions.

Areas of Application
ESSL provides a variety of mathematical functions for many different types of
scientific and engineering applications. Some of the industries using these
applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities,
and Research. Examples of applications in these industries are:
v Structural Analysis
v Time Series Analysis
v Computational Chemistry
v Computational Techniques
v Fluid Dynamics Analysis
v Mathematical Analysis
v Seismic Analysis Dynamic
v Systems Simulation Reservoir Modeling
v Nuclear Engineering Quantitative Analysis

4 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|

v Electronic Circuit Design

What ESSL Provides
ESSL provides run-time libraries that are designed to provide high levels of
performance for numerically intensive computing jobs.

The subroutines provided in ESSL, summarized in Table 4, fall into the following
groups:
v Nine major areas of mathematical computation, providing the computations

commonly used by the industry applications listed
v Utilities, performing general-purpose functions

Most of the subroutine calls are compatible with those in the ESSL/370 product.

To help you select the ESSL subroutines that fulfill your needs for performance,
accuracy, storage, and so forth, see “Selecting an ESSL Subroutine” on page 29.

Table 4. Summary of ESSL Subroutines

ESSL Area of Computation
Integer
Subroutines

Short-Precision
Subroutines

Long-Precision
Subroutines

Linear Algebra Subprograms:

Vector-scalar 0 41 41

Sparse vector-scalar 0 11 11

Matrix-vector 0 38 38

Sparse matrix-vector 0 0 3

Matrix Operations:

Addition, subtraction, multiplications, triangular solves,
rank-k updates, rank-2k updates, and matrix transposes 0 29 30

Linear Algebraic Equations:

Dense linear algebraic equations 0 82 87

Banded linear algebraic equations 0 40 40

Sparse linear algebraic equations 0 0 11

Linear least squares 0 11 11

Eigensystem Analysis:

Solutions to the algebraic eigensystem analysis problem
and the generalized eigensystem analysis problem 0 16 16

Signal Processing Computations:

Fourier transforms 0 18 14

Convolutions and correlations 0 10 2

Related computations 0 6 6

Sorting and Searching:

Sorting, sorting with index, and binary and sequential
searching 5 5 5

Interpolation:

Polynomial and cubic spline interpolation 0 4 4

Numerical Quadrature:

Numerical quadrature on a set of points or on a
function 0 6 6

Chapter 1. Introduction and Requirements 5

||||

|
||

||||

||||

Table 4. Summary of ESSL Subroutines (continued)

ESSL Area of Computation
Integer
Subroutines

Short-Precision
Subroutines

Long-Precision
Subroutines

Random Number Generation:

Generating vectors of uniformly distributed and
normally distributed random numbers 1 5 5

Utilities:

General service operations 9 0 3

Total ESSL Subroutines 15 322 333

Accuracy of the Computations
ESSL provides accuracy comparable to libraries using equivalent algorithms with
identical precision formats. Both short- and long-precision real versions of the
subroutines are provided in most areas of ESSL. In some areas, short- and
long-precision complex versions are also provided, and, occasionally, an integer
version is provided. The data types operated on by the short-precision and
long-precision versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary
floating-point format. See the ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754–1985, for more detail. (There are ESSL-specific
rules that apply to the results of computations on workstation processors using the
ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by
ESSL, and What Exceptions Should You Know About?” on page 62.)

For more information on accuracy, see “Getting the Best Accuracy” on page 61.

High Performance of ESSL
The ESSL subroutines have been designed to provide high performance. (See
references [38 on page 1315], [49 on page 1316], and [50 on page 1316].)

Algorithms
To achieve high performance, the subroutines use state-of-the-art algorithms
tailored to specific operational characteristics of the hardware, such as cache size,
Translation Lookaside Buffer (TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:
v Managing the cache and TLB efficiently so the hit ratios are maximized; that is,

data is blocked so it stays in the cache or TLB for its computation.
v Accessing data stored contiguously—that is, using stride-1 computations.
v Exploiting the large number of available floating-point registers.
v Using algorithms that minimize paging.
v Structuring the ESSL subroutines so, where applicable, the compiled code fully

utilizes the dual floating-point execution units. Because two Multiply-Add
instructions can be executed each cycle, neglecting overhead, this allows four
floating-point operations per cycle to be performed.

v Structuring the ESSL subroutines so, where applicable, the compiled code takes
full advantage of the hardware data prefetching.

Obtaining High Performance
Obtaining high performance depends on the type of processor you are using.

6 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Obtaining High Performance on SMP processors with NVIDIA GPUs: The ESSL
SMP CUDA Library is designed to exploit the processing power of the NVIDIA
GPUs and of the Power8 CPUs for a subset of the ESSL subroutines. For a list of
these subroutines, see “Using the ESSL SMP CUDA Library” on page 41.

Obtaining High Performance on SMP Processors: The ESSL SMP Libraries and
the ESSL SMP CUDA Library are designed to exploit the processing power and
shared memory of the SMP processor. In addition, a subset of the ESSL SMP
subroutines have been coded to take advantage of increased performance from
multithreaded (parallel) programming techniques. For a list of the multithreaded
subroutines in the ESSL SMP Libraries, see Table 37 on page 37.

Choosing the number of threads depends on the problem size, the specific
subroutine being called, and the number of physical processors you are running
on. To achieve optimal performance, experimentation is necessary; however,
picking the number of threads equal to the number of online processors generally
provides good performance in most cases. In some cases, performance may
increase if you choose the number of threads to be less than the number of online
processors.

You should use either the XL Fortran XLSMPOPTS or the OMP_NUM_THREADS
environment variable to specify the number of threads you want to create.

Obtaining High Performance on VSX-Enabled Processors: The ESSL Serial
Libraries, the ESSL SMP Libraries, and the ESSL SMP CUDA Library are designed
to exploit the processing power of VSX-enabled processors. For details about how
to use it to achieve optimal performance, see “SIMD Algorithms on VSX-Enabled
Processors” on page 30.

Obtaining High Performance on AltiVec-Enabled Processors: The ESSL Serial
Libraries and the ESSL SMP Libraries are designed to exploit the processing power
of the AltiVec unit on certain PowerPC® processors. For details about how to use it
to achieve optimal performance, see “SIMD Algorithms on POWER 6
AltiVec-Enabled Processors” on page 33.

SMT Mode
SMT is a processor technology that allows multiple instruction streams (threads) to
run concurrently on the same physical processor, improving overall throughput. To
the operating system, each hardware thread is treated as an independent logical
processor.

Not all applications benefit from SMT. Having multiple threads executing on the
same processor will not increase the performance of applications with
execution-unit–limited performance or applications that consume all the chip's
memory bandwidth. For this reason, these processors support single-threaded (ST)
execution mode. In this mode, these processors give all the physical resources to
the active thread.

Mathematical Techniques
All areas of ESSL use state-of-the-art mathematical techniques to achieve high
performance. For example, the matrix-vector linear algebra subprograms operate
on a higher-level data structure, matrix-vector rather than vector-scalar. As a result,
they optimize performance directly for your program and indirectly through those
ESSL subroutines using them.

Chapter 1. Introduction and Requirements 7

The Fortran Language Interface to the Subroutines
The ESSL subroutines follow standard Fortran calling conventions and must run in
the Fortran run-time environment. When ESSL subroutines are called from a
program in a language other than Fortran, such as C or C++, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in Chapter 4, “Coding Your Program,” on page 131.

Software and Hardware Products That Can Be Used with ESSL
This describes the hardware and software products you can use with ESSL, as well
as those products for installing ESSL and displaying the online documentation.
v “Hardware Products Supported by ESSL”
v “Operating Systems Supported by ESSL”
v “Software Products Required by ESSL”
v “Software Products for Installing and Customizing ESSL” on page 10
v “Software Products for Displaying ESSL Documentation” on page 10

Hardware Products Supported by ESSL
ESSL for AIX runs on the following hardware platforms:
v IBM POWER8 servers
v IBM POWER7+™ and POWER7 servers and blades
v IBM POWER6+™ and POWER6 servers and blades

ESSL for Linux on POWER is supported on the following hardware platforms
running in little endian mode:
v IBM POWER8 servers

Note: The ESSL SMP CUDA Library is supported only on IBM Power System
S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise
Linux 7.2 (RHEL7.2) or later (little endian mode).

Operating Systems Supported by ESSL
ESSL is supported in the following operating system environments:

Table 5. Operating systems supported by ESSL

Product
Supported Environment

big endian mode
Supported Environment

little endian mode

ESSL for AIX v AIX 7.1 with the latest available
Technology Level

v AIX 6.1 with the latest available
Technology Level

N/A

ESSL for Linux on POWER N/A Red Hat Enterprise Linux 7.2 (RHEL7.2) or
later (little endian mode)

Software Products Required by ESSL
This describes the software products that are required by ESSL.
v “Software Products Required by ESSL for AIX” on page 9
v “Software Products Required by ESSL for Linux” on page 9

8 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|

Software Products Required by ESSL for AIX
ESSL for AIX requires the software products shown in “Required Software
Products on AIX” for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in “C Programs” on page 149 and “C++ Programs” on page 165.

Required Software Products on AIX:
The following table lists the required software products for ESSL for AIX:

Table 6. Required Software Products for ESSL for AIX

Required Software Products Supported Levels

For Compiling

IBM XL Fortran for AIX 15.1 or later with the latest
service

IBM XL C/C++ for AIX 13.1 or later with the latest
service

For Linking, Loading, or
Running

(See Note 1)

IBM XL Fortran Runtime Environment for AIX

(See Note 2)

15.1 or later with the latest
service

(See Note 2)

IBM XL C libraries (See Note 3)

Notes:

1. Optional filesets are required for building applications. For details, consult the AIX and compiler documentation.

2. The correct version of IBM XL Fortran Runtime Environment for AIX is automatically shipped with the compiler.
It is also available for downloading from the following website:

http://www.ibm.com/support/docview.wss?rs=43&uid=swg21156900

3. The AIX product includes the C and math libraries in the Application Development Toolkit.

Software Products Required by ESSL for Linux
ESSL for Linux requires the software products listed in “Required Software
Products on Linux” for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in “C Programs” on page 149 and “C++ Programs” on page 165.

Required Software Products on Linux:
The following table lists the required software products for ESSL for Linux on
POWER:

Table 7. Required Software Products for ESSL

Required software products Supported levels
little endian mode

For Compiling

IBM XL Fortran for Linux 15.1.2 or later with the latest service

IBM XL C/C++ for Linux 13.1.2 or later with the latest service

gcc and g++ (See Note 3)

Chapter 1. Introduction and Requirements 9

||

|
||
|

|

||

||

||

Table 7. Required Software Products for ESSL (continued)

Required software products Supported levels
little endian mode

For Linking, Loading, or Running

(See Note 1)

IBM XL Fortran Runtime
Environment for Linux

(See Note 2)

15.1.2 or later with the latest service

(See Note 2)

gcc and g++ 64-bit libraries (See Note 3)

CUDA Toolkit

(See Note 4)

7.5

Notes:

1. Additional software packages may be required for building applications. For details, consult the Linux and
compiler documentation.

2. The correct version of IBM XL Fortran Runtime Environment and Addons Library for Linux is automatically
shipped with the compiler. It is also available for downloading from the following website:

http://www.ibm.com/support/docview.wss?rs=43&uid=swg21156900

3. Use the compilers and libraries provided with your Linux distribution. The ESSL SMP libraries require the XL
OpenMP runtime. The gcc OpenMP runtime is not compatible with the XL OpenMP runtime.

4. This product is only required in order to use the ESSL SMP CUDA library.

Software Products for Installing and Customizing ESSL
The ESSL licensed program is distributed on a CD. Different software products are
required for installing and customizing ESSL on AIX or on Linux.
v “Software Products for Installing and Customizing ESSL for AIX”
v “Software Products for Installing and Customizing ESSL for Linux”

Software Products for Installing and Customizing ESSL for AIX
The ESSL for AIX Installation Guide provides the detailed information you need to
install ESSL for AIX.

Software Products for Installing and Customizing ESSL for Linux
The ESSL for Linux Installation Guide provides the detailed information you need to
install ESSL for Linux.

Software Products for Displaying ESSL Documentation
The software products needed to display ESSL online information are listed in
Table 8.

Table 8. Software needed to display various formats of ESSL online information

Format of online
information

Software needed

HTML HTML document browser (such as Microsoft Internet Explorer)

PDF Adobe Acrobat Reader, which is freely available for downloading
from the Adobe Web site at:

http://www.adobe.com

10 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
||
|

|

|

|
|

|

|

|

||

|

|

|

|

|
|

|
|

|

|
|

|
|

Table 8. Software needed to display various formats of ESSL online information (continued)

Format of online
information

Software needed

Manpages No additional software needed.
Note: In order for manpages to be displayed properly on Linux,
the LANG environment variable must be set to either of the
following values: C or en_US.iso885915.

To display a specific manpage, use the man command as follows:

man subroutine-name
Note: These manpages will be installed in the following
directory:

/usr/share/man/man3

The manpages provided by LAPACK are installed in the
/usr/share/man/manl directory. By default, ESSL manpages
will be displayed rather than BLAS or LAPACK manpages with
the same names. If you want to access the BLAS or LAPACK
manpages, you must set the MANPATH environment variable.
See the documentation for the man command.

List of ESSL Subroutines
ESSL provides several different types of subroutines.

Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1295 contains a
list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in
ESSL.

Appendix B, “LAPACK,” on page 1299 contains a list of Linear Algebra Package
(LAPACK) subroutines included in ESSL.

Linear Algebra Subprograms
There are several types of linear algebra subprograms.
v Vector-scalar linear algebra subprograms (“Vector-Scalar Linear Algebra

Subprograms” on page 12)
v Sparse vector-scalar linear algebra subprograms (“Sparse Vector-Scalar Linear

Algebra Subprograms” on page 13)
v Matrix-vector linear algebra subprograms (“Matrix-Vector Linear Algebra

Subprograms” on page 14)
v Sparse matrix-vector linear algebra subprograms (“Sparse Matrix-Vector Linear

Algebra Subprograms” on page 15)

Note:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Chapter 1. Introduction and Requirements 11

Vector-Scalar Linear Algebra Subprograms
The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [91 on page 1318]. The
remainder of the vector-scalar linear algebra subprograms are commonly used
computations provided for your applications. Both real and complex versions of
the subprograms are provided.

Table 9. List of Vector-Scalar Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

ISAMAX†u

ICAMAX†u

cblas_isamaxu

cblas_icamaxu

IDAMAX†u

IZAMAX†u

cblas_idamaxu

cblas_izamaxu

“ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last
Occurrence of the Vector Element Having the Largest Magnitude)” on page
230

ISAMIN† IDAMIN† “ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector
Element Having Minimum Absolute Value)” on page 233

ISMAX† IDMAX† “ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector
Element Having the Maximum Value)” on page 236

ISMIN† IDMIN† “ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector
Element Having Minimum Value)” on page 239

SASUM†u

SCASUM†u

cblas_sasumu

cblas_scasumu

DASUM†u

DZASUM†u

cblas_dasumu

cblas_dzasumu

“SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the
Elements in a Vector)” on page 242

SAXPYu

CAXPYu

cblas_saxbyu

cblas_caxpyu

DAXPYu

ZAXPYu

cblas_daxbyu

cblas_zaxpyu

“SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add
to a Vector Y, and Store in the Vector Y)” on page 245

SCOPYu

CCOPYu

cblas_scopyu

cblas_ccopyu

DCOPYu

ZCOPYu

cblas_dcopyu

cblas_zcopyu

“SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)” on page 248

SDOT†u

CDOTU†u

CDOTC†u

cblas_sdotu

cblas_cdotu_subu

cblas_cdotc_subu

DDOT†u

ZDOTU†u

ZDOTC†u

cblas_ddotu

cblas_zdotu_subu

cblas_zdotc_subu

“SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two
Vectors)” on page 251

SNAXPY DNAXPY “SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)” on page
255

SNDOT DNDOT “SNDOT and DNDOT (Compute Special Dot Products N Times)” on page
260

SNRM2†u

SCNRM2†u

cblas_snrm2u

cblas_scnrm2u

DNRM2†u

DZNRM2†u

cblas_dnrm2u

cblas_dznrm2u

“SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector
with Scaling of Input to Avoid Destructive Underflow and Overflow)” on
page 265

SNORM2†

CNORM2†
DNORM2†

ZNORM2†
“SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a
Vector with No Scaling of Input)” on page 268

SROTGu

CROTGu

cblas_srotgu

DROTGu

ZROTGu

cblas_drotgu

“SROTG, DROTG, CROTG, and ZROTG (Construct a Given Plane Rotation)”
on page 271

12 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

Table 9. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SROTu

CROTu

CSROTu

cblas_srot

DROTu

ZROTu

ZDROTu

cblas_drot

“SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)”
on page 277

SSCALu

CSCALu

CSSCALu

cblas_sscalu

cblas_cscalu

cblas_csscalu

DSCALu

ZSCALu

ZDSCALu

cblas_dscalu

cblas_zscalu

cblas_zdscalu

“SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector
X by a Scalar and Store in the Vector X)” on page 281

SSWAPu

CSWAPu

cblas_sswapu

cblas_cswapu

DSWAPu

ZSWAPu

cblas_dswapu

cblas_zswapu

“SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two
Vectors)” on page 284

SVEA
CVEA

DVEA
ZVEA

“SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in
a Vector Z)” on page 287

SVES
CVES

DVES
ZVES

“SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and
Store in a Vector Z)” on page 291

SVEM
CVEM

DVEM
ZVEM

“SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and
Store in a Vector Z)” on page 295

SYAX
CYAX
CSYAX

DYAX
ZYAX
ZDYAX

“SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a
Scalar and Store in a Vector Y)” on page 299

SZAXPY
CZAXPY

DZAXPY
ZZAXPY

“SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a
Scalar, Add to a Vector Y, and Store in a Vector Z)” on page 302

† This subprogram is invoked as a function in a Fortran program.

u Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms
The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that
is, only the nonzero elements of the vector are stored. These subprograms provide
similar functions to the vector-scalar subprograms. These subprograms represent a
subset of the sparse extensions to the Level 1 BLAS described in reference [37 on
page 1315]. Both real and complex versions of the subprograms are provided.

Table 10. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SSCTR
CSCTR

DSCTR
ZSCTR

“SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X
in Compressed-Vector Storage Mode into Specified Elements of a Sparse
Vector Y in Full-Vector Storage Mode)” on page 307

SGTHR
CGTHR

DGTHR
ZGTHR

“SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a
Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode)” on page 310

SGTHRZ
CGTHRZ

DGTHRZ
ZGTHRZ

“SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of
a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified Elements of Y)” on
page 313

Chapter 1. Introduction and Requirements 13

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

Table 10. List of Sparse Vector-Scalar Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SAXPYI
CAXPYI

DAXPYI
ZAXPYI

“SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in
Full-Vector Storage Mode, and Store in the Vector Y)” on page 316

SDOTI†

CDOTCI†

CDOTUI†

DDOTI†

ZDOTCI†

ZDOTUI†

“SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of
a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y
in Full-Vector Storage Mode)” on page 319

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data
structure - matrix-vector rather than vector-scalar - using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of
Level 2 BLAS. For details on the Level 2 BLAS, see [42 on page 1315] and [43 on
page 1315]. Both real and complex versions of the subprograms are provided.

Table 11. List of Matrix-Vector Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SGEMV◄

CGEMV◄

SGEMX§

SGEMTX§

cblas_sgemv◄

cblas_cgemv◄

DGEMV◄

ZGEMV◄

DGEMX§

DGEMTX§

cblas_dgemv◄

cblas_zgemv◄

“SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose)” on page 324

SGER◄

CGERU◄

CGERC◄

cblas_sger◄

cblas_cgeru◄

cblas_cgerc◄

DGER◄

ZGERU◄

ZGERC◄

cblas_dger◄

cblas_zgeru◄

cblas_zgerc◄

“SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of
a General Matrix)” on page 335

SSPMV◄

CHPMV◄

SSYMV◄

CHEMV◄

SSLMX§

cblas_sspmv◄

cblas_chpmv◄

cblas_ssymv◄

cblas_chemv◄

DSPMV◄

ZHPMV◄

DSYMV◄

ZHEMV◄

DSLMX§

cblas_dspmv◄

cblas_zhpmv◄

cblas_dsymv◄

cblas_zhemv◄

“SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix)” on page 343

SSPR◄

CHPR◄

SSYR◄

CHER◄

SSLR1§

cblas_sspr◄

cblas_chpr◄

cblas_ssyr◄

cblas_cher◄

DSPR◄

ZHPR◄

DSYR◄

ZHER◄

DSLR1§

cblas_dspr◄

cblas_zhpr◄

cblas_dsyr◄

cblas_zher◄

“SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1
(Rank-One Update of a Real Symmetric or Complex Hermitian Matrix)” on
page 352

14 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Table 11. List of Matrix-Vector Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SSPR2◄

CHPR2◄

SSYR2◄

CHER2◄

SSLR2§

cblas_sspr2◄

cblas_chpr2◄

cblas_ssyr2◄

cblas_cher2◄

DSPR2◄

ZHPR2◄

DSYR2◄

ZHER2◄

DSLR2§

cblas_dspr2◄

cblas_zhpr2◄

cblas_dsyr2◄

cblas_zher2◄

“SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2,
and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
Matrix)” on page 360

SGBMV◄

CGBMV◄

cblas_sgbmv◄

cblas_cgbmv◄

DGBMV◄

ZGBMV◄

cblas_dgbmv◄

cblas_zgbmv◄

“SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a
General Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page
369

SSBMV◄

CHBMV◄

cblas_ssbmv◄

cblas_chbmv◄

DSBMV◄

ZHBMV◄

cblas_dsbmv◄

cblas_zhbmv◄

“SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real
Symmetric or Complex Hermitian Band Matrix)” on page 376

STRMV◄

CTRMV◄

STPMV◄

CTPMV◄

cblas_strmv◄

cblas_ctrmv◄

cblas_stpmv◄

cblas_ctpmv◄

DTRMV◄

ZTRMV◄

DTPMV◄

ZTPMV◄

cblas_dtrmv◄

cblas_ztrmv◄

cblas_dtpmv◄

cblas_ztpmv◄

“STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV
(Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose)” on page 381

STRSV◄

CTRSV◄

STPSV◄

CTPSV◄

cblas_strsv◄

cblas_ctrsv◄

cblas_stpsv◄

cblas_ctps◄v

DTRSV◄

ZTRSV◄

DTPSV◄

ZTPSV◄

“STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV
(Solution of a Triangular System of Equations with a Single Right-Hand
Side)” on page 388

STBMV◄

CTBMV◄

cblas_stbmv◄

cblas_ctbmv◄

DTBMV◄

ZTBMV◄

cblas_dtbmv◄

cblas_ztbmv◄

“STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a
Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page
395

STBSV◄

CTBSV◄

cblas_stbsv◄

cblas_ctbsv◄

DTBSV◄

ZTBSV◄

cblas_dtbsv◄

cblas_ztbsv◄

“STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)” on
page 401

◄ Level 2 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Matrix-Vector Linear Algebra Subprograms
The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
that is, only the nonzero elements of the matrix are stored. These subprograms
provide similar functions to the matrix-vector subprograms.

Chapter 1. Introduction and Requirements 15

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

Table 12. List of Sparse Matrix-Vector Linear Algebra Subprograms

Long-Precision
Subprogram Descriptive Name and Location

DSMMX “DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)”
on page 408

DSMTM “DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)” on page 411

DSDMX “DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode)” on page 415

Matrix Operations
Some of the matrix operation subroutines were designed in accordance with the
Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling
application program. For details on the Level 3 BLAS, see reference [40 on page
1315]. The matrix operation subroutines also include the commonly used matrix
operations: addition, subtraction, multiplication, and transposition.

Table 13. List of Matrix Operation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEADD
CGEADD

DGEADD
ZGEADD

“SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for
General Matrices or Their Transposes)” on page 424

SGESUB
CGESUB

DGESUB
ZGESUB

“SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General
Matrices or Their Transposes)” on page 430

SGEMUL
CGEMUL

DGEMUL
ZGEMUL
DGEMLP§

“SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes)” on page 436

SGEMMS
CGEMMS

DGEMMS
ZGEMMS

“SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes Using
Winograd's Variation of Strassen's Algorithm)” on page 445

SGEMM♦

CGEMM♦

cblas_sgemm♦

cblas_cgemm♦

DGEMM♦

ZGEMM♦

cblas_dgemm♦

cblas_zgemm♦

“SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix
Multiplication and Addition for General Matrices, Their Transposes, or
Conjugate Transposes)” on page 451

SSYMM♦

CSYMM♦

CHEMM♦

cblas_ssymm♦

cblas_csymm♦

cblas_chemm♦

DSYMM♦

ZSYMM♦

ZHEMM♦

cblas_dsymm♦

cblas_zsymm♦

cblas_zhemm♦

“SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM
(Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or
Complex Hermitian)” on page 460

STRMM♦

CTRMM♦

cblas_strmm♦

cblas_ctrmm♦

DTRMM♦

ZTRMM♦

cblas_dtrmm♦

cblas_ztrmm♦

“STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix
Product)” on page 468

STRSM♦

CTRSM♦

cblas_strsm♦

cblas_ctrsm♦

DTRSM♦

ZTRSM♦

cblas_dtrsm♦

cblas_ztrsm♦

“STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of
Equations with Multiple Right-Hand Sides)” on page 476

16 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

Table 13. List of Matrix Operation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SSYRK♦

CSYRK♦

CHERK♦

cblas_ssyrk♦

cblas_csyrk♦

cblas_cherk♦

DSYRK♦

ZSYRK♦

ZHERK♦

cblas_dsyrk♦

cblas_zsyrk♦

cblas_zherk♦

“SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of
a Real or Complex Symmetric or a Complex Hermitian Matrix)” on page 484

SSYR2K♦

CSYR2K♦

CHER2K♦

cblas_ssyr2k♦

cblas_csyr2k♦

cblas_cher2k♦

DSYR2K♦

ZSYR2K♦

ZHER2K♦

cblas_dsyr2k♦

cblas_zsyr2k♦

cblas_zher2k♦

“SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K
Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)”
on page 491

SGETMI
CGETMI
CGECMI

DGETMI
ZGETMI
ZGECMI

“SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General
Matrix Transpose or Conjugate Transpose [In-Place])” on page 499

SGETMO
CGETMO
CGECMO

DGETMO
ZGETMO
ZGECMO

“SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO
(General Matrix Transpose or Conjugate Transpose [Out-of-Place])” on page
502

♦ Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new
programs.

Linear Algebraic Equations
The linear algebraic equations consist of:
v “Dense Linear Algebraic Equations”
v “Banded Linear Algebraic Equations” on page 20
v “Sparse Linear Algebraic Equations” on page 21
v “Linear Least Squares” on page 22

Note: Some of the linear algebraic equations were designed in accordance with the
LAPACK de facto standard. If these subprograms do not comply with the standard
as approved, IBM will consider updating them to do so. If IBM updates these
subprograms, the updates could require modifications of the calling application
program. For details on LAPACK, see [8 on page 1313].

Dense Linear Algebraic Equations
The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, indefinite real or
complex symmetric or complex Hermitian matrices, and triangular matrices. Some
of these subroutines correspond to the LAPACK routines described in reference [8
on page 1313].

Table 14. List of LAPACK Dense Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESV∆

CGESV∆
DGESV∆

ZGESV∆
“SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple
Right-Hand Side Solve)” on page 518

Chapter 1. Introduction and Requirements 17

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

||

|
|
|
||

|
|
|
|
|
|

Table 14. List of LAPACK Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGETRF∆

CGETRF∆
DGETRF∆

ZGETRF∆
“SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)” on
page 522

SGETRS∆

CGETRS∆
DGETRS∆

ZGETRS∆
“SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple
Right-Hand Side Solve)” on page 527

SGECON∆

CGECON∆
DGECON∆

ZGECON∆
“SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the
Condition Number of a General Matrix)” on page 543

SGETRI∆

CGETRI∆
DGETRI∆

ZGETRI∆
“SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix
Inverse, Condition Number Reciprocal, and Determinant)” on page 551

SLANGE∆

CLANGE∆
DLANGE∆

ZLANGE∆
“SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)” on page
558

SPPSV∆

CPPSV∆
DPPSV∆

ZPPSV∆
“SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”
on page 561

SPOSV∆

CPOSV∆
DPOSV∆

ZPOSV∆
“SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”
on page 567

SPOTRF∆

CPOTRF∆

SPPTRF∆

CPPTRF∆

DPOTRF∆

ZPOTRF∆

DPPTRF∆

ZPPTRF∆

“SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF,
DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric
or Complex Hermitian Matrix Factorization)” on page 573

SPOTRS∆

CPOTRS∆

SPPTRS∆

CPPTRS∆

DPOTRS∆

ZPOTRS∆

DPPTRS∆

ZPPTRS∆

“SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM,
SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 585

SPOCON∆

CPOCON∆

SPPCON∆

CPPCON∆

DPOCON∆

ZPOCON∆

DPPCON∆

ZPPCON∆

“SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and
ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
Definite Real Symmetric or Complex Hermitian Matrix)” on page 596

SPOTRI∆

CPOTRI∆

SPPTRI∆

CPPTRI∆

DPOTRI∆

ZPOTRI∆

DPPTRI∆

ZPPTRI∆

“SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI,
CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric or
Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and
Determinant)” on page 610

SLANSY∆

CLANHE∆

SLANSP∆

CLANHP∆

DLANSY∆

ZLANHE∆

DLANSP∆

ZLANHP∆

“SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and
ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)” on page 621

SSYSV∆

CSYSV∆

CHESV∆

SSPSV∆

CSPSV∆

CHPSV∆

DSYSV∆

ZSYSV∆

ZHESV∆

DSPSV∆

ZSPSV∆

ZHPSV∆

“SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV,
CHPSV, ZHPSV (Indefinite Real or Complex Symmetric or Complex Hermitian
Matrix Factorization and Multiple Right-Hand Side Solve)” on page 626

SSYTRF∆

CSYTRF∆

CHETRF∆

SSPTRF∆

CSPTRF∆

CHPTRF∆

DSYTRF∆

ZSYTRF∆

ZHETRF∆

DSPTRF∆

ZSPTRF∆

ZHPTRF∆

“SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or Complex Symmetric or
Complex Hermitian Matrix Factorization)” on page 635

18 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|
|
||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Table 14. List of LAPACK Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SSYTRS∆

CSYTRS∆

CHETRS∆

SSPTRS∆

CSPTRS∆

CHPTRS∆

DSYTRS∆

ZSYTRS∆

ZHETRS∆

DSPTRS∆

ZSPTRS∆

ZHPTRS∆

“SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS,
CSPTRS, ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or Complex Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 643

STRTRI∆

CTRTRI∆

STPTRI∆

CTPTRI∆

DTRTRI∆

ZTRTRI∆

DTPTRI∆

ZTPTRI∆

“STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI
(Triangular Matrix Inverse)” on page 664

SLANTR∆

CLANTR∆

SLANTP∆

CLANTP∆

DLANTR∆

ZLANTR∆

DLANTP∆

ZLANTP∆

“SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and
ZLANTP (Trapezoidal or Triangular Matrix Norm)” on page 672

∆ LAPACK

Table 15. List of Dense Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEF
CGEF

DGEF
ZGEF
DGEFP§

“SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)” on page 531

SGESM
CGESM

DGESM
ZGESM

“SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its
Conjugate Transpose Multiple Right-Hand Side Solve)” on page 538

SGES
CGES

DGES
ZGES

“SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate
Transpose Solve)” on page 534

SGEFCD DGEFCD “SGEFCD and DGEFCD (General Matrix Factorization, Condition Number
Reciprocal, and Determinant)” on page 547

SGEICD DGEICD “SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix
Inverse, Condition Number Reciprocal, and Determinant)” on page 551

SPOF
CPOF
SPPF

DPOF
ZPOF
DPPF
DPPFP§

“SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF,
DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric
or Complex Hermitian Matrix Factorization)” on page 573

SPOSM
CPOSM

DPOSM
ZPOSM

“SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM,
SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 585

SPPS DPPS “SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)” on page 593

SPPFCD
SPOFCD

DPPFCD
DPOFCD

“SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric
Matrix Factorization, Condition Number Reciprocal, and Determinant)” on page
604

SPPICD
SPOICD

DPPICD
DPOICD

“SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI,
CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric or
Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and
Determinant)” on page 610

DBSSV “DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand
Side Solve)” on page 649

DBSTRF “DBSTRF (Symmetric Indefinite Matrix Factorization)” on page 655

Chapter 1. Introduction and Requirements 19

|

|
|
|
||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

Table 15. List of Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

DBSTRS “DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)” on
page 660

STRI§

STPI§
DTRI§

DTPI§
“STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI
(Triangular Matrix Inverse)” on page 664

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equations
The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for:
v Real or complex general band matrices
v Positive definite real symmetric or complex Hermitian band matrices
v Real or complex general tridiagonal matrices
v Positive definite real symmetric or complex Hermitian tridiagonal matrices

Table 16. List of LAPACK Banded Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGBSV∆

CGBSV∆
DGBSV∆

ZGBSV∆
“SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization
and Multiple Right-Hand Side Solve)” on page 679

SGBTRF∆

CGBTRF∆
DGBTRF∆

ZGBTRF∆
“SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix
Factorization)” on page 683

SGBTRS∆

CGBTRS∆
DGBTRS∆

ZGBTRS∆
“SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple
Right-Hand Side Solve)” on page 687

SPBSV∆

CPBSV∆
DPBSV∆

ZPBSV∆
“SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or
Complex Hermitian Band Matrix Factorization and Multiple Right-Hand Side
Solve)” on page 696

SPBTRF∆

CPBTRF∆
DPBTRF∆

ZPBTRF∆
“SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric
or Complex Hermitian Band Matrix Factorization)” on page 701

SPBTRS∆

CPBTRS∆
DPBTRS∆

ZPBTRS∆
“SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric
or Complex Hermitian Band Matrix Multiple Right-Hand Side Solve)” on
page 706

SGTSV∆

CGTSV∆
DGTSV∆

ZGTSV∆
“SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix
Factorization and Multiple Right-Hand Side Solve)” on page 711

SGTTRF∆

CGTTRF∆
DGTTRF∆

ZGTTRF∆
“SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix
Factorization)” on page 715

SGTTRS∆

CGTTRS∆
DGTTRS∆

ZGTTRS∆
“SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix
Multiple Right-Hand Side Solve)” on page 719

SPTSV∆

CPTSV∆
DPTSV∆

ZPTSV∆
“SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or
Complex Hermitian Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve)” on page 725

SPTTRF∆

CPTTRF∆
DPTTRF∆

ZPTTRF∆
“SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric
or Complex Hermitian Tridiagonal Matrix Factorization)” on page 729

SPTTRS∆

CPTTRS∆
DPTTRS∆

ZPTTRS∆
“SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric
or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand Solve)” on
page 733

20 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|

Table 16. List of LAPACK Banded Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

∆ LAPACK

Table 17. List of non-LAPACK Banded Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGBF§ DGBF§ “SGBF and DGBF (General Band Matrix Factorization)” on page 739

SGBS§ DGBS§ “SGBS and DGBS (General Band Matrix Solve)” on page 693

SPBF§

SPBCHF§
DPBF§

DPBCHF§
“SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band
Matrix Factorization)” on page 746

SPBS§

SPBCHS§
DPBS§

DPBCHS§
“SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band
Matrix Solve)” on page 750

SGTF§ DGTF§ “SGTF and DGTF (General Tridiagonal Matrix Factorization)” on page 753

SGTS§ DGTS§ “SGTS and DGTS (General Tridiagonal Matrix Solve)” on page 756

SGTNP
CGTNP

DGTNP
ZGTNP

“SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix
Combined Factorization and Solve with No Pivoting)” on page 758

SGTNPF
CGTNPF

DGTNPF
ZGTNPF

“SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix
Factorization with No Pivoting)” on page 761

SGTNPS
CGTNPS

DGTNPS
ZGTNPS

“SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix
Solve with No Pivoting)” on page 764

SPTF§ DPTF§ “SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix
Factorization)” on page 767

SPTS§ DPTS§ “SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)” on
page 769

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Linear Algebraic Equations
The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 18. List of Sparse Linear Algebraic Equation Subroutines

Long-Precision
Subroutine Descriptive Name and Location

DGSF “DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)”
on page 772

DGSS “DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or
Columns)” on page 778

DGKFS
DGKFSP§

“DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve
Using Skyline Storage Mode)” on page 782

DSKFS
DSKFSP§

“DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline
Storage Mode)” on page 799

DSRIS “DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by
Rows)” on page 817

Chapter 1. Introduction and Requirements 21

Table 18. List of Sparse Linear Algebraic Equation Subroutines (continued)

Long-Precision
Subroutine Descriptive Name and Location

DSMCG‡ “DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Matrix Storage Mode)” on page 828

DSDCG “DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode)” on page 836

DSMGCG‡ “DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)”
on page 844

DSDGCG “DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage
Mode)” on page 851

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

‡ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares
The linear least squares subroutines provide least squares solutions to linear
systems of equations for general matrices using a QR factorization or a singular
value decomposition. Some of these subroutines correspond to the LAPACK
routines described in reference [8 on page 1313].

Table 19. List of LAPACK Linear Least Squares Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESVD∆

CGESVD∆
DGESVD∆

ZGESVD∆
“SGESVD, DGESVD, CGESVD, and ZGESVD (Singular Value Decomposition
for a General Matrix)” on page 859

SGEQRF∆

CGEQRF∆
DGEQRF∆

ZGEQRF∆
“SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR
Factorization)” on page 868

SGELS∆

CGELS∆
DGELS∆

ZGELS∆
“SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a
General Matrix)” on page 874

SGELSD∆

CGELSD∆
DGELSD∆

ZGELSD∆
“SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution
for a General Matrix Using the Singular Value Decomposition)” on page 884

∆ LAPACK

Table 20. List of Non–LAPACK Linear Least Squares Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESVF§ DGESVF§ “SGESVF and DGESVF (Singular Value Decomposition for a General
Matrix)” on page 891

SGESVS§ DGESVS§ “SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix
Using the Singular Value Decomposition)” on page 899

SGELLS§ DGELLS§ “SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix
with Column Pivoting)” on page 904

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

22 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Eigensystem Analysis
The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem and the generalized eigensystem analysis problem.
These subroutines correspond to the LAPACK routines described in reference [8 on
page 1313].

Table 21. List of LAPACK Eigensystem Analysis Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEEVX∆

CGEEVX∆
DGEEVX∆

ZGEEVX∆
“SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally,
Right Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for
Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a
General Matrix)” on page 913

SSPEVX∆

CHPEVX∆

SSYEVX∆

CHEEVX∆

DSPEVX∆

ZHPEVX∆

DSYEVX∆

ZHEEVX∆

“SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and
ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric
or Complex Hermitian Matrix)” on page 927

SSPEVD∆

CHPEVD∆

SSYEVD∆

CHEEVD∆

DSPEVD∆

ZHPEVD∆

DSYEVD∆

ZHEEVD∆

“SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and
ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer
Algorithm)” on page 942

SGGEV∆

CGGEV∆
DGGEV∆

ZGGEV∆
“SGGEV, DGGEV, CGGEV, and ZGGEV (Eigenvalues and, Optionally, Left
and/or Right Eigenvectors of a General Matrix Generalized Eigenproblem)”
on page 955

SSPGVX∆

CHPGVX∆

SSYGVX∆

CHEGVX∆

DSPGVX∆

ZHPGVX∆

DSYGVX∆

ZHEGVX∆

“SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and
ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)”
on page 965

∆LAPACK

Fourier Transforms, Convolutions and Correlations, and
Related Computations

This signal processing area provides:
v Fourier transform subroutines
v Convolution and correlation subroutines
v Related-computation subroutines

Fourier Transforms
The Fourier transform subroutines perform mixed-radix transforms in one, two,
and three dimensions.

Table 22. List of Fourier Transform Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCFTD DCFTD “SCFTD and DCFTD (Multidimensional Complex Fourier Transform)” on
page 992

SRCFTD DRCFTD “SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier
Transform)” on page 1000

SCRFTD DCRFTD “SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier
Transform)” on page 1008

Chapter 1. Introduction and Requirements 23

Table 22. List of Fourier Transform Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCFT§

SCFTP§,ND
DCFT§ “SCFT and DCFT (Complex Fourier Transform)” on page 1016

SRCFT§ DRCFT§ “SRCFT and DRCFT (Real-to-Complex Fourier Transform)” on page 1025

SCRFT§ DCRFT§ “SCRFT and DCRFT (Complex-to-Real Fourier Transform)” on page 1033

SCOSF
SCOSFT§,ND

DCOSF “SCOSF and DCOSF (Cosine Transform)” on page 1041

SSINF DSINF “SSINF and DSINF (Sine Transform)” on page 1049

SCFT2§

SCFT2P§,ND
DCFT2§ “SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)” on

page 1057

SRCFT2§ DRCFT2§ “SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two
Dimensions)” on page 1064

SCRFT2§ DCRFT2§ “SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two
Dimensions)” on page 1071

SCFT3§

SCFT3P§,ND
DCFT3§ “SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)” on

page 1079

SRCFT3§ DRCFT3§ “SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three
Dimensions)” on page 1086

SCRFT3§ DCRFT3§ “SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three
Dimensions)” on page 1093

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

ND Documentation for this subroutine is no longer provided.

Convolutions and Correlations
The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 23. List of Convolution and Correlation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCON§

SCOR§

“SCON and SCOR (Convolution or Correlation of One Sequence with One or
More Sequences)” on page 1101

SCOND
SCORD

“SCOND and SCORD (Convolution or Correlation of One Sequence with
Another Sequence Using a Direct Method)” on page 1107

SCONF
SCORF

“SCONF and SCORF (Convolution or Correlation of One Sequence with One
or More Sequences Using the Mixed-Radix Fourier Method)” on page 1113

SDCON
SDCOR

DDCON
DDCOR

“SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with
Decimated Output Using a Direct Method)” on page 1123

SACOR§ “SACOR (Autocorrelation of One or More Sequences)” on page 1128

24 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 23. List of Convolution and Correlation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SACORF “SACORF (Autocorrelation of One or More Sequences Using the
Mixed-Radix Fourier Method)” on page 1132

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Related Computations
The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

Table 24. List of Related-Computation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPOLY DPOLY “SPOLY and DPOLY (Polynomial Evaluation)” on page 1139

SIZC DIZC “SIZC and DIZC (I-th Zero Crossing)” on page 1142

STREC DTREC “STREC and DTREC (Time-Varying Recursive Filter)” on page 1145

SQINT DQINT “SQINT and DQINT (Quadratic Interpolation)” on page 1148

SWLEV
CWLEV

DWLEV
ZWLEV

“SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter
Coefficients)” on page 1152

Sorting and Searching
The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision real. The sorting subroutines perform sorts
with or without index designations. The searching subroutines perform either a
binary or sequential search.

Table 25. List of Sorting and Searching Subroutines

Integer
Subroutine

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

ISORT SSORT DSORT “ISORT, SSORT, and DSORT (Sort the Elements of a
Sequence)” on page 1160

ISORTX SSORTX DSORTX “ISORTX, SSORTX, and DSORTX (Sort the Elements of a
Sequence and Note the Original Element Positions)” on
page 1162

ISORTS SSORTS DSORTS “ISORTS, SSORTS, and DSORTS (Sort the Elements of a
Sequence Using a Stable Sort and Note the Original
Element Positions)” on page 1165

IBSRCH SBSRCH DBSRCH “IBSRCH, SBSRCH, and DBSRCH (Binary Search for
Elements of a Sequence X in a Sorted Sequence Y)” on
page 1169

ISSRCH SSSRCH DSSRCH “ISSRCH, SSSRCH, and DSSRCH (Sequential Search for
Elements of a Sequence X in the Sequence Y)” on page
1173

Chapter 1. Introduction and Requirements 25

Interpolation
The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and both one- and two-dimensional
cubic spline interpolation (Table 26).

Table 26. List of Interpolation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPINT DPINT “SPINT and DPINT (Polynomial Interpolation)” on page 1179

STPINT DTPINT “STPINT and DTPINT (Local Polynomial Interpolation)” on page 1184

SCSINT DCSINT “SCSINT and DCSINT (Cubic Spline Interpolation)” on page 1188

SCSIN2 DCSIN2 “SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)” on
page 1193

Numerical Quadrature
The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration.

Table 27. List of Numerical Quadrature Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPTNQ DPTNQ “SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)”
on page 1203

SGLNQ† DGLNQ† “SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function
Using Gauss-Legendre Quadrature)” on page 1206

SGLNQ2† DGLNQ2† “SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function
Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)” on
page 1209

SGLGQ† DGLGQ† “SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function
Using Gauss-Laguerre Quadrature)” on page 1215

SGRAQ† DGRAQ† “SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function
Using Gauss-Rational Quadrature)” on page 1218

SGHMQ† DGHMQ† “SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function
Using Gauss-Hermite Quadrature)” on page 1222

† This subprogram is invoked as a function in a Fortran program.

Random Number Generation
Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers using one of the following
algorithms:
v SIMD-oriented Mersenne Twister algorithm
v Multiplicative congruential methods
v Polar methods
v Tausworthe exclusive-or algorithm

26 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 28. List of Random Number Generation Initialization Subroutines

Subroutine Descriptive Name and Location

INITRNG “INITRNG (Initialize Random Number Generators)” on page 1227

Table 29. List of Random Number Generation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SURNG DURNG “SURNG and DURNG (Generate a Vector of Uniformly Distributed
Pseudo-Random Numbers)” on page 1232

SNRNG DNRNG “SNRNG and DNRNG (Generate a Vector of Normally Distributed
Pseudo-Random numbers)” on page 1235

SURAND DURAND “SURAND and DURAND (Generate a Vector of Uniformly Distributed
Random Numbers)” on page 1239

SNRAND DNRAND “SNRAND and DNRAND (Generate a Vector of Normally Distributed
Random Numbers)” on page 1242

SURXOR§ DURXOR§ “SURXOR and DURXOR (Generate a Vector of Long Period Uniformly
Distributed Random Numbers)” on page 1245

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs.

Utilities
The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations.

Table 30. List of Utility Subroutines

Subroutine Descriptive Name and Location

EINFO “EINFO (ESSL Error Information-Handler Subroutine)” on page 1252

ERRSAV “ERRSAV (ESSL ERRSAV Subroutine)” on page 1255

ERRSET “ERRSET (ESSL ERRSET Subroutine)” on page 1256

ERRSTR “ERRSTR (ESSL ERRSTR Subroutine)” on page 1258

IVSSET§ Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library

IEVOPS§ Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library

IESSL “IESSL (Determine the Level of ESSL Installed)” on page 1259

SETGPUS “SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)” on page
1261

STRIDE “STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform
Subroutines)” on page 1263

DSRSM “DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)”
on page 1279

DGKTRN “DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode)” on page 1283

DSKTRN “DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In
Skyline Storage Mode)” on page 1288

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Chapter 1. Introduction and Requirements 27

28 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 2. Planning Your Program

Planning your ESSL program involves several tasks.
v “Selecting an ESSL Subroutine”
v “Avoiding Conflicts with Internal ESSL Routine Names That are Exported” on

page 46
v “Setting Up Your Data” on page 46
v “Setting Up Your ESSL Calling Sequences” on page 48
v “Using Auxiliary Storage in ESSL” on page 49
v “Providing a Correct Transform Length to ESSL” on page 56
v “Getting the Best Accuracy” on page 61
v “Getting the Best Performance” on page 63
v “Dealing with Errors when Using ESSL” on page 65

Selecting an ESSL Subroutine
Your choice of which ESSL subroutine to use is based mainly on the functional
needs of your program. However, you have a choice of several variations of many
of the subroutines. In addition, there are instances where certain subroutines
cannot be used.

What ESSL Library Do You Want to Use?
ESSL provides serial and SMP libraries, as described here. (For additional details
about using these libraries, see Chapter 4, “Coding Your Program,” on page 131
and Chapter 5, “Processing Your Program,” on page 183.)

Serial and SMP Libraries Provided by ESSL
ESSL provides the following serial library:
v ESSL Serial Libraries, which support the following environments:

– 32-bit integer, 32-bit pointer environment (AIX only)
– 32-bit integer, 64-bit pointer environment
– 64-bit integer, 64-bit pointer environment

These serial libraries provide thread-safe versions of the ESSL subroutines. You
may choose to use these libraries if you decide to develop your own multithreaded
programs that call the thread-safe ESSL subroutines.

ESSL also provides the following SMP libraries:
v ESSL SMP Libraries, which support the following environments:

– 32-bit integer, 32-bit pointer environment (AIX only)
– 32-bit integer, 64-bit pointer environment
– 64-bit integer, 64-bit pointer environment

v ESSL SMP CUDA Library, which supports the following environment:
– 32-bit integer, 64-bit pointer environment on a IBM Power System S822LC

(8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise
Linux 7.2 (RHEL7.2) or later (little endian mode).

© Copyright IBM Corp. 1986, 2015 29

|

|
|
|

The ESSL SMP CUDA library provides the following options for a subset of
ESSL subroutines:
– Use one or more NVIDIA GPUs
– Use one or more NVIDIA GPUs and POWER8 CPUs
The GPU enabled subroutines that the ESSL SMP CUDA Library contains are
listed in “Using the ESSL SMP CUDA Library” on page 41.

These ESSL SMP libraries and ESSL SMP CUDA library provide thread-safe
versions of the ESSL subroutines, and in addition, a subset of these subroutines are
also multithreaded versions; that is, they support the shared memory parallel
processing programming model.

The number of threads you choose to use depends on the problem size, the specific
subroutine being called, and the number of physical processors you are running
on. To achieve optimal performance, experimentation is necessary; however,
picking the number of threads equal to the number of online processors generally
provides good performance in most cases. In a few cases, performance may
increase if you choose the number of threads to be less than the number of online
processors. The maximum number of threads supported by ESSL is 512.

You do not have to change your existing application programs that call ESSL to
take advantage of the increased performance of using the SMP processors; you can
simply re-link your existing application programs.

The multithreaded subroutines in the ESSL SMP Libraries are listed in
“Multithreaded Subroutines Provided by ESSL” on page 36.

Use of SIMD Algorithms by Some Subroutines in the Libraries
Provided by ESSL

Some of the subroutines in the libraries provided by ESSL use SIMD algorithms, as
explained in the following sections.

SIMD Algorithms on VSX-Enabled Processors
A subset of ESSL subroutines use SIMD algorithms that use the VSX unit on VSX
enabled processors. These subroutines need to use the vector load and store
instructions to effectively utilize the VSX unit. Alignment requirements for the
SIMD algorithms are described in Table 31 on page 31 and Table 32 on page 31.

See Table 33 on page 32 for a list of the ESSL subroutines that automatically use
SIMD algorithms when the appropriate alignment restrictions (as described in
Table 31 on page 31 and Table 32 on page 31) are met.

Note: For Fourier Transform and Fourier Method Convolution and Correlation
subroutines, if you choose to have ESSL calculate the size of auxiliary storage (see
“Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?” on
page 51), you must pass all array arguments with the same alignment as those
passed during the initialization and computation calls. Because of this, it is
recommended that you use the processor-independent formulas.

30 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

Table 31. VSX Alignment Requirements for SIMD Algorithms in Linear Algebra Subroutines

Data Type
Vector and Matrix
Alignment Vector Stride Leading Dimensions

Long-precision real Quadword and
doubleword

Varies depending on the type of subroutine:

1 For vector-scalar linear algebra
subroutines

Any For matrix-vector linear algebra
subprograms

Any

Short-precision real Doubleword and
singleword

Varies depending on the type of subroutine:

1 For vector-scalar linear algebra
subroutines

Any For matrix-vector linear algebra
subprograms

Any

Long-precision
complex

Quadword Any Any

Short-precision
complex

Doubleword Varies depending on the type of subroutine:

1 For vector-scalar linear algebra
subroutines

Any For matrix-vector linear algebra
subprograms

Any

Note:

1. As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the SIMD
subroutines. However, you will obtain optimal performance for these subroutines when the following additional
conditions are met:

v Vectors and matrices are quadword aligned.

v LDAs are multiples of 2 for real long-precision matrices.

v LDAs are multiples of 4 for real short-precision matrices.

v LDAs are multiples of 2 for complex short-precision matrices.

v Stride is 1 for vectors.

2. If the alignment restrictions in the table are not met, in some cases attention message 2610 will be issued. The
default behavior for message 2610 is for the message to be suppressed. To change the default behavior, see
“ERRSET (ESSL ERRSET Subroutine)” on page 1256.

Table 32. VSX Alignment Requirements for SIMD Algorithms in Fourier Transform Subroutines and Convolution and
Correlation Subroutines

Data Type
Vector and Matrix
Alignment

Stride Between Elements
Within Sequence Stride Between Sequences

Long-precision real Quadword (see Notes 1 on
page 32 and 2 on page 32)

1 (see Note 3 on page 32) Multiple of 2 (see Note 3
on page 32)

Short-precision real Doubleword 1 (see Note 3 on page 32) Multiple of 4 (see Note 3
on page 32)

Long-precision complex Quadword Any Any

Short-precision complex Doubleword 1 Multiple of 2 (see Note 3
on page 32)

Chapter 2. Planning Your Program 31

Table 32. VSX Alignment Requirements for SIMD Algorithms in Fourier Transform Subroutines and Convolution and
Correlation Subroutines (continued)

Data Type
Vector and Matrix
Alignment

Stride Between Elements
Within Sequence Stride Between Sequences

Notes:

1. AUX1 must be aligned on a quadword boundary.

2. AUX and AUX2 must either be aligned on a quadword boundary or dynamically allocated.

3. For _COSF and _SINF, the stride between elements within a sequence and the stride between sequences can
have any value.

4. As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the SIMD
subroutines. However, some subroutines require separate calls for initialization and computation, and it can
occur that the alignment of an array meets the requirements during initialization but does not meet the
requirements during computation. When this happens, in some cases one of the following happens:

v Error 2152 will be issued and your program will terminate. If you want your program to continue processing,
use ERRSET with an ESSL error exit routine, ENOTRM, to make error 2152 recoverable

v Error 2211 will be issued and your program will terminate

5. If the alignment restrictions in this table are not met, in some cases one or more of the following attention
messages will be issued:
v 2610
v 2611
v 2612

The default behavior for these messages is to be suppressed. To change the default behavior, see “ERRSET (ESSL
ERRSET Subroutine)” on page 1256.

Table 33. ESSL Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are Met on
VSX-enabled Processors

Subroutine Names

Vector-Scalar Linear Algebra Subprograms (See Note):

ISAMAX, IDAMAX, ICAMAX, IZAMAX
ISAMIN, IDAMIN
ISMAX, IDMAX
ISMIN, IDMIN
SASUM, DASUM, SCASUM, DZASUM
SAXPY, DAXPY, CAXPY, ZAXPY
SCOPY, DCOPY, CCOPY, ZCOPY
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC
DNRM2, DZNRM2
DNORM2, ZNORM2
SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP
SVEA, DVEA, CVEA, ZVEA
SVES, DVES, CVES, ZVES
SVEM, DVEM, CVEM
SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY

32 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 33. ESSL Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are Met on
VSX-enabled Processors (continued)

Subroutine Names

Matrix-Vector Linear Algebra Subprograms (See Note):

SGEMV, DGEMV, CGEMV, ZGEMV
SGER, DGER, CGERU, ZGERU, CGERC, ZGERC
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2
STRMV, DTRMV, CTRMV, ZTRMV
STPMV, DTPMV, CTPMV, ZTPMV
STRSV, DTRSV, CTRSV, ZTRSV,
STPSV, DTPSV, CTPSV, ZTPSV

Matrix Operations (See Note):

SGEMUL, DGEMUL, CGEMUL, ZGEMUL
SGEMM, DGEMM, CGEMM, ZGEMM
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM
STRSM, DTRSM, CTRSM, ZTRSM
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI, ZGECMI
SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, ZGECMO

Fourier Transforms:

SCFTD, DCFTD
SRCFTD, DRCFTD
SCRFTD, DCRFTD
SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCOSF, DCOSF
SSINF, DSINF
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
SCRFT3, DCRFT3

Convolutions and Correlations:

SCONF, SCORF, SACORF

Random Number Generation:

SURNG, DURNG
SNRNG, DNRNG

Note: Many of the dense and banded linear algebraic equations and eigensystem analysis subroutines make one or
more calls to the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table, and
therefore they indirectly use SIMD algorithms.

SIMD Algorithms on POWER 6 AltiVec-Enabled Processors
A subset ESSL subroutines use SIMD algorithms that use the AltiVec unit on
certain processors for short-precision real and short-precision complex subroutines.
These subroutines need to use the vector load and store instructions to use the

Chapter 2. Planning Your Program 33

|

AltiVec unit effectively. Alignment requirements for the SIMD algorithms are
described in Table 34 and Table 35.

See Table 36 on page 35 for a list of the ESSL subroutines that automatically use
SIMD algorithms when the appropriate alignment restrictions (as described in
Table 34 and Table 35) are met.

Note: For Fourier Transform and Fourier Method Convolution and Correlation
subroutines, if you choose to have ESSL calculate the size of auxiliary storage (see
“Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?” on
page 51), you must pass all array arguments with the same alignment as those
passed during the initialization and computation calls. Because of this, it is
recommended that you use the processor-independent formulas.

Table 34. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Linear Algebra Subroutines

Data Type
Vector and Matrix
Alignment Vector Stride Leading Dimensions

Short-precision real Singleword Varies depending on the type of subroutine:

1 For vector-scalar linear algebra
subroutines

Any For matrix-vector linear algebra
subprograms

Any

Short-precision
complex

Doubleword Varies depending on the type of subroutine:

1 For vector-scalar linear algebra
subroutines

Any For matrix-vector linear algebra
subprograms

Any

Note:

1. As long as the alignment requirements described in this table are met, you do
not have to change your existing application programs that call ESSL to take
advantage of the increased performance produced by the AltiVec-enabled
subroutines. However, you will obtain optimal performance for these
subroutines when the following additional conditions are met:
v Vectors and matrices are quadword aligned.
v LDAs are multiples of 4 for real matrices.
v LDAs are multiples of 2 for complex matrices.
v Stride is 1 for real and complex vectors.

2. If the alignment restrictions in the table are not met, in some cases attention
message 2610 will be issued. The default behavior for message 2610 is for the
message to be suppressed. To change the default behavior, see “ERRSET (ESSL
ERRSET Subroutine)” on page 1256.

Table 35. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Fourier Transform and Fourier
Method Convolution and Correlation Subroutines

Data Type
Vector and Matrix
Alignment

Stride Between Elements
Within Sequence Stride Between Sequences

Short-precision real Quadword 1 (see Note 3 on page 35) Multiple of 4 (see Note 3
on page 35)

Short-precision complex Quadword 1 Multiple of 2 (see Note 3
on page 35)

34 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 35. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Fourier Transform and Fourier
Method Convolution and Correlation Subroutines (continued)

Data Type
Vector and Matrix
Alignment

Stride Between Elements
Within Sequence Stride Between Sequences

Long-precision real Quadword (see Notes 1 and
2)

1 Not applicable

Note:

1. AUX1 must be aligned on a quadword boundary.
2. AUX and AUX2 must either be aligned on a quadword boundary or

dynamically allocated.
3. For SCOSF and SSINF, the stride between elements within a sequence and the

stride between sequences can have any value.
4. As long as the alignment requirements described in this table are met, you do

not have to change your existing application programs that call ESSL to take
advantage of the increased performance produced by the AltiVec-enabled
subroutines. However, some subroutines require separate calls for initialization
and computation, and it can occur that the alignment of an array meets the
requirements during initialization but does not meet the requirements during
computation. When this happens, in some cases error 2211 will be issued and
your program will terminate.

5. If the alignment restrictions in the table are not met, one or more of the
following attention messages will be issued:
v 2610
v 2611
v 2612

The default behavior for these messages is to be suppressed. To change the
default behavior, see “ERRSET (ESSL ERRSET Subroutine)” on page 1256.

Table 36. ESSL Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are Met on
POWER 6 AltiVec-Enabled Processors

Subroutine Names

Vector-Scalar Linear Algebra Subprograms1:

ISAMAX, ICAMAX
ISAMIN
ISMAX
ISMIN
SASUM, SCASUM
SAXPY
SDOT, CDOTU, CDOTC
SROT, CROT, CSROT
SSCAL, CSCAL, CSSCAL
SSWAP, CSWAP
SVEA, CVEA
SVES, CVES
SVEM,
SYAX, CYAX, CSYAX
SZAXPY, CZAXPY

Chapter 2. Planning Your Program 35

Table 36. ESSL Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are Met on
POWER 6 AltiVec-Enabled Processors (continued)

Subroutine Names

Matrix-Vector Linear Algebra Subprograms1:

SGER, CGERU, CGERC
SSPMV, SSYMV
SSPR, CHPR, SSYR, CHER
SSPR2, CHPR2, SSYR2, CHER2

Matrix Operations1:

SGEADD, CGEADD
SGESUB, CGESUB

Fourier Transforms:

SCFTD
SRCFTD
SCRFTD
SCFT
SRCFT
SCRFT
SCOSF
SSINF
SCFT2
SRCFT2
SCRFT2
SCFT3
SRCFT3
SCRFT3

Convolutions and Correlations:

SCONF, SCORF
SACORF

Note:

1. Many of the dense and banded linear algebraic equations and eigensystem analysis subroutines make one or
more calls to the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table,
and therefore they indirectly use SIMD algorithms.

Multithreaded Subroutines Provided by ESSL
Table 37 on page 37 lists the multithreaded subroutines provided by ESSL and also
indicates which of those subroutines use SIMD algorithms.

36 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 37. Multithreaded Subroutines

Subroutine Category Multithreaded Subroutine

Does this subroutine also
use SIMD algorithms on
VSX-enabled processors?

See “SIMD Algorithms on
VSX-Enabled Processors”
on page 30.

Does this short-precision
subroutine also use SIMD
algorithms on
AltiVec-enabled
processors?

(See “SIMD Algorithms on
POWER 6 AltiVec-Enabled
Processors” on page 33.)

Vector-Scalar Linear
Algebra Subprograms1

SASUM, DASUM,
SCASUM, DZASUM

No No

SAXPY, DAXPY, CAXPY,
ZAXPY

No No

SCOPY, DCOPY, CCOPY,
ZCOPY

No No

SDOT, DDOT, CDOTU,
ZDOTU, CDOTC, ZDOTC

No No

SNDOT, DNDOT No No

SNORM2, DNORM2,
CNORM2, ZNORM2

No No

SROT, DROT, CROT, ZROT,
CSROT, ZDROT

No No

SSCAL, DSCAL, CSCAL,
ZSCAL, CSSCAL, ZDSCAL

No No

SSWAP, DSWAP, CSWAP,
ZSWAP

No No

SVEA, DVEA, CVEA,
ZVEA

No No

SVES, DVES, CVES, ZVES No No

SVEM, DVEM, CVEM,
ZVEM

No No

SYAX, DYAX, CYAX,
ZYAX, CSYAX, ZDYAX

No No

SZAXPY, DZAXPY,
CZAXPY, ZZAXPY

No No

Chapter 2. Planning Your Program 37

Table 37. Multithreaded Subroutines (continued)

Subroutine Category Multithreaded Subroutine

Does this subroutine also
use SIMD algorithms on
VSX-enabled processors?

See “SIMD Algorithms on
VSX-Enabled Processors”
on page 30.

Does this short-precision
subroutine also use SIMD
algorithms on
AltiVec-enabled
processors?

(See “SIMD Algorithms on
POWER 6 AltiVec-Enabled
Processors” on page 33.)

Matrix-Vector Linear
Algebra Subprograms1

SGEMV, DGEMV, CGEMV,
ZGEMV

Yes Yes

SGER, DGER, CGERU,
ZGERU, CGERC, ZGERC

Yes Yes

SSPMV, DSPMV, CHPMV,
ZHPMV

Yes Yes

SSYMV, DSYMV, CHEMV,
ZHEMV

Yes Yes

SSPR, DSPR, CHPR, ZHPR Yes Yes

SSYR, DSYR, CHER, ZHER Yes Yes

SSPR2, DSPR2, CHPR2,
ZHPR2

Yes Yes

SSYR2, DSYR2, CHER2,
ZHER2

Yes Yes

SGBMV 3, DGBMV3 No No

CGBMV 3, ZGBMV3 No No

SSBMV 3, DSBMV3 No No

CHBMV 3, ZHBMV3 No No

STRMV, DTRMV, CTRMV,
ZTRMV

Yes except DTRMV and
ZTRMV

Yes

STPMV, DTPMV, CTPMV,
ZTPMV

Yes except DTPMV and
ZTPMV

Yes

STRSV, DTRSV, CTRSV,
ZTRSV

Yes except DTRSV and
ZTRSV

Yes

STPSV, DTPSV, CTPSV,
ZTPSV

Yes except DTPSV, ZTPSV Yes

STBMV 3, DTBMV3 No No

CTBMV 3, ZTBMV3 No No

38 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 37. Multithreaded Subroutines (continued)

Subroutine Category Multithreaded Subroutine

Does this subroutine also
use SIMD algorithms on
VSX-enabled processors?

See “SIMD Algorithms on
VSX-Enabled Processors”
on page 30.

Does this short-precision
subroutine also use SIMD
algorithms on
AltiVec-enabled
processors?

(See “SIMD Algorithms on
POWER 6 AltiVec-Enabled
Processors” on page 33.)

Matrix Operations1 SGEADD, DGEADD,
CGEADD, ZGEADD

No No

SGESUB, DGESUB,
CGESUB, ZGESUB

No No

SGEMUL, DGEMUL,
CGEMUL, ZGEMUL

Yes Yes

SGEMM, DGEMM,
CGEMM, ZGEMM

Yes Yes

SSYMM, DSYMM, CSYMM,
ZSYMM, CHEMM,
ZHEMM

Yes Yes

STRMM, DTRMM,
CTRMM, ZTRMM

Yes Yes

STRSM, DTRSM, CTRSM,
ZTRSM

Yes Yes

SSYRK, DSYRK, CSYRK,
ZSYRK, CHERK, ZHERK

Yes Yes

SSYR2K, DSYR2K, CSYR2K,
ZSYR2K, CHER2K,
ZHER2K

Yes Yes

SGETMI, DGETMI,
CGETMI, ZGETMI,
CGECMI, ZGECMI

Yes No

SGETMO, DGETMO,
CGETMO, ZGETMO,
CGECMO, ZGECMO

Yes No

Chapter 2. Planning Your Program 39

Table 37. Multithreaded Subroutines (continued)

Subroutine Category Multithreaded Subroutine

Does this subroutine also
use SIMD algorithms on
VSX-enabled processors?

See “SIMD Algorithms on
VSX-Enabled Processors”
on page 30.

Does this short-precision
subroutine also use SIMD
algorithms on
AltiVec-enabled
processors?

(See “SIMD Algorithms on
POWER 6 AltiVec-Enabled
Processors” on page 33.)

Dense Linear Algebraic
Equations

SGESV, DGESV, CGESV,
ZGESV

See Note 1 on page 41 See Note 1 on page 41.

SGEF, DGEF, CGEF, ZGEF See Note 1 on page 41 See Note 1 on page 41.

SGES, DGES, CGES, ZGES See Note 1 on page 41 See Note 1 on page 41.

SGETRF, DGETRF,
CGETRF, ZGETRF

See Note 1 on page 41 See Note 1 on page 41.

SGETRS, DGETRS,
CGETRS, ZGETRS

See Note 1 on page 41 See Note 1 on page 41.

SPPSV, DPPSV, CPPSV,
ZPPSV

See Note 1 on page 41 See Note 1 on page 41.

SPPF, DPPF, SPPTRF,
DPPTRF, CPPTRF, ZPPTRF,
DPOF, DPOTRF

See Note 1 on page 41 See Note 1 on page 41.

SPPTRS, DPPTRS, CPPTRS,
ZPPTRS

See Note 1 on page 41 See Note 1 on page 41.

SPOSV, DPOSV, CPOSV,
ZPOSV

See Note 1 on page 41 See Note 1 on page 41.

SPOSM, DPOSM, CPOSM,
ZPOSM

See Note 1 on page 41 See Note 1 on page 41.

SPPFCD 4, DPPFCD4,
DPOFCD4

See Note 1 on page 41 See Note 1 on page 41.

SPPTRI, DPPTRI, CPPTRI,
ZPPTRI, SPPICD4,
DPPICD4, DPOICD4

See Note 1 on page 41 See Note 1 on page 41.

STRI, DTRI, STRTRI,
DTRTRI, CTRTRI, ZTRTRI

See Note 1 on page 41 See Note 1 on page 41

Banded Linear Algebraic
Equations

SGBSV, DGBSV, CGBSV,
ZGBSV

See Note 1 on page 41 See Note 1 on page 41

SGBTRS, DGBTRS,
CGBTRS, ZGBTRS

See Note 1 on page 41 See Note 1 on page 41

SPBSV, DPBSV, CPBSV,
ZPBSV

See Note 1 on page 41 See Note 1 on page 41

SPBTRS, DPBTRS, CPBTRS,
ZPBTRS

See Note 1 on page 41 See Note 1 on page 41

Sparse Linear Algebraic
Equations

DSRIS 5 No No

Linear Least Squares SGEQRF, DGEQRF,
CGEQRF, ZGEQRF

See Note 1 on page 41 See Note 1 on page 41

40 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 37. Multithreaded Subroutines (continued)

Subroutine Category Multithreaded Subroutine

Does this subroutine also
use SIMD algorithms on
VSX-enabled processors?

See “SIMD Algorithms on
VSX-Enabled Processors”
on page 30.

Does this short-precision
subroutine also use SIMD
algorithms on
AltiVec-enabled
processors?

(See “SIMD Algorithms on
POWER 6 AltiVec-Enabled
Processors” on page 33.)

Fourier Transforms SCFTD, SRCFTD, SCRFTD,
SCFT, SRCFT, SCRFT,
SCFT2, SRCFT2, SCRFT2,
SCFT3, SRCFT3, SCRFT3

Yes Yes

DCFTD, DRCFTD,
DCRFTD, DCFT, DRCFT,
DCRFT, DCFT2, DRCFT2,
DCRFT2, DCFT3, DRCFT3,
DCRFT3

Yes No

Convolution and
Correlation

SCOND, SCORD No No

SDCON, SDCOR, DDCON,
DDCOR

No No

SCONF, SCORF SACORF Yes Yes

Note:

1. Many of the dense and banded linear algebraic equations and eigensystem analysis subroutines make one or
more calls to the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table,
and therefore they indirectly use multiple threads and SIMD algorithms.

2. Your performance may be improved by setting the following environment variables:

ESSL for AIX
export MALLOCMULTIHEAP=true

—and—

export XLSMPOPTS="spins=0:yields=0"

ESSL for Linux
export XLSMPOPTS="spins=0:yields=0"

For additional information, see the AIX Performance Management Guide and the XLF Manuals.

3. The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently large.

4. Multiple threads are used for the factor or inverse computation.

5. DSRIS only uses multiple threads when IPARM(4) = 1 or 2.

Using the ESSL SMP CUDA Library
The ESSL SMP CUDA 32-bit integer, 64-bit pointer environment library is
supported only on IBM Power System S822LC (8335-GTA) servers with NVIDIA
K80 GPUs running Red Hat Enterprise Linux 7.2 (RHEL7.2) or later (little endian
mode). You can use the ESSL SMP CUDA Library in two ways for the subset of
ESSL Subroutines that are GPU-enabled:
v Using NVIDIA GPUs for the bulk of the computation
v Using a hybrid combination of POWER8 CPUs and NVIDIA GPUs

Chapter 2. Planning Your Program 41

|
|
|
|
|

|

|

The ESSL SMP CUDA library leverages ESSL BLAS, NVIDIA cuBLAS, and
blocking techniques to handle problem sizes larger than the GPU memory size.
The algorithms support multiple GPUs and are designed for use in both SMP and
MPI applications.

The ESSL SMP CUDA Library contains GPU-enabled versions of the following
subroutines:
v SGEMM, DGEMM, CGEMM, and ZGEMM
v SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM
v STRMM, DTRMM, CTRMM, and ZTRMM
v SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK
v SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

To use the ESSL SMP CUDA library, link your applications using -lesslsmpcuda
(see “Processing Your Program on Linux (little endian mode)” on page 189). If
desired, you can change the default behavior of the ESSL SMP CUDA Library
using either environment variables or the SETGPUS subroutine, see “ESSL SMP
CUDA Library Options” on page 43.

For information on the NVIDIA CUDA support, see the following:
v http://developer.nvidia.com/cuda-toolkit

v http://docs.nvidia.com/cuda/#axzz3VafCSAvr

ESSL Support for NVIDIA GPU Compute Modes

NVIDIA allows you to use GPU compute modes to control whether individual or
multiple compute application threads may run on the GPU.

Note: In the descriptions that follow host refers to the Power server and device
refers to the GPU

Restriction: ESSL requires all visible GPUs to be set to the same compute mode,
except for those in PROHIBITED mode, which ESSL ignores.

The NVIDIA compute modes are as follows:

0 DEFAULT
Multiple host threads can use the device at the same time.

ESSL can use one or more visible GPUs on the host. See “ESSL SMP CUDA
Library Options” on page 43 for information on the
CUDA_VISIBLE_DEVICES environment variable.

1 EXCLUSIVE_THREAD
Only one host thread can use the device at any given time.

ESSL can use only 1 thread on one or more visible GPUs on the host. See
“ESSL SMP CUDA Library Options” on page 43 for information on the
CUDA_VISIBLE_DEVICES environment variable.

2 PROHIBITED
No host thread can use the device.

ESSL does not use any GPUs in PROHIBITED compute mode; it uses only
the GPUs in other compute modes. If all GPUs are in PROHIBITED
compute mode, ESSL issues attention message 2538-2614 and runs using
CPUs only, ignoring the setting of the ESSL_CUDA_HYBRID environment

42 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|

|

variable. See “ESSL SMP CUDA Library Options” for information on the
ESSL_CUDA_HYBRID environment variable.

3 EXCLUSIVE_PROCESS
Only one context is allowed per device, usable from multiple threads at a
time.

ESSL can use one or more visible GPUs on the host. If the CUDA MPS1 is
being used with more than 1 GPU, you can use the SETGPUS subroutine
to select the different GPUs for MPI tasks that you want ESSL to use. See
“ESSL SMP CUDA Library Options” for information on the
CUDA_VISIBLE_DEVICES environment variable.

ESSL SMP CUDA Library Options

The ESSL SMP CUDA Library allows you to control these options:

Control how many and which GPUs ESSL uses
By default, ESSL uses all devices. Use the CUDA_VISIBLE_DEVICES
environment variable or the SETGPUS subroutine to change this default.
The CUDA applications will see only the devices whose index is specified
in the CUDA_VISIBLE_DEVICES environmental variable, and the devices
are enumerated in the order of the sequence specified. For example, if you
have three GPUs defined, 0, 1, 2, you can specify that a CUDA application
use only a subset of the GPUs, 1 and 2, using the environmental variable
as follows:
export CUDA_VISIBLE_DEVICES=1,2

You can also specify a new order in which your three GPUs are
enumerated:
export CUDA_VISIBLE_DEVICES=2,1,0

If you need different MPI tasks to use different GPUs, you can use the
SETGPUS subroutine instead of the environmental variable
CUDA_VISIBLE_DEVICES. See “SETGPUS (Set the Number of GPUs and
Identify Which GPUs ESSL Should Use)” on page 1261.

In some cases ESSL does not use GPUs:
v The GPU-enabled subroutine is called from within an OpenMP parallel

construct (OMP_IN_PARALLEL is true).
v For pre- and post-scaling operations, for example, handling the alpha

argument in _TRMM.
v When the problem size is too small to benefit from using GPUs.

Specifying Whether ESSL Runs in Hybrid Mode
By default, the ESSL SMP CUDA library runs in hybrid mode. Use the
ESSL_CUDA_HYBRID environment variable to change this default (valid
values are yes or no). The default hybrid mode
(ESSL_CUDA_HYBRID=yes) means that the ESSL SMP CUDA Library
subroutines can run on both POWER8 CPUs and NVIDIA GPUs.

Note: Subroutines SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and
ZHER2K only use the Power8 CPUs for scaling operations.

1. NVIDIA CUDA Multi Process Service (MPS) is a feature that allows multiple CUDA processes to share a single GPU context.

Chapter 2. Planning Your Program 43

Specifying Whether ESSL Pins Host Memory Buffers
By default, ESSL does not pin host memory buffers
(ESSL_CUDA_PIN=no). Use the ESSL_CUDA_PIN environment variable to
change this default (valid values are yes, no, or pinned).

If you want ESSL to pin your host memory buffers on entry to
gpu-enabled subroutines and unpin them before returning, specify
ESSL_CUDA_PIN=yes.

Performance might be improved if you pin your host memory buffers used
in the ESSL calling sequences once before any calls to ESSL subroutines. If
you pin your own buffers you should specify ESSL_CUDA_PIN=pinned.

Note: Host memory buffers that are only partially pinned may lead to
NVIDIA Error 11 from cublasSetMatrixAsync or cublasSetMatrix.

How ESSL Assigns Threads

The ESSL SMP CUDA Library requires at least one OpenMP thread for each GPU
used. If the number of OpenMP threads is less than the number of GPUs, ESSL
issues attention message 2538-2615 and uses the same number of GPUs as there are
OpenMP threads.

ESSL SMP CUDA Library uses the following priorities to assign threads:
v ESSL reserves 1 thread for each GPU used
v Some ESSL subroutines might reserve threads needed to support multiple

streams
v The remaining threads are used for the CPU, but a subroutine might not run in

hybrid mode if there are not enough threads left or if the problem size is too
small.

MPI Applications

There are two ways to use the ESSL SMP CUDA Library with MPI Applications
depending on how the GPUs are used by the local MPI tasks:
v GPUs are not shared, meaning that each MPI task on a node uses unique GPUs.

You can use the local rank of the MPI tasks to ensure each task uses unique
GPUs. See the MP_COMM_WORLD_LOCAL_RANK description in the section
on running CUDA-aware GPU applications in IBM Parallel Environment Runtime
Edition: Operation and Use, SC23-7283, at the Version 2 Release 3 level or higher.

v GPUs are shared, meaning that the number of MPI tasks per node oversubscribe
the GPUs. For this case we recommend you run using the NVIDIA MPS which
is a runtime service designed to let multiple MPI processes using CUDA run
concurrently on a single GPU in a way that's transparent to the MPI program.
NVIDIA MPS supports at most 16 MPI Tasks per GPU, but if you are using
ESSL, it is recommended that you use Core Affinity and no more tasks than the
number of cores being used.
If you are sharing GPUs, it’s possible that ESSL will be unable to allocate work
space on the GPU. In that case you can reduce the number of MPI tasks per
node or, if possible, increase the number of GPUs being used per node to
eliminate the allocation failures.
If error cudaStreamCreate failed with CUDA message: all CUDA-capable
devices are busy or unavailable occurs when using ESSL with MPI
applications and NVIDIA MPS, confirm that the NVIDIA MPS Daemons are
running on all nodes that the MPI job is using.

44 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|
|

You can use SETGPUS (see ESSL Guide and Reference) to inform ESSL which GPUs
your MPI Tasks should use.

For best performance, consider increasing the block size you are using to distribute
your data across the MPI tasks. Consider block sizes in the range 1024-4096
elements.

NVIDIA GPU Power Capping
The ESSL and NVIDIA library subroutines are highly optimized and for some
problem sizes your application may exceed the SW Power cap for one or more of
the GPUs. If this happens your performance will be degraded because the
frequency of the corresponding GPU clock will be reduced because the GPU is
consuming too much power.

You can confirm that this is happening by using nvidia-smi to monitor the GPUs
while your application is running.
nvidia-smi dmon

If you wish to adjust the Power Cap Limit follow these steps:
1. Determine the current, default and maximum power limit as follows:

nvidia-smi -q | grep ’Power Limit’

2. Set persistence as follows:
nvidia-smi -pm 1

3. Increase the SW Power Cap limit for all GPUs as follows, where xxx is the
desired value in watts:
nvidia-smi -pl xxx

Note: You must increase the power limit and set persistence each time the server
is booted.

For additional information, see the following URL:
http://international.download.nvidia.com/tesla/pdf/gpu-boost-tesla-k40-app-note.pdf

What Type of Data Are You Processing in Your Program?
The version of the ESSL subroutine you select should agree with the data you are
using. ESSL provides a short- and long-precision version of most of its subroutines
processing short- and long-precision data, respectively. In a few cases, it also
provides an integer version processing integer data or returning just integer data.
The subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer

The precision of your data affects the accuracy of your results. This is discussed in
“Getting the Best Accuracy” on page 61. For a description of these data types, see
“How Do You Set Up Your Scalar Data?” on page 46.

Chapter 2. Planning Your Program 45

|

|
|
|
|
|

|
|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

How Is Your Data Structured? And What Storage Technique
Are You Using?

Some subroutines process specific data structures, such as sparse vectors and
matrices or dense and banded matrices. In addition, these data structures can be
stored using various storage techniques. You should select the proper subroutine
on the basis of the type of data structure you have and the storage technique you
want to use. If possible, you should use a storage technique that conserves storage
and potentially improves performance. For more about storage techniques, see
“Setting Up Your Data.”

What about Performance and Accuracy?
ESSL provides variations among some of its subroutines. You should consider
performance and accuracy when deciding which subroutine is the best to use.
Study “Function” in each subroutine description. It helps you understand exactly
what each subroutine does, and helps you determine which subroutine is best for
you. For example, some subroutines perform multiple computations of a certain
type. This might give you better performance than a subroutine that does each
computation individually. In other cases, one subroutine may do scaling while
another does not. If scaling is not necessary for your data, you get better
performance by using the subroutine without scaling.

Avoiding Conflicts with Internal ESSL Routine Names That are
Exported

Do not use names for your own subroutines, functions, and global variables that
are the same as the ESSL exported names. Internal ESSL routine names that are
exported all begin with the ESV prefix. Therefore, it is sufficient for you to avoid
using this prefix for your own names.

Setting Up Your Data
There are various items to consider when setting up your scalar and array data.

How Do You Set Up Your Scalar Data?
A scalar item is a single item of data, whether it is a constant, a variable, or an
element of an array. ESSL assumes that your scalar data conforms to the
appropriate standards. The scalar data types and how you should code them for
each programming language are listed in “Coding Your Scalar Data” specific to
each language in Chapter 4, “Coding Your Program,” on page 131.

Scalar data passed to ESSL from all types of programs, including Fortran, C, and
C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754–1985.

How Do You Set Up Your Arrays?
An array represents an area of storage in your program, containing data stored in
a series of locations. An array has a single name. It is made up of one or more
pieces of scalar data, all the same type. These are the elements of the array. It can
be passed to the ESSL subroutine as input, returned to your program as output, or
used for both input and output, in which case the original contents are
overwritten.

46 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Arrays can contain conceptual (mathematical) data structures, such as vectors,
matrices, or sequences. There are many different types of data structures. Each type
of data structure requires a unique arrangement of data in an array and does not
necessarily have to include all the elements of the array. In addition, the elements
of these data structures are not always contiguous in storage within an array.
Stride and leading dimension arguments passed to ESSL subroutines define the
separations in array storage for the elements of the vector, matrix, and sequence.
All these aspects of data structures are described in Chapter 3, “Setting Up Your
Data Structures,” on page 73. You must first understand array storage techniques
to fully understand the concepts of data structures, stride, and leading dimension,
especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the
Fortran array storage techniques (in column-major order), and they process your
data accordingly. For details, see “Setting Up Arrays in Fortran” on page 132. On
the other hand, C, and C++ programs store arrays in row-major order. For details
on what you can do, see:
v For C, see “Setting Up Arrays in C” on page 153.
v For C++, see “Setting Up Arrays in C++” on page 171.

How Should Your Array Data Be Aligned?
All arrays, regardless of the type of data, should be aligned on a doubleword
boundary to ensure optimal performance.

For all subroutines running on VSX enabled processors, see “SIMD Algorithms on
VSX-Enabled Processors” on page 30.

For short-precision real and short-precision complex subroutines running on
POWER6 AltiVec-enabled processors, see “SIMD Algorithms on POWER 6
AltiVec-Enabled Processors” on page 33.

For information about how your programming language aligns data, see your
programming language manuals.

What Storage Mode Should You Use for Your Data?
The amount of storage used by arrays and the storage arrangement of data in the
arrays can affect overall program performance. As a result, ESSL provides
subroutines that operate on different types of data structures, stored using various
storage modes. You should chose a storage mode that conserves storage and
potentially improves performance. For definitions of the various data structures
and their corresponding storage modes, see Chapter 3, “Setting Up Your Data
Structures,” on page 73. You can also find special storage considerations, where
applicable, in “Notes” in each subroutine description.

How Do You Convert from One Storage Mode to Another?
ESSL provides conversion subroutines and sample programs to help you convert
from one storage mode to another.

Conversion Subroutines
ESSL provides several subroutines that help you convert from one storage mode to
another:
v DSRSM is used to migrate your existing program from sparse matrices stored by

rows to sparse matrices stored in compressed-matrix storage mode. This

Chapter 2. Planning Your Program 47

converts the matrices into a storage format that is compatible with the input
requirements for some ESSL sparse matrix subroutines, such as DSMMX.

v DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

Sample Programs
In addition, sample programs are provided with many of the storage mode
descriptions in Chapter 3, “Setting Up Your Data Structures,” on page 73. You can
use these sample programs to convert your data to the desired storage mode by
adapting them to your application program.

Setting Up Your ESSL Calling Sequences
This gives the general rules for setting up the ESSL calling sequences. The
information given here applies to all types of programs, running in all
environments. For a description and examples of how to code the ESSL calling
sequences in your particular programming language, see the following:
v “Fortran Programs” on page 131
v “C Programs” on page 149
v “C++ Programs” on page 165

What Is an Input-Output Argument?
Some arguments are used for both input and output. The contents of the input
argument are overlaid with the output value(s) on return to your program. Be
careful that you save any data you need to preserve before calling the ESSL
subroutine.

What Are the General Rules to Follow when Specifying Data
for the Arguments?

You should follow the syntax rules given for each argument in “On Entry” in the
subroutine description. Input-argument error messages may be issued, and your
program may terminate when you make an error specifying the input arguments.
For example:
v Data passed to ESSL must be of the correct type: 32-bit or 64-bit integer, 32-bit or

64-bit logical, character, real, complex, short-precision, or long-precision. There is
no conversion of data. Assuming you are using the ESSL header file with your C
and C++ programs, you first need to define the following:
– Complex and logical data in C programs, using the guidelines in “Setting Up

Complex Data Types in C” on page 152 and “Using Logical Data in C” on
page 153.

– Short-precision complex and logical data in C++ programs, using the
guidelines in “On AIX—Setting Up Short-Precision Complex Data Types If
You Are Using the IBM Open Class Complex Mathematics Library in C++” on
page 169 and “Using Logical Data in C++” on page 170.

v Character values must be one of the specified values. For example, it may have
to be 'N', 'T', or 'C'.

v Numeric values must fall within the correct range for that argument. For
example, a numeric value may need to be greater than or equal to 0, or it may
have to be a nonzero value.

v Arrays must be defined correctly; that is, they must have the correct dimensions,
or the dimensions must fall within the correct range. For example, input and

48 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

output matrices may need to be conformable, or the number of rows in the
matrix must be less than or equal to the leading dimension specified. (ESSL
assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?
For most ESSL subroutines, if you specify 0 for the number of elements to be
processed in a vector or the order of a matrix (usually argument n), no
computation is performed. After checking for input-argument errors, the
subroutine returns immediately and no result is returned. In the other subroutines,
an error message may be issued.

How Do You Specify the Beginning of the Data Structure in
the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, it does
not necessarily have to start at the beginning of the array. It can begin at any
point in the array. For example, if you want vector x to start at element 3 in array
A, which is declared A(1:12), specify A(3) in your calling sequence for argument x,
such as in the following SASUM calling sequence in your Fortran program:

N X INCX
| | |

X = SASUM(4 , A(3) , 2)

Also, for example, if you want matrix A to start at the second row and third
column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling
sequence for argument a, such as in the following SGEADD calling sequence in
your Fortran program:

A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A(1,4) , 11 , ’N’ , B , 4 , ’N’ , C , 4 , 4 , 3)

For more examples of specifying vectors and matrices, see Chapter 3, “Setting Up
Your Data Structures,” on page 73.

Using Auxiliary Storage in ESSL
For the ESSL subroutines listed in Table 38, you need to provide extra working
storage to perform the computation. It is necessary to understand the use of
dynamic allocation for providing auxiliary storage in ESSL and, if dynamic
allocation is not an option, how to calculate the amount of auxiliary storage you
need by use of formulas or error-handling capabilities provided in ESSL.

Auxiliary storage, or working storage, is supplied through one or more arguments,
such as aux, in the calling sequence for the ESSL subroutine. If the working
storage does not need to persist after the subroutine call, it is suggested you use
dynamic allocation. For example, in the Fourier Transforms subroutines, you may
allocate aux2 dynamically, but not aux1. See the subroutine descriptions for details
and variations.

Table 38. ESSL Subroutines Requiring Auxiliary Working Storage

Subroutine Names

Linear Algebra Subprograms:
DSMTM

Chapter 2. Planning Your Program 49

Table 38. ESSL Subroutines Requiring Auxiliary Working Storage (continued)

Subroutine Names

Matrix Operations:
_GEMMS

Dense Linear Algebraic Equations:
_GEFCD _PPFCD _GEICD _PPICD _POFCD
_POICD DGEFP∆ DPPFP∆

Sparse Linear Algebraic Equations:
DGSF DGSS DGKFS DGKFSP∆ DSKFS DSKFSP∆

DSRIS DSMCG DSDCG DSMGCG DSDGCG

Linear Least Squares:
_GESVF _GELLS

Fourier Transforms:
_CFTD
_RCFTD
_CRFTD
_CFT _RCFT _CRFT _COSF _SINF
SCOSFT∆ _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP∆ SCFT2P∆ SCFT3P∆

Convolutions and Correlations:
SCONF SCORF SACORF

Related Computations:
_WLEV

Interpolation:
_TPINT _CSIN2

Random Number Generation:
_NRAND

Utilities:
DGKTRN DSKTRN

∆ Documentation for this subroutine is no longer provided. The aux and naux arguments
for the subroutine are specified the same as for the corresponding serial ESSL subroutine.

Dynamic Allocation of Auxiliary Storage
Dynamic allocation for the auxiliary storage is performed when error 2015 is
unrecoverable and naux = 0. For details on which aux arguments allow dynamic
allocation, see the subroutine descriptions.

50 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Setting Up Auxiliary Storage When Dynamic Allocation Is Not
Used

You set up the storage area in your program and pass it to ESSL through
arguments, specifying the size of the aux work area in the naux argument.

Who Do You Want to Calculate the Size of Auxiliary Storage?
You or ESSL?
You have a choice of two methods for determining how much auxiliary storage
you should specify:
v Use the formulas provided in the subroutine description to derive sufficient

values for your current and future needs. Use them if ease of migration to
future machines and future releases of ESSL is your primary concern. For details,
see “How Do You Calculate the Size of Auxiliary Storage Using the Formulas?.”

v Use the ESSL error-handling facilities to return to you a minimum value for the
particular processor you are currently running on. (Values vary by platform.)
Use this approach if conserving storage is your primary concern. For details, see
“How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL
Error Handling?.”

How Do You Calculate the Size of Auxiliary Storage Using the
Formulas?
The formulas provided for calculating naux indicate a sufficient amount of
auxiliary storage required, which, in most cases, is larger than the minimum
amount, returned by ESSL error handling. There are two types of formulas:
v Simple formulas

These are given in the naux argument syntax descriptions. In general, these
formulas result in the minimum required value, but, in a few cases, they provide
overestimates.

v Processor-independent formulas

These are given separately in each subroutine description. In general, these
provide overestimates.

Both types of formulas provide values that are sufficient for all processors. As a
result, you can migrate to any other processor and to future releases of ESSL
without being concerned about having to increase the amount of storage for aux.
You do, of course, need to weigh your storage requirements against the
convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values
for specific variables, such as n, m, n1, or n2. These variables are arguments
specified in the ESSL calling sequence or derived from the arguments in the calling
sequence.

How Do You Get ESSL to Calculate the Size of Auxiliary Storage
Using ESSL Error Handling?
When getting ESSL to calculate auxiliary storage, ask yourself which of the
following ways you prefer to obtain the information from ESSL:
v By leaving error 2015 unrecoverable, you can obtain the minimum required

value of naux from the input-argument error message, but your program
terminates.

Chapter 2. Planning Your Program 51

v By making error 2015 recoverable, you can obtain the minimum required value
of naux from the input-argument error message and have the updated naux
argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the
minimum amount of auxiliary storage required to run your program successfully
on the particular processor you are currently running on. The ESSL
error-handling capability usually returns a smaller value than you derive by using
the formulas listed for the subroutine. This is because the formulas provide a good
estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors.
You should not use them if you plan to run your program on a future processor.
You should use them only if you are concerned with minimizing the amount of
auxiliary storage used by your program.

Having ESSL Calculate Auxiliary Storage Size with Unrecoverable Error 2015:
In this case, you obtain the minimum required value of naux from the error
message, but your program terminates. The following description assumes that
dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with the naux values smaller than required by the subroutine for the
particular processor you are running on. As a general guideline, specify values
smaller than those listed in the formulas. However, if a lower limit is specified in
the syntax (only for several naux1 arguments in the Fourier transform, convolution,
and correlation subroutines), you should not go below that limit. The ESSL error
monitor returns the necessary sizes of the aux storage areas in the input-argument
error message. This does, however, terminate your program when the error is
encountered. (If you accidentally specify a sufficient amount of storage for the
ESSL subroutine to perform the computation, error handling does not issue an
error message and processing continues normally.) Figure 1 on page 53 illustrates
what happens when error 2015 is unrecoverable.

52 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Having ESSL Calculate Auxiliary Storage Size with Recoverable Error 2015: In
this case, you obtain the minimum required value of naux from the error message
and from the updated naux argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2015 recoverable. This allows you to dynamically determine in your program the
minimum sizes required for the auxiliary working storage areas, specified in the
naux arguments. Run your program with the naux values smaller than required by
the subroutine for the particular processor you are running on. As a general
guideline, specify values smaller than those listed in the formulas. However, if a
lower limit is specified in the syntax (only for several naux1 arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go
below that limit. The ESSL error monitor returns the necessary sizes of the aux
storage areas in the input-argument error message and a return code is passed
back to your program, indicating that updated values are also returned in the naux
arguments. You can then react to these updated values during run time in your

ESSL Subroutine

Terminate

Issue message 2538-2015
with minimum
required value

no

Terminate

Issue message 2538-2015
with lower limit

yes

Perform ESSL
computation

Is NAUX
minimum
required
value?

>_

Call ESSL
subroutine Is NAUX

lower limit
?*

Is NAUX=0
and

dynamic allocation
is allowed�������������

��?

>_

yes

yes

no

no

User Program

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation
subroutines.

Figure 1. How to Obtain an NAUX Value from an Error Message, but Terminate

Chapter 2. Planning Your Program 53

program. ESSL does not perform any computation when this error occurs. For
details on how to do this, see Chapter 4, “Coding Your Program,” on page 131. (If
you accidentally specify a sufficient amount of storage for the ESSL subroutine to
perform the computation, error handling does not issue an error message and
processing continues normally.) Figure 2 illustrates what happens when error 2015
is recoverable.

Example of Input-Argument Error Recovery for Auxiliary Storage Sizes: The
following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, naux. A key point
here is that if you want to have the updated argument value returned to your
program, you must make error 2015 recoverable and then specify an naux value
greater than or equal to 20 and less than 300. For values out of that range, the

Set return code
= r

React to updated
NAUX value

Is return code
= r ?

Make error
2015 recoverable

ESSL Subroutine

Updated NAUX argument
with minimum
required value

Issue message 2538-2015
with minimum
required value

no

Terminate

Issue message 2538-2015
with lower limit

yes

Perform ESSL
computation

Is NAUX
minimum
required
value?

>_

Call ESSL
subroutine

Is NAUX
lower limit

?*

>_

yes

no

User Program

no

yes

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation
subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program

54 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

error recovery facility is not in effect. (These values of naux, 20 and 300, are used
only for the purposes of this example and do not relate to any of the ESSL
subroutines.)

NAUX Meaning of the NAUX Value

20 Lower limit of naux required for using recoverable input-argument
error-handling facilities in ESSL. (This applies only to several naux1
arguments in the Fourier transform, convolution, and correlation
subroutines. You can find the lower limit in the syntax description for the
naux1 argument. For a list of subroutines, see “Using Auxiliary Storage in
ESSL” on page 49.)

300 Minimum value of naux, required for successful running (on the processor
the program is being run on).

Table 39 describes the actions taken by ESSL in every possible situation for the
values given in this example.

Table 39. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

NAUX Value
Action When 2015 Is an Unrecoverable
Input-Argument Error

Action When 2015 Is a Recoverable
Input-Argument Error

naux < 20 An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

20 ≤ naux < 300 An input-argument error message is issued.
The value in the error message is the
minimum required value, 300. The
application program stops.

ESSL returns the value of naux as 300 to the
application program, and an input-argument
error message is issued. The value in the
error message is the minimum required
value, 300. ESSL does no computation, and
control is returned to the application
program.

naux ≥ 300 Your application program runs successfully. Your application program runs successfully.

Coding Your Program to Obtain Auxiliary Storage Sizes: If you leave error 2015
unrecoverable, you do not code anything in your program. You just look at the
error messages to get the sizes of auxiliary storage. On the other hand, if you want
to make error 2015 recoverable to obtain the auxiliary storage sizes dynamically in
your program, you need to add some coding statements to your program. For
details on coding these statements in each programming language, see the
following examples:
v For Fortran, see “Input-Argument Errors in Fortran Example” on page 141
v For C, see “Input-Argument Errors in C Example” on page 159
v For C++, see “Input-Argument Errors in C++ Example” on page 176

You may want to provide a separate subroutine to calculate the auxiliary storage
size whenever you need it. Figure 3 on page 56 shows how you might code a
separate Fortran subroutine. Before calling SCFT in your program, call this
subroutine, SCFTQ, which calculates the minimum size and stores it in the naux
arguments. Upon return, your program checks the return code. If it is nonzero, the
naux arguments were updated, as planned. You should then make sure adequate
storage is available and call SCFT. On the other hand, if the return code is zero,
error handling was not invoked, the naux arguments were not updated, and the
initialization step was performed for SCFT.

Chapter 2. Planning Your Program 55

Providing a Correct Transform Length to ESSL
This describes how to calculate the length of your transform by use of formulas or
error-handling capabilities provided in ESSL.

For the ESSL subroutines listed in Table 40, you need to provide one or more
transform lengths for the computation of a Fourier transform. These transform
lengths are supplied through one or more arguments, such as n, n1, n2, and n3, in
the calling sequence for the ESSL subroutine. Only certain lengths of transforms
are permitted in the computation.

Table 40. ESSL Subroutines Requiring Transform Lengths

Subroutine Names

Fourier Transforms:
_CFT _RCFT _CRFT _COSF _SINF
SCOSFT _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

Who Do You Want to Calculate the Transform Length? You or
ESSL?

You have a choice of two methods for determining an acceptable length for your
transform to be processed by ESSL:
v Use the formula or large table in “Acceptable Lengths for the Transforms” on

page 984 to determine an acceptable length. For details, see “How Do You
Calculate the Transform Length Using the Table or Formula?” on page 57.

v Use the ESSL error-handling facilities to return to you an acceptable length. For
details, see “How Do You Get ESSL to Calculate the Transform Length Using
ESSL Error Handling?” on page 57.

SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2015

CALL EINFO(0)
CALL ERRSAV(2015,S2015)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)

C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,S2015)
RETURN

10 CONTINUE
CALL ERRSTR(2015,S2015)
RETURN 1
END

Figure 3. Sample Fortran Subroutine to Calculate Auxiliary Storage Sizes in a 32-bit Integer, 64-bit Pointer
Environment

56 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

How Do You Calculate the Transform Length Using the Table
or Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are
listed in “Acceptable Lengths for the Transforms” on page 984. You should use the
information in that table to find the two values your length falls between. You then
specify the larger length for your transform. If you find a perfect match, you can
use that value without having to change it. The formula provided expresses how
to calculate the acceptable values listed in the table. If necessary, you can use the
formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Transform Length
Using ESSL Error Handling?

This describes how to get ESSL to calculate transform lengths. Ask yourself which
of the following ways you prefer to obtain the information from ESSL:
v By leaving error 2030 unrecoverable, you can obtain an acceptable value for n

from the input-argument error message, but your program terminates.
v By making error 2030 recoverable, you obtain an acceptable value for n from

the input-argument error message and have the updated n argument returned to
your program.

Because the Fourier transform subroutines allow only certain lengths for
transforms, ESSL provides this error-handling capability to return acceptable
lengths to your program. It returns them in the transform length arguments. The
value ESSL returns is the next larger acceptable length for a transform, based on
the length you specify in the n argument.

Having ESSL Calculate the Transform Length with Unrecoverable
Error 2030
In this case, you obtain an acceptable value of n from the error message, but your
program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in input-argument error message. This does,
however, terminates your program when the error is encountered. (If you do
happen to specify an acceptable length for the transform, error handling does not
issue an error message and processing continues normally.) Figure 4 on page 58
illustrates what happens when error 2030 is unrecoverable.

Chapter 2. Planning Your Program 57

Having ESSL Calculate the Transform Length with Recoverable
Error 2030
In this case, you obtain an acceptable value of n from the error message and from
the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2030 recoverable. This allows you to dynamically determine in your program an
acceptable length for your transform, specified in the n argument(s). Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in the input-argument error message and a
return code is passed back to your program, indicating that updated values are
also returned in the n argument(s). You can then react to these updated values
during run time in your program. ESSL does not perform any computation when
this error occurs. For details on how to do this, see Chapter 4, “Coding Your
Program,” on page 131. (If you do happen to specify an acceptable length for the
transform, error handling does not issue an error message and processing
continues normally.) Figure 5 on page 59 illustrates what happens when error 2030
is recoverable.

ESSL Subroutine

Issue message 2538-2030
with next larger

acceptable transform
length

Terminate

Perform ESSL
computation

Call ESSL
subroutine

Is N=
acceptable
transform
length?

yes

no

User Program

Figure 4. How to Obtain an N Value from an Error Message, but Terminate

58 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example of Input-Argument Error Recovery for Transform
Lengths
The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, n. The values of n
used in the example are as follows:

N Meaning of the N Value

7208960
An acceptable transform length, required for successful computing of a
Fourier transform

7340032
The next larger acceptable transform length, required for successful
computing of a Fourier transform

Table 41 on page 60 describes the actions taken by ESSL in every possible situation
for the values given in this example.

Update N argument
with next larger

acceptable transform
length

Set return code
= r

React to updated
N value

Is return code
= r ?

Make error
2030 recoverable

ESSL Subroutine

Issue message 2538-2030
with next larger

acceptable transform
length

Perform ESSL
computation

Call ESSL
subroutine

Is N=
acceptable
transform
length?

yes

no

User Program

no

yes

Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Chapter 2. Planning Your Program 59

Table 41. Example of Input-Argument Error Recovery for Transform Lengths

N Value
Action When 2030 Is an Unrecoverable
Input-Argument Error

Action When 2030 Is a Recoverable
Input-Argument Error

n = 7208960

–or–

n = 7340032

Your application program runs
successfully.

Your application program runs
successfully.

7208960 < n < 7340032 An input-argument error message is
issued. The value in the error message is
7340032. The application program stops.

ESSL returns the value of n as 7340032 to
the application program, and an
input-argument error message is issued.
The value in the error message is 7340032.
ESSL does no computation, and control is
returned to the application program.

Coding Your Program to Obtain Transform Lengths
If you leave error 2030 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the transform lengths. On the other
hand, if you want to make error 2030 recoverable to obtain the transform lengths
dynamically in your program, you need to add some coding statements to your
program. For details on coding these statements in each programming language,
see the following examples:
v For Fortran, see “Input-Argument Errors in Fortran Example” on page 141.
v For C, see “Input-Argument Errors in C Example” on page 159.
v For C++, see “Input-Argument Errors in C++ Example” on page 176.

You may want to provide a separate subroutine to calculate the transform length
whenever you need it. Figure 6 shows how you might code a separate Fortran
subroutine. Before calling SCFT in your program, you call this subroutine, SCFTQ,
which calculates the correct length and stores it in n. Upon return, your program
checks the return code. If it is nonzero, the n argument was updated, as planned.
You then do any necessary data setup and call SCFT. On the other hand, if the
return code is zero, error handling was not invoked, the n argument was not
updated, and the initialization step was performed for SCFT.

You might want to combine the request for auxiliary storage sizes along with your
request for transform lengths. Figure 7 on page 61 shows how you might code a

SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2030

CALL EINFO(0)
CALL ERRSAV(2030,S2030)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2030,S2030)
RETURN

10 CONTINUE
CALL ERRSTR(2030,S2030)
RETURN 1
END

Figure 6. Sample Fortran Subroutine to Calculate Transform Length in a 32-bit Integer, 64-bit Pointer Environment

60 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

separate Fortran subroutine combining both requests. It combines the functions
performed by the subroutine shown above and that shown in “Coding Your
Program to Obtain Auxiliary Storage Sizes” on page 55.

Getting the Best Accuracy
This explains how accuracy of your results can be affected in various situations
and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?
Both short- and long-precision real versions of the subroutines are provided in
most areas of ESSL. In some areas, short- and long-precision complex versions are
also provided, and, occasionally, a 32-bit or 64-bit integer version is provided. The
subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer

For a description of these data types, see “How Do You Set Up Your Scalar Data?”
on page 46. The scalar data types and how you should code them for each
programming language are listed under “Coding Your Scalar Data” specific to each
programming language in Chapter 4, “Coding Your Program,” on page 131.

SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
* N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2015,S2030

CALL EINFO(0)
CALL ERRSAV(2015,S2015)
CALL ERRSAV(2030,S2030)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)

C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY

NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,

* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,S2015)
CALL ERRSTR(2030,S2030)
RETURN

10 CONTINUE
CALL ERRSTR(2015,S2015)
CALL ERRSTR(2030,S2030)
RETURN 1
END

Figure 7. Sample Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length in a 32-bit Integer,
64-bit Pointer Environment

Chapter 2. Planning Your Program 61

How does the Nature of the ESSL Computation Affect
Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data
is not affected. In subroutines performing computations involving mathematical
operations on array data, the accuracy of the result may be affected by the
following:
v The algorithm, which can vary depending on values or array sizes within the

computation or the number of threads used, or whether CPUs, GPUs, or both
are used.

v The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of
computation. In other words, there is no formula with which you can calculate the
error of computation in each subroutine.

Many of the short-precision subprograms provide increased accuracy by
accumulating results in long precision. However, when short-precision subroutines
use the AltiVec or VSX unit to improve performance, they do not accumulate
intermediate results in long precision. This is noted in the functional description of
each subprogram.

Where applicable, the ESSL subroutines use the Multiply-Add instructions, which
combine a Multiply and Add operation without an intermediate rounding
operation.

The ESSL Serial Libraries and ESSL SMP Libraries allow you to run applications in
any of the following environments, and results obtained in any of these
environments using the same ESSL library are mathematically equivalent but may
not be bitwise-identical:
v 32-bit integer, 32-bit pointer environment (AIX only)
v 32-bit integer, 64-bit pointer environment
v 64-bit integer, 64-bit pointer environment

What Data Type Standards Are Used by ESSL, and What
Exceptions Should You Know About?

The data types operated on by the short-precision, long-precision, and integer
versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary floating-point
format, and 32-bit and 64-bit integer. See the ANSI/IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985 for more detail.

There are ESSL-specific rules that apply to the results of computations using the
ANSI/IEEE standards. When running your program, the result of a multiplication
of NaN (“Not-a-Number”) by a scalar zero, under certain circumstances, may
differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in
some ESSL subroutines where scaling is performed, the result may be zero. For
example, in computing αA, where α is a scalar and A is a matrix, if α is zero and
one (or more) of the elements of A is NaN, the scaled result, using that element,
may be a zero, rather than NaN. To avoid problems, you should consider this
when designing your program.

62 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

How is Underflow Handled?
ESSL does not mask underflow. If your program incurs a number of unmasked
underflows, its overall performance decreases. Floating-point exception trapping is
disabled by default. Therefore, you do not have to mask underflow unless you
have changed the default.

Where Can You Find More Information on Accuracy?
Information about accuracy can be found in the following places:
v Migration considerations concerning accuracy of results between releases,

platforms, and so forth are described in Chapter 6, “Migrating Your Programs,”
on page 199.

v Specific information on accuracy for each area of ESSL is given in “Performance
and Accuracy Considerations” associated with the subroutine descriptions for
that area.

v The functional description under “Function” for each subroutine explains what
you need to know about the accuracy of the computation. Varying
implementation techniques are sometimes used to improve performance. To let
you know how accuracy is affected, the functional description may explain in
general terms the different techniques used in the computation.

v For details on accuracy considerations when using GPUs see:
https://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus

What about Bitwise-Identical Results?
There are several circumstances where you may not get bitwise-identical results,
although the results are mathematically equivalent:
v Results obtained on different hardware platforms
v Results obtained using different ESSL releases
v Results obtained using different ESSL Libraries
v Results obtained using a different number of threads
v Results obtained using arrays that are aligned differently. For example, the

Power VSX/VMX unit require specific data alignments. If a subroutine uses one
of these units and the input and/or output arrays are not aligned as required,
some data may be processed using the floating point unit before or after the
main SIMD loop.

v Results obtained using the ESSL SMP CUDA Library with environment variables
ESSL_CUDA_HYBRID=yes and ESSL_CUDA_HYBRID=no. See “Using the ESSL
SMP CUDA Library” on page 41.

Getting the Best Performance
This describes how you can achieve the best possible performance from the ESSL
subroutines.

What General Coding Techniques Can You Use to Improve
Performance?

There are many ways in which you can improve the performance of your program.
Here are some of them:
v Use the basic linear algebra subprograms and matrix operations in the order of

optimum performance: matrix-matrix computations, matrix-vector computations,

Chapter 2. Planning Your Program 63

and vector-scalar computations. When data is presented in matrices or vectors,
rather than vectors or scalars, multiple operations can be performed by a single
ESSL subroutine.

v Where possible, use subroutines that do multiple computations, such as SNDOT
and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

v Use a stride of 1 for the data in your computations. Not having vector elements
consecutively accessed in storage can degrade your performance. The closer the
vector elements are to each other in storage, the better your performance. For an
explanation of stride, see “How Stride Is Used for Vectors” on page 76.

v Do not specify the size of the leading dimension of an array (lda) or stride of a
vector (inc) equal to or near a multiple of:
– 128 for a long-precision array
– 256 for a short-precision array

v On VSX enabled processors, specify the size of the leading dimension of a long
or short-precision array as follows:
– Long-precision real arrays - multiple of 2
– Short-precision real arrays - multiple of 4
– Short-precision complex arrays - multiple of 2

Vectors and matrices are quadword aligned.
v On AltiVec-Enabled Processors, specify the size of the leading dimension of a

short-precision array as follows:
– Short-precision real array - multiple of 4
– Short-precision complex array - multiple of 2

v Do not specify the individual sizes of your one-dimensional arrays as multiples
of 128. This is especially important when you are passing several
one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a
performance problem that otherwise might not occur.)

v For small problems, avoid using a large leading dimension (lda) for your matrix.
v In general, align your arrays on doubleword boundaries, regardless of the type

of data. For short-precision real and short-precision complex subroutines
running on AltiVec-enabled processors, see “SIMD Algorithms on POWER 6
AltiVec-Enabled Processors” on page 33. For VSX enabled processors, see “SIMD
Algorithms on VSX-Enabled Processors” on page 30. For information on how
your programming language aligns data, see your programming language
manuals.

v One subroutine may do scaling while another does not. If scaling is not
necessary for your data, you get better performance by using the subroutine
without scaling. SNORM2 and DNORM2 are examples of subroutines that do
not do scaling, versus SNRM2 and DNRM2, which do scaling.

v Use the STRIDE subroutine to calculate the optimal stride values for your input
or output data when using any of the Fourier transform subroutines, except
_RCFT and _CRFT. Using these stride values for your data allows the Fourier
transform subroutines to achieve maximum performance. You first obtain the
optimal stride values from STRIDE, calling it once for each stride value desired.
You then arrange your data using these stride values. After the data is set up,
you call the Fourier transform subroutine. For details on the STRIDE subroutine
and how to use it for each Fourier transform subroutine, see “STRIDE
(Determine the Stride Value for Optimal Performance in Specified Fourier
Transform Subroutines)” on page 1263. For additional information, see “Setting
Up Your Data” on page 987.

64 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v If you are using the ESSL SMP CUDA library, performance might improve if you
pin your host memory buffers. See “Using the ESSL SMP CUDA Library” on
page 41.

Where Can You Find More Information on Performance?
Information about performance can be found in the following places:
v Many of the techniques ESSL uses to achieve the best possible performance are

described in the “High Performance of ESSL” on page 6.
v Migration considerations concerning performance are described in Chapter 6,

“Migrating Your Programs,” on page 199.
v Specific information on performance for each area of ESSL is given in

“Performance and Accuracy Considerations” for each grouping of subroutine
descriptions.

v Detailed performance information for selected subroutines can be found in
reference [38 on page 1315], [49 on page 1316], [50 on page 1316].

Dealing with Errors when Using ESSL
At run time, you can encounter different types of errors or messages that are
related to the use of the ESSL subroutines:
v Program exceptions
v ESSL input-argument errors
v ESSL computational errors
v ESSL resource errors
v ESSL attention messages

There are specific ways to handle all these situations.

What Can You Do about Program Exceptions?
The program exceptions you can encounter in ESSL are described in the ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

What Can You Do about ESSL Input-Argument Errors?
This gives an overview on how you can handle input-argument errors.

All Input-Argument Errors
ESSL checks the validity of most input arguments. If it finds that any are invalid, it
issues the appropriate error messages. Also, except for the three recoverable errors
described below, it terminates your program. You should use standard
programming techniques to diagnose and fix unrecoverable input-argument errors,
as described in Chapter 7, “Handling Problems,” on page 205.

You can determine the input-argument errors that can occur in a subroutine by
looking under “Error Conditions” in each subroutine description. Error messages
for all input-argument errors are listed in “Input-Argument Error
Messages(2001-2099)” on page 210.

Recoverable Errors 2015, 2030 and 2200 Can Return Updated
Values in the NAUX, N and NSINFO Arguments
For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, and C++
programs, you have the option to continue running and have an updated value of
the input argument returned to your program for subsequent use. These are called
recoverable errors. This recoverable error-handling capability gives you flexibility
in determining the correct values for the arguments. You can:

Chapter 2. Planning Your Program 65

v Determine the correct size of an auxiliary work area by using error 2015. For
help in deciding whether you want to use this capability and details on how to
use it, see “Using Auxiliary Storage in ESSL” on page 49.

v Determine the correct length of a transform by using error 2030. For help in
deciding whether you want to use this capability and details on how to use it,
see “Providing a Correct Transform Length to ESSL” on page 56.

v Determine the minimal size of the array AP for DBSTRF and DBSSV by using
error 2200. For help deciding whether you want to use this capability, see
“DBSTRF (Symmetric Indefinite Matrix Factorization)” on page 655 and “DBSSV
(Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side
Solve)” on page 649

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to
make any coding changes to your program. The input-argument error message is
issued upon termination, containing the updated values you could have specified
for the program to run successfully. You then make the necessary corrections in
your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET
subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL
subroutine. When one or more of these errors occurs, the input-argument error
message is issued with the updated values. In addition, the updated values are
returned to your program in the input arguments named in the error message,
along with a nonzero return code and processing continues. Return code values
associated with these recoverable errors are described under “Error Conditions” for
each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make
2015, 2030 and 2200 recoverable, see the following:
v “Input-Argument Errors in Fortran” on page 139
v “Input-Argument Errors in C” on page 156
v “Input-Argument Errors in C++” on page 173

What Can You Do about ESSL Computational Errors?
This gives an overview on how you can handle computational errors.

All Computational Errors
ESSL computational errors are errors occurring in the computational data, such as
in your vectors and matrices. You can determine the computational errors that can
occur in a subroutine by looking under “Error Conditions” in each subroutine
description. These errors cause your program to terminate abnormally unless you
take preventive action. A message is also provided in your output, containing
information about the error. Messages are listed in “Computational Error
Messages(2100-2199)” on page 215.

When a computational error occurs, you should assume that the results are
unpredictable. The result of the computation is valid only if no errors have
occurred. In this case, a zero return code is returned.

Figure 8 on page 67 shows what happens when a computational error occurs.

66 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Recoverable Computational Errors Can Return Values Through
EINFO
In Fortran, C, and C++ programs, you have the capability to make certain
computational errors recoverable and have information returned to your program
about the errors. Recoverable computational errors are listed in “EINFO (ESSL
Error Information-Handler Subroutine)” on page 1252. First, you call EINFO in the
beginning of your program to initialize the ESSL error option table. You then call
ERRSET to reset the number of allowable errors for the computational error codes
in which you are interested. When a computational error occurs, a nonzero return
code is returned for each computational error. Return code values associated with
these errors are described under “Error Conditions” in each subroutine description.
Based on the return code, your program can branch to an appropriate statement to
call the ESSL error information-handler subroutine, EINFO, to obtain specific
information about the data involved in the error. This information is returned in
the EINFO output arguments, inf1 and, optionally, inf2. You can then check the
information returned and continue processing, if you choose. The syntax for
EINFO is described under “EINFO (ESSL Error Information-Handler Subroutine)”
on page 1252. You also get a message in your output for each computational error
encountered, containing information about the error. The EINFO subroutine
provides the same information in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain
specific information on computational errors, see the following:
v “Computational Errors in Fortran” on page 142
v “Computational Errors in C” on page 161
v “Computational Errors in C++” on page 178

ESSL Subroutine

Issue message 2538-21nn
with information on inf1

and, optionally, inf2

Terminate

Call ESSL
subroutine

Does error
21nn occur during

the ESSL
computation?

no

yes

User Program

Figure 8. How to Obtain Computational Error Information from an Error Message, but Terminate

Chapter 2. Planning Your Program 67

Figure 9 shows what happens if you make a computational error recoverable.

What Can You Do about ESSL Resource Errors?
This gives an overview on how you can handle resource errors.

All Resource Errors
ESSL returns a resource error and terminates your program when an attempt to
allocate work area fails. Some ESSL subroutines attempt to allocate work area for
their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary
storage when a user requests it through calling sequence arguments, such as aux
and naux. For information on how you could reduce memory constraints on the
system or increase the amount of memory available before rerunning the
application program, see “ESSL Resource Error Messages” on page 208.

You can determine the resource errors that can occur in a subroutine by looking
under “Error Conditions” in each subroutine description. Error messages for all
resource errors are listed in “Resource Error Messages(2400-2499)” on page 220.

What Can You Do about ESSL Attention Messages?
This gives an overview on how you can handle attention messages.

Call EINFO to obtain
information on inf1
and, optionally, inf2

React to this
information

Is return code
= r ?

Make error
21nn recoverable

Call ESSL
subroutine

User Program

no

yes

ESSL Subroutine

Issue message 2538-21nn
with information on inf1

and, optionally, inf2

Set return code
= r

Does error
21nn occur during

the ESSL
computation?

no

yes

Figure 9. How to Obtain Computational Error Information in an Error Message and in Your Program

68 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

All Attention Messages
ESSL returns an attention message to describe a condition that occurred, however,
ESSL is able to continue processing. For information on how you could reduce
memory constraints on the system or increase the amount of memory available, see
“ESSL Resource Error Messages” on page 208.

For example, an attention message may be issued when enough work area was
available to continue processing, but was not the amount initially requested. An
attention message would be issued to indicate that performance may be degraded.

For a list of attention messages, see “Informational and Attention Error
Messages(2600-2699)” on page 220.

How Do You Control Error Handling by Setting Values in the
ESSL Error Option Table?

This explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?
The ESSL error option table contains information that tells ESSL what to do every
time it encounters an ESSL-generated error. Table 42 shows the default values
established in the table when ESSL is installed.

Table 42. ESSL Error Option Table Default Values

Range of Error Messages (From–To)

Number of
Allowable Errors
(ALLOW)

Number of Messages
Printed (PRINT)

Modifiable Table
Entry (MODENT)

2538–2000 Unlimited 255 NO

2538–2001 through 2538–2073 Unlimited 255 YES

2538–2074 Unlimited 5 YES

2538–2075 through 2538–2098 Unlimited 255 YES

2538–2099 1 255 YES

2538–2100 through 2538–2101 1 255 YES

2538–2102 Unlimited 255 YES

2538–2103 through 2538–2113 1 255 YES

2538–2114 Unlimited 255 YES

2538–2115 through 2538–2122 1 255 YES

2538–2123 through 2538–2124 Unlimited 255 YES

2538–2125 through 2538–2126 1 255 YES

2538–2127 Unlimited 255 YES

2538–2128 through 2538–2137 1 255 YES

2538–2138 through 2538–2143 Unlimited 255 YES

2538–2144 through 2538–2145 1 255 YES

2538–2146 through 2538–2149 Unlimited 255 YES

2538–2150 1 255 YES

2538–2151 through 2538–2166 Unlimited 255 YES

2538–2167 through 2538–2198 1 255 YES

2538–2199 1 255 YES

2538–2200 through 2538–2299 Unlimited 255 YES

Chapter 2. Planning Your Program 69

Table 42. ESSL Error Option Table Default Values (continued)

Range of Error Messages (From–To)

Number of
Allowable Errors
(ALLOW)

Number of Messages
Printed (PRINT)

Modifiable Table
Entry (MODENT)

2538–2400 through 2538–2499 1 255 NO

2538–2600 through 2538–2609 Unlimited 255 NO

2538–2610 through 2538–2612 Unlimited -1 YES

2538–2613 through 2538–2613 Unlimited 255 NO

2538–2614 through 2538–2615 Unlimited 1 NO

2538–2616 through 2538–2699 Unlimited 255 NO

2538–2700 through 2538–2799 1 255 NO

How Can You Change the Values in the Error Option Table?
You can change any of the values in the ESSL error option table by calling the
ERRSET subroutine in your program. This dynamically changes values at run time.
You can also save and restore entries in the table by using the ERRSAV and
ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and
ERRSTR subroutines see Chapter 17, “Utilities,” on page 1249.

When Do You Change the Values in the Error Option Table?
Because you can change the information in the error option table, you can control
what happens when any of the ESSL errors occur. There are a number of instances
when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust
the number of times an error is allowed to occur before your program terminates.
You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to
make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns
updated auxiliary storage sizes or transform lengths, respectively, to your program.
For a more detailed discussion, see “What Can You Do about ESSL
Input-Argument Errors?” on page 65. For how to use ERRSET to do this, see the
information specific to your programming language in Chapter 4, “Coding Your
Program,” on page 131.

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may
want to make ESSL input-argument error 2200 recoverable, so ESSL returns an
updated size to your program. For a more detailed discussion, see “What Can You
Do about ESSL Input-Argument Errors?” on page 65. For how to use ERRSET to
do this, see the information specific to your programming language in Chapter 4,
“Coding Your Program,” on page 131.

To Get More Information About a Computational Error: You may want ESSL to
return information about a computational error to your program. For a more
detailed discussion, see “What Can You Do about ESSL Computational Errors?” on
page 66. For how to do use ERRSET to do this, see the information specific to your
programming language in Chapter 4, “Coding Your Program,” on page 131.

To Allow Parts of Your Application to Have Unique Error-Handling
Environments: If your program is part of a large application, you may want to
dynamically save and restore entries in the error option table that have been
altered by ERRSET. This ensures the integrity of the error option table when it is

70 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

used by multiple programs within an application. For a more detailed discussion,
see “How Can You Control Error Handling in Large Applications by Saving and
Restoring Entries in the Error Option Table?” For how to use ERRSAV and
ERRSTR, see the information specific to your programming language in Chapter 4,
“Coding Your Program,” on page 131.

How Can You Control Error Handling in Large Applications by
Saving and Restoring Entries in the Error Option Table?
When your program is part of a larger application, you should consider that one of
the following can occur:
v If you use ERRSET in your program to reset any of the values in the error

option table for any of the ESSL input-argument errors or computational errors,
some other program in the application may be adversely affected. It may be
expecting its original values.

v If some other program in the application uses ERRSET to reset any of the values
in the error option table for any of the ESSL input-argument errors or
computational errors, your program may be adversely affected. You may need a
certain value in the error option table, and the application may have reset that
value.

These situations can be avoided if every program that uses ERRSET, in the large
application, also uses the ERRSAV and ERRSTR facilities. For a particular error
number, ERRSAV saves an entry from the error option table in an area accessible to
your program. ERRSTR then stores the entry back into the error option table from
the storage area. You code an ERRSAV and ERRSTR for each input-argument error
number and computational error number for which you do an ERRSET to reset the
values in the error option table. Call ERRSAV at the beginning of your program
after you call EINFO, and then call ERRSTR at the end of your program after all
ESSL computations are completed. This saves the original contents of the error
option table while your program is running with different values, and then restores
it to its original contents when your program is done. For details on how to code
these statements in your program, see Chapter 4, “Coding Your Program,” on page
131.

How does Error Handling Work in a Threaded Environment?
When your application program or the open MP library first creates a thread, ESSL
initializes the error option table information to the default settings shown in “What
Values Are Set in the ESSL Error Option Table?” on page 69. You can change the
default settings for each thread you created by calling the appropriate error
handling subroutines (ERRSET, ERRSAV, or ERRSTR) from each thread. An
example of how to initialize the error option table and change the default settings
on multiple threads is shown in “Example of Handling Errors in a Multithreaded
Application Program” on page 147.

ESSL issues error messages as they occur in a threaded environment. Error
messages issued from any of the existing threads are written to standard output in
the order in which they occur.

When a terminating condition occurs on any of the existing threads (for example,
the number of allowable errors was exceeded), ESSL terminates your application
program. One set of summary information corresponding to the terminating thread
is always printed. Summary information corresponding to other threads may also
be printed.

Chapter 2. Planning Your Program 71

Where Can You Find More Information on Errors?
Information about errors and how to handle them can be found in the following
places:
v How to code your program to use the ESSL error-handling facilities is described

in Chapter 4, “Coding Your Program,” on page 131.
v All ESSL error messages are listed under “Messages” on page 209.
v The errors and return codes associated with each ESSL subroutine are listed

under “Error Conditions” in each subroutine description.
v Complete diagnostic procedures for all types of ESSL programming and

documentation problems, along with how to collect information and report a
problem, are provided in Chapter 7, “Handling Problems,” on page 205.

72 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 3. Setting Up Your Data Structures

This provides you with information that you need to set up your data structures,
consisting of vectors, matrices, and sequences. These techniques apply to programs
in all programming languages.

Concepts
Vectors, matrices, and sequences are conceptual data structures contained in arrays.
In many cases, ESSL uses stride or leading dimension to select the elements of the
vector, matrix, or sequence from an array. In other cases, ESSL uses a specific
mapping, or storage layout, that identifies the elements of the vector, matrix, or
sequence in an array, sometimes requiring several arrays to help define the
mapping. These elements selected from the array(s) make up the conceptual data
structure.

When you call an ESSL subroutine, it assumes that the data structure is set up
properly in the array(s) you pass to it. If it is not, your results are unpredictable.
ESSL also uses these same storage layouts for data structures passed back to your
program.

The use of the terms vector, matrix, and sequence here is consistent with standard
mathematical definitions, and their representations are consistent with conventions
used in mathematical texts.

Overlapping Data Structures: Most of the subroutines do not allow vectors,
matrices, or sequences to overlap. If this occurs, results are unpredictable. This
means the elements of the data structure cannot reside in the same storage
locations as any of the other data structures. It is possible, however, to have
elements of different data structures in the same array, as long as the elements are
interleaved through storage using strides greater than 1. For example, using
vectors x and y with strides of 2, where x starts at A(1) and y starts at A(2), the
elements reside in array A in the order x1, y1, x2, y2, x3, y3, ... and so forth.

When you use this technique, you should be careful that you specify different
starting locations for each data structure contained in the array.

Vectors
A vector is a one-dimensional, ordered collection of numbers. It can be a column
vector, which represents an n by 1 ordered collection, or a row vector, which
represents a 1 by n ordered collection.

The column vector appears symbolically as follows:

© Copyright IBM Corp. 1986, 2015 73

A row vector appears symbolically as follows:

Vectors can contain either real or complex numbers. When they contain real
numbers, they are sometimes called real vectors. When they contain complex
numbers, they are called complex vectors.

Transpose of a Vector
The transpose of a vector changes a column vector to a row vector, or vice versa:

The ESSL subroutines use the vector as it is intended in the computation, as either
a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in Part 2, “Reference
Information,” on page 221, both types of vectors are represented in the same way,
showing the elements of the array that make up the vector x, as follows:

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Conjugate Transpose of a Vector
The conjugate transpose of a vector x, containing complex numbers, is denoted by
xH and is expressed as follows:

74 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Just as for the transpose of a vector, no movement of data is necessary for the
conjugate transpose of a vector.

Vector Storage Representation
A vector is usually stored within a one- or two-dimensional array. Its elements are
stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector
in the ESSL calling sequence. It can be specified in a number of ways. For example,
if A is an array of length 12, and you want to specify vector x as starting at the first
element of array A, specify A as the argument, such as in:

X = SASUM (4,A,2)

where the number of elements to be summed in the vector is 4, the location of the
vector is A, and the stride is 2.

If you want to specify vector x as starting at element 3 in array A, which is
declared as A(1:12), specify:

X = SASUM (4,A(3),2)

If A is declared as A(-1:8), specify the following for element 3:
X = SASUM (4,A(1),2)

If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector
x to start at the second row and third column of A, specify the following:

X = SASUM (4,A(2,3),2)

The stride specified in the ESSL calling sequence is used to step through the array
to select the vector elements. The direction in which the vector elements are
selected from the array—that is, front to back or back to front—is indicated by the
sign (+ or -) of the stride. The absolute value of the stride gives the spacing
between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can
use the following formula, which takes into account the number of elements, n, in
the array and the stride, inc, specified for the vector:

1+(n-1)|inc|

An array can be much larger than the vector that it contains; that is, there can be
many elements following the vector in the array, as well as elements preceding
the vector.

For a complete description of how vectors are stored within arrays, see “How
Stride Is Used for Vectors” on page 76.

For a complex vector, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex vectors and matrices as for
real vectors and matrices of the same precision. See “How Do You Set Up Your
Scalar Data?” on page 46 for a description of real and complex numbers, and
“How Do You Set Up Your Arrays?” on page 46 for a description of how real and
complex data is stored in arrays.

Chapter 3. Setting Up Your Data Structures 75

How Stride Is Used for Vectors
The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:
v The location of the vector within the array
v The stride for the vector
v The number of elements, n, to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This explains how each of the three types of stride is used to select the vector
elements from the array.

Positive Stride
When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element x1.
The vector is in forward order in the array: (x1, x2, ..., xn). For example, if you
specify X(1) for vector x, where X is declared as X(0:12) and defined as:
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)

then processing begins at the second element in X, which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector x in the array. In this case, the starting point is X(1). If the stride
specified for vector x is 3 and the number of elements to be processed is 4, then
the resulting elements selected from X for vector x are: X(1),X(4),X(7), and X(10).

Vector x is then:
(2.0, 5.0, 8.0, 11.0)

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and the
array elements after that are not used.

This element selection can be expressed in general terms. Using BEGIN as the
starting point in an array X and inc as the stride, this results in the following
elements being selected from the array:

X(BEGIN)
X(BEGIN+inc)
X(BEGIN+(2)inc)
X(BEGIN+(3)inc)
.
.
.
X(BEGIN+(n-1)inc)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

xi = X(BEGIN + (i-1)(inc)) for i = 1, n

76 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

When using an array with more than one dimension, you should understand how
the array elements are stored to ensure that elements are selected properly. For a
description of array storage, see “Setting Up Arrays in Fortran” on page 132. You
should remember that the elements of an array are selected as they are arranged in
storage, regardless of the number of dimensions defined in the array. Stride is used
to step through array storage until n elements are selected. ESSL processing stops
at that point. For example, given the following two-dimensional array, declared as
A(1:7,1:4).

Matrix A is:
┌ ┐
| 1.0 8.0 15.0 22.0 |
| 2.0 9.0 16.0 23.0 |
| 3.0 10.0 17.0 24.0 |
| 4.0 11.0 18.0 25.0 |
| 5.0 12.0 19.0 26.0 |
| 6.0 13.0 20.0 27.0 |
| 7.0 14.0 21.0 28.0 |
└ ┘

with A(3,1) specified for vector x, a stride of 2, and the number of elements to be
processed as 12, the resulting vector x is:

(3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

This is not a conventional use of arrays, and you should be very careful when
using this technique.

Zero Stride
When a zero stride is specified for a vector, the starting point for the vector is the
only element used in the computation. The starting point for the vector is at the
location specified by the argument for the vector, just as though you had specified
a positive stride. For example, if you specify X for vector x, where X is defined as:

X = (5.0, 4.0, 3.0, 2.0, 1.0)

and you specify the number of elements, n, to be processed as 6, then processing
begins at the first element, which is 5.0. This element is used for each of the six
elements in vector x.

This makes the conceptual vector x appear as:
(5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

The following general formula shows how to calculate each vector position in a
one-dimensional array:

xi = X(BEGIN) for i = 1, n

Negative Stride
When a negative stride is specified for a vector, the location specified for the vector
is actually the location of the last element in the vector. In other words, the vector
is in reverse order in the array: (xn, xn-1, ..., x1). You specify the end of the vector,
(xn). ESSL then calculates where the starting point (x1) is by using the following
arguments:
v The location of the vector in the array
v The stride for the vector, inc

v The number of elements, n, to be processed

Chapter 3. Setting Up Your Data Structures 77

If you specify vector x at location X(BEGIN) in array X with a negative stride of inc
and n elements to be processed, then the following formula gives the starting point
of vector x in the array:

X(BEGIN + (-n+1)(inc))

For example, if you specify X(2) for vector x, where X is declared as X(1:9) and
defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

and if you specify a stride of -2, and four elements to be processed, processing
begins at the following element in X:

X(2+(-4+1)(-2)) = X(8)

where element X(8) is 8.0.

To find each of the n successive element positions in the array, you successively
add the stride to the starting point n-1 times. Suppose the formula calculated a
starting point of X(SP); the elements selected are:

X(SP)
X(SP+inc)
X(SP+(2)inc)
X(SP+(3)inc)
.
.
.
X(SP+(n-1)inc)

In the above example, the resulting elements selected from X for vector x are X(8),
X(6), X(4), and X(2). This makes the resulting vector x appear as follows:

(8.0, 6.0, 4.0, 2.0)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

xi = X(BEGIN + (-n+i)(inc)) for i = 1, n

Sparse Vector
A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector x with n elements, where
n is 11, and vector x is:

(0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

In Storage
There are two storage modes that apply to sparse vectors: full-vector storage mode
and compressed-vector storage mode. When a sparse vector is stored in full-vector
storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector x is stored in full-vector storage mode in a
one-dimensional array X, as follows:

X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

78 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

When a sparse vector is stored in compressed-vector storage mode, it is stored
without its zero elements. It consists of two one-dimensional arrays, each with a
length of nz, where nz is the number of nonzero elements in vector x:
v The first array contains the nonzero elements of the sparse vector x, stored

contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

v The second array contains a sequence of integers indicating the element
positions (indices) of the nonzero elements of the sparse vector x stored in
full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector x shown above might have its five nonzero
elements stored in ascending order in array X of length 5, as follows:

X = (1.0, 2.0, 3.0, 4.0, 5.0)

in which case, the array of indices, INDX, also of length 5, contains:
INDX = (3, 5, 6, 8, 10)

If the sparse vector x has its elements stored in random order in the array X as:
X = (5.0, 3.0, 4.0, 1.0, 2.0)

then the array INDX contains:
INDX = (10, 6, 8, 3, 5)

In general terms, this storage technique can be expressed as follows:

For each xj ≠ 0, for j = 1, n
there exists i, where 1 ≤ i ≤ nz,
such that X(i) = xj and INDX(i) = j.

where:

x1, ..., xn are the n elements of sparse vector x, stored in full-vector storage mode.

X is the array containing the nz nonzero elements of sparse vector x; that is, vector
x is stored in compressed-vector storage mode.

INDX is the array containing the nz indices indicating the element positions.

To avoid an error when using the INDX array to access the elements in any other
target vector, the length of the target vector must be greater than or equal to
max(INDX(i)) for i = 1, nz.

Matrices
A matrix, also referred to as a general matrix, is an m by n ordered collection of
numbers. It is represented symbolically as:

Chapter 3. Setting Up Your Data Structures 79

where the matrix is named A and has m rows and n columns. The elements of the
matrix are aij, where i = 1, m and j = 1, n.

Matrices can contain either real or complex numbers. Those containing real
numbers are called real matrices; those containing complex numbers are called
complex matrices.

Transpose of a Matrix
The transpose of a matrix A is a matrix formed from A by interchanging the rows
and columns such that row i of matrix A becomes column i of the transposed
matrix. The transpose of A is denoted by AT. Each element aij in A becomes
element aji in AT. If A is an m by n matrix, then AT is an n by m matrix. The
following represents a matrix and its transpose:

ESSL assumes that all matrices are stored in untransformed format, such as matrix
A shown above. No movement of data is necessary in your application program
when you are processing transposed matrices. The ESSL subroutines adjust their
selection of elements from the matrix when an argument in the calling sequence
indicates that the transposed matrix is to be used in the computation. Examples of
this are the transa and transb arguments specified for SGEADD, matrix addition.

Conjugate Transpose of a Matrix
The conjugate transpose of a matrix A, containing complex numbers, is denoted by
AH and is expressed as follows:

Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored
in untransformed format. No movement of data is necessary in your program.

Matrix Storage Representation
A matrix is usually stored in a two-dimensional array. Its elements are stored
successively within the array. Each column of the matrix is stored successively in

80 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the array. The leading dimension argument is used to select the matrix elements
from each successive column of the array. The starting point of the matrix in the
array is specified as the argument for the matrix in the ESSL calling sequence. For
example, if matrix A is contained in array A and starts at the first element in the
first row and first column of A, you should specify A as the argument for matrix A,
such as in:

CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

where, in the matrix-vector product, the number of rows in matrix A is 5, the
number of columns in matrix A is 2, the scaling constant is 1.0, the location of the
matrix is A, the leading dimension is 6, the vectors used in the matrix-vector
product are X and Y, and their strides are 1.

If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at
the second row and third column of BIG, you should specify BIG(2,3) as the
argument for matrix A, such as in:

CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

See “How Leading Dimension Is Used for Matrices” for a complete description of
how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex matrices as for real matrices
of the same precision. See “How Do You Set Up Your Scalar Data?” on page 46 for
a description of real and complex numbers, and “How Do You Set Up Your
Arrays?” on page 46 for a description of how real and complex data is stored in
arrays.

How Leading Dimension Is Used for Matrices
The leading dimension for a two-dimensional array is an increment that is used to
find the starting point for the matrix elements in each successive column of the
array. To define exactly which elements become the conceptual matrix in the array,
the following items are used together:
v The location of the matrix within the array
v The leading dimension
v The number of rows, m, to be processed in the array
v The number of columns, n, to be processed in the array

The leading dimension must always be positive. It must always be greater than or
equal to m, the number of rows in the matrix to be processed. For an array, A,
declared as A(E1:E2,F1:F2), the leading dimension is equal to:

(E2-E1+1)

The starting point for selecting the matrix elements from the array is at the location
specified by the argument for the matrix in the ESSL calling sequence. For
example, if you specify A(3,0) for a 4 by 4 matrix A, where A is declared as
A(1:7,0:4):

┌ ┐
| 1.0 8.0 15.0 22.0 29.0 |
| 2.0 9.0 16.0 23.0 30.0 |
| 3.0 10.0 17.0 24.0 31.0 |
| 4.0 11.0 18.0 25.0 32.0 |

Chapter 3. Setting Up Your Data Structures 81

| 5.0 12.0 19.0 26.0 33.0 |
| 6.0 13.0 20.0 27.0 34.0 |
| 7.0 14.0 21.0 28.0 35.0 |
└ ┘

then processing begins at the element at row 3 and column 0 in array A, which is
3.0.

The leading dimension is used to find the starting point for the matrix elements in
each of the n successive columns in the array. ESSL subroutines assume that the
arrays are stored in column-major order, as described under “How Do You Set Up
Your Arrays?” on page 46, and they add the leading dimension (times the size of
the element in bytes) to the starting point. They do this n-1 times. This finds the
starting point in each of the n columns of the array.

In the above example, the leading dimension is:

E2-E1+1 = 7-1+1 = 7

If the number of columns, n, to be processed is 4, the starting points are: A(3,0),
A(3,1), A(3,2), and A(3,3). These are elements 3.0, 10.0, 17.0, and 24.0 for a11, a12,
a13, and a14, respectively.

In general terms, this results in the following starting positions of each column in
the matrix being calculated as follows:

A(BEGINI, BEGINJ)
A(BEGINI, BEGINJ+1)
A(BEGINI, BEGINJ+2)
.
.
.
A(BEGINI, BEGINJ+n-1)

To find the elements in each column of the array, 1 is added successively to the
starting point in the column until m elements are selected. This is why the leading
dimension must be greater than or equal to m; otherwise, you go past the end of
each dimension of the array. In the above example, if the number of elements, m,
to be processed in each column is 4, the following elements are selected from array
A for the first column of the matrix: A(3,0), A(4,0), A(5,0), and A(6,0). These
are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements a11, a21, a31,
and a41, respectively.

Column element selection can also be expressed in general terms. Using
A(BEGINI,BEGINJ) as the starting point in the array, this results in the following
elements being selected from each column in the array:

A(BEGINI, BEGINJ)
A(BEGINI+1, BEGINJ)
A(BEGINI+2, BEGINJ)
.
.
.
A(BEGINI+m-1, BEGINJ)

82 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Combining this with the technique already described for finding the starting point
in each column of the array, the resulting matrix in the example is:

As shown in this example, a matrix does not have to include all columns and rows
of an array. The elements of matrix A are selected from rows 3 through 6 and
columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are
not used.

Symmetric Matrix
The matrix A is symmetric if it has the property A = AT, which means:
v It has the same number of rows as it has columns; that is, it has n rows and n

columns.
v The value of every element aij on one side of the main diagonal equals its mirror

image aji on the other side: aij = aji for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

The following matrix illustrates a symmetric matrix of order n; that is, it has n
rows and n columns. The subscripts on each side of the diagonal appear the same
to show which elements are equal:

Symmetric Matrix Storage Representation
The four storage modes used for storing symmetric matrices are described in the
following:
v “Lower-Packed Storage Mode”
v “Upper-Packed Storage Mode” on page 85
v “Lower Storage Mode” on page 86
v “Upper Storage Mode” on page 87

The storage technique you should use depends on the ESSL subroutine you are
using.

Lower-Packed Storage Mode: When a symmetric matrix is stored in
lower-packed storage mode, the lower triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. (This is equivalent to packing the upper triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a

Chapter 3. Setting Up Your Data Structures 83

one-dimensional array. To calculate the location of each element aij of matrix A in
an array, AP, using the lower triangular packed technique, use the following
formula:

AP(i + ((2n-j)(j-1)/2)) = aij where i ≥ j

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = a11 (start the first column)

AP(2) = a21

AP(3) = a31

. .

. .

. .

AP(n) = an1

AP(n+1)
= a22 (start the second column)

AP(n+2)
= a32

. .

. .

. .

AP(2n-1)
= an2

AP(2n) = a33 (start the third column and so forth)

AP(2n+1)
= a43

. .

. .

. .

AP(n(n+1)/2)
= ann

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

84 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: Additional work storage is required in the array for some ESSL subroutines;
for example, in the simultaneous linear algebraic equation subroutines SPPF, DPPF,
SPPS, and DPPS. See the description of those subroutines in Part 2, “Reference
Information,” on page 221 for details.

Following is an example of how to transform your symmetric matrix to
lower-packed storage mode:

K = 0
DO 1 J=1,N

DO 2 I=J,N
K = K+1
AP(K)=A(I,J)

2 CONTINUE
1 CONTINUE

Upper-Packed Storage Mode: When a symmetric matrix is stored in
upper-packed storage mode, the upper triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. (This is equivalent to packing the lower triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element aij of matrix A in
an array AP using the upper triangular packed technique, use the following
formula:

AP(i+(j(j-1)/2)) = aij where j ≥ i

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = a11 (start the first column)

AP(2) = a12 (start the second column)

AP(3) = a22

AP(4) = a13 (start the third column)

AP(5) = a23

AP(6) = a33

AP(7) = a14 (start the fourth column)

. .

. .

. .

AP(j(j-1)/2+1)
= a1j (start the j-th column)

AP(j(j-1)/2+2)
= a2j

AP(j(j-1)/2+3)
= a3j

. .

. .

. .

Chapter 3. Setting Up Your Data Structures 85

AP(j(j-1)/2+j)
= ajj (end of the j-th column)

. .

. .

. .

AP(n(n+1)/2)
= ann

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array. Given the
following matrix A:

┌ ┐
| 1 2 4 7 11 |
| 2 3 5 8 12 |
| 4 5 6 9 13 |
| 7 8 9 10 14 |
| 11 12 13 14 15 |
└ ┘

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Following is an example of how to transform your symmetric matrix to
upper-packed storage mode:

K = 0
DO 1 J=1,N

DO 2 I=1,J
K = K+1
AP(K)=A(I,J)

2 CONTINUE
1 CONTINUE

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode,
the lower triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The upper part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AL.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
┌ ┐
| 1 * * * * |
| 2 6 * * * |

AL = | 3 7 10 * * |

86 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 4 8 11 13 * |
| 5 9 12 14 15 |
└ ┘

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode,
the upper triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The lower part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AU.

Given the following matrix A:
┌ ┐
| 1 2 3 4 5 |
| 2 6 7 8 9 |
| 3 7 10 11 12 |
| 4 8 11 13 14 |
| 5 9 12 14 15 |
└ ┘

the array is:
┌ ┐
| 1 2 3 4 5 |
| * 6 7 8 9 |

AU = | * * 10 11 12 |
| * * * 13 14 |
| * * * * 15 |
└ ┘

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Positive Definite or Negative Definite Symmetric Matrix
A real symmetric matrix A is positive definite if and only if xTAx is positive for all
nonzero vectors x.

A real symmetric matrix A is negative definite if and only if xTAx is negative for all
nonzero vectors x.

Positive Definite or Negative Definite Symmetric Matrix Storage
Representation
The positive definite or negative definite symmetric matrix is stored in the same
way the symmetric matrix is stored. For a description of this storage technique, see
“Symmetric Matrix” on page 83.

Indefinite Symmetric Matrix
A symmetric matrix A is indefinite if and only if (xTAx) (yTAy) < 0 for some
non-zero vectors x and y.

Chapter 3. Setting Up Your Data Structures 87

Indefinite Symmetric Matrix Storage Representation
The indefinite symmetric matrix is stored in the same way the symmetric matrix is
stored. For a description of this storage technique, see “Symmetric Matrix” on page
83.

Complex Hermitian Matrix
A complex matrix is Hermitian if it is equal to its conjugate transpose:

H = HH

Complex Hermitian Matrix Storage Representation
The complex Hermitian matrix is stored using the same four techniques used for
symmetric matrices:
v Lower-packed storage mode, as described in “Lower-Packed Storage Mode” on

page 83. (The complex Hermitian matrix is not symmetric; therefore,
lower-packed storage mode is not equivalent to packing the upper triangle by
rows, as it is for a symmetric matrix.)

v Upper-packed storage mode, as described in “Upper-Packed Storage Mode” on
page 85. (The complex Hermitian matrix is not symmetric; therefore,
upper-packed storage mode is not equivalent to packing the lower triangle by
rows, as it is for a symmetric matrix.)

v Lower storage mode, as described in “Lower Storage Mode” on page 86.
v Upper storage mode, as described in “Upper Storage Mode” on page 87.

Following is an example of a complex Hermitian matrix H of order 5.

Given the following matrix H:
┌ ┐
| (11, 0) (21, -1) (31, 1) (41, -1) (51, -1) |
| (21, 1) (22, 0) (32, -1) (42, -1) (52, 1) |
| (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
| (41, 1) (42, 1) (43, 1) (44, 0) (54, -1) |
| (51, 1) (52, -1) (53, 1) (54, 1) (55, 0) |
└ ┘

it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15 elements as follows:
v In lower-packed storage mode:

HP = ((11, *), (21, 1), (31, -1), (41, 1), (51, 1),
(22, *), (32, 1), (42, 1), (52, -1), (33, *),
(43, 1), (53, 1), (44, *), (54, 1), (55, *))

v In upper-packed storage mode:
HP = ((11, *), (21, -1), (22, *), (31, 1), (32, -1),

(33, *), (41, -1), (42, -1), 43, -1), (44, *),
(51, -1), (52, 1), (53, -1), (54, -1), (55, *))

or it is stored in a two-dimensional array, HP, as follows:
v In lower storage mode:

┌ ┐
| (11, *) * * * * |
| (21, 1) (22, *) * * * |

HP = | (31, -1) (32, 1) (33, *) * * |
| (41, 1) (42, 1) (43, 1) (44, *) * |
| (51, 1) (52, -1) (53, 1) (54, 1) (55, *) |
└ ┘

v In upper storage mode

88 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (11, *) (21, -1) (31, 1) (41, -1) (51, -1) |
| * (22, *) (32, -1) (42, -1) (52, 1) |

HP = | * * (33, *) (43, -1) (53, -1) |
| * * * (44, *) (54, -1) |
| * * * * (55, *) |
└ ┘

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian matrix are
always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Positive Definite or Negative Definite Complex Hermitian
Matrix

A complex Hermitian matrix A is positive definite if and only if xHAx is positive
for all nonzero vectors x.

A complex Hermitian matrix A is negative definite if and only if xHAx is negative
for all nonzero vectors x.

Positive Definite or Negative Definite Complex Hermitian Matrix
Storage Representation
The positive definite or negative definite complex Hermitian matrix is stored in the
same way the complex Hermitian matrix is stored. For a description of this storage
technique, see “Complex Hermitian Matrix” on page 88.

Indefinite Complex Hermitian Matrix
A complex Hermitian matrix A is indefinite if and only if (xHAx) (yHAy) < 0 for
some non-zero vectors x and y.

Indefinite Complex Hermitian Matrix Storage Representation
The indefinite complex Hermitian matrix is stored in the same way the complex
Hermitian matrix is stored. For a description of this storage technique, see
“Complex Hermitian Matrix” on page 88.

Positive Definite or Negative Definite Symmetric Toeplitz
Matrix

A positive definite or negative definite symmetric matrix A of order n is also a
Toeplitz matrix if and only if:

aij = ai-1,j-1 for i = 2, n and j = 2, n

The elements on each diagonal of the Toeplitz matrix have a constant value. For
the definition of a positive definite or negative definite symmetric matrix, see
“Positive Definite or Negative Definite Symmetric Matrix” on page 87.

The following matrix illustrates a symmetric Toeplitz matrix of order n; that is, it
has n rows and n columns:

Chapter 3. Setting Up Your Data Structures 89

A symmetric Toeplitz matrix of order n is represented by a vector x of length n
containing the elements of the first column of the matrix (or the elements of the
first row), such that xi = ai1 for i = 1, n.

The following vector represents the matrix A shown above:

Positive Definite or Negative Definite Symmetric Toeplitz Matrix
Storage Representation
The elements of the vector x, which represent a positive definite symmetric
Toeplitz matrix, are stored sequentially in an array. This is called
packed-symmetric-Toeplitz storage mode. Following is an example of a positive
definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:
┌ ┐
| 99 12 13 14 15 16 |
| 12 99 12 13 14 15 |
| 13 12 99 12 13 14 |
| 14 13 12 99 12 13 |
| 15 14 13 12 99 12 |
| 16 15 14 13 12 99 |
└ ┘

the array is:
X = (99, 12, 13, 14, 15, 16)

Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order n is
also a Toeplitz matrix if and only if:

aij = ai-1,j-1 for i = 2, n and j = 2, n

The real part of the diagonal elements of the Toeplitz matrix must have a constant
value. The imaginary part of the diagonal elements must be zero.

90 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For the definition of a positive definite of negative definite complex Hermitian
matrix, see “Positive Definite or Negative Definite Complex Hermitian Matrix” on
page 89.

The following matrix illustrates a complex Hermitian Toeplitz matrix of order n;
that is, it has n rows and n columns:

A complex Hermitian Toeplitz matrix of order n is represented by a vector x of
length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

Positive Definite or Negative Definite Complex Hermitian Toeplitz
Matrix Storage Representation
The elements of the vector x, which represent a positive definite complex
Hermitian Toeplitz matrix, are stored sequentially in an array. This is called
packed-Hermitian-Toeplitz storage mode. Following is an example of a positive
definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:
┌ ┐
| (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
| (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
| (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
| (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
└ ┘

the array is:
X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

Triangular Matrix
There are two types of triangular matrices: upper triangular matrix and lower
triangular matrix. Triangular matrices have the same number of rows as they have
columns; that is, they have n rows and n columns.

A matrix U is an upper triangular matrix if its nonzero elements are found only in
the upper triangle of the matrix, including the main diagonal; that is:

Chapter 3. Setting Up Your Data Structures 91

uij = 0 if i > j

A matrix L is an lower triangular matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:

lij = 0 if i < j

The following matrices, U and L, illustrate upper and lower triangular matrices of
order n, respectively:

A unit triangular matrix is a triangular matrix in which all the diagonal elements
have a value of one; that is:
v For an upper triangular matrix, uij = 1 if i = j.
v For an lower triangular matrix, lij = 1 if i = j.

The following matrices, U and L, illustrate upper and lower unit real triangular
matrices of order n, respectively:

Triangular Matrix Storage Representation
The four storage modes used for storing triangular matrices are described in the
following:
v “Upper-Triangular-Packed Storage Mode”
v “Lower-Triangular-Packed Storage Mode” on page 93
v “Upper-Triangular Storage Mode” on page 93
v “Lower-Triangular Storage Mode” on page 94

It is important to note that because the diagonal elements of a unit triangular
matrix are always one, you do not need to set these values in the array for these
four storage modes. ESSL always assumes that the values in these positions are
one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is
stored in upper-triangular-packed storage mode, the upper triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is

92 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
“Upper-Packed Storage Mode” on page 85.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix U:
┌ ┐
| 1 2 4 7 11 |
| 0 3 5 8 12 |
| 0 0 6 9 13 |
| 0 0 0 10 14 |
| 0 0 0 0 15 |
└ ┘

the array is:
UP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is
stored in lower-triangular-packed storage mode, the lower triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
“Lower-Packed Storage Mode” on page 83.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix L:
┌ ┐
| 1 0 0 0 0 |
| 2 6 0 0 0 |
| 3 7 10 0 0 |
| 4 8 11 13 0 |
| 5 9 12 14 15 |
└ ┘

the array is:
LP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular
storage mode in a two-dimensional array. Only the elements in the upper triangle
of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:
┌ ┐
| 11 12 13 14 15 |
| 0 22 23 24 25 |
| 0 0 33 34 35 |

Chapter 3. Setting Up Your Data Structures 93

| 0 0 0 44 45 |
| 0 0 0 0 55 |
└ ┘

the array is:
┌ ┐
| 11 12 13 14 15 |
| * 22 23 24 25 |

UTA = | * * 33 34 35 |
| * * * 44 45 |
| * * * * 55 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular
storage mode in a two-dimensional array. Only the elements in the lower triangle
of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 |
| 21 22 0 0 0 |
| 31 32 33 0 0 |
| 41 42 43 44 0 |
| 51 52 53 54 55 |
└ ┘

the array is:
┌ ┐
| 11 * * * * |
| 21 22 * * * |

LTA = | 31 32 33 * * |
| 41 42 43 44 * |
| 51 52 53 54 55 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Trapezoidal Matrix
There are two types of trapezoidal matrices: upper trapezoidal matrix and lower
trapezoidal matrix. Trapezoidal matrices have m rows and n columns.

A matrix U is an upper trapezoidal matrix if its nonzero elements are found only
in the upper triangle of the matrix, including the main diagonal; that is:

uij = 0 if i > j

A matrix L is an lower trapezoidal matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:

lij = 0 if i < j

The following matrices, U and L, illustrate upper and lower trapezoidal matrices
with m rows and n columns, respectively:

94 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If m ≥ n:

If m < n:

A unit trapezoidal matrix is a trapezoidal matrix in which all the diagonal
elements have a value of one; that is:
v For an upper trapezoidal matrix, uij = 1 if i = j.
v For a lower trapezoidal matrix, lij = 1 if i = j.

The following matrices, U and L, illustrate upper and lower unit real trapezoidal
matrices with m and n columns, respectively:

If m ≥ n:

If m < n:

l11

.

..

0 0 0

l
22

l
32

l
21

l
31

l33

. . .

.

.

..

.

.

u11 u1n

u
nn

u12

u
22

u
23

u33

u13 . . .

.

.

.

.

..

. . . .

.

.

0

0

00

0

.

.

..

.

.

. 00

. 00

U =

.

.

.

.

.

0

0

l
m1

.l
n+1,1

l
n n+1,

l
nn

l
n1

.l
n+2,1 l

n n+2,

. l
mn

.

.

.

L =

u11
u1mu12

u22 u23

u33

u13 . . .

.

.

.

.

..
. . . .

.
.

0

0

00

0
U = .

.

.
u

mm

. . . .u1, +1m

u
m,m+1

u2, +1m

u1n

. . . . u2n

u
mn

. .
.

.

.
.
.

.

.
.

.

.

.
.

l11

.
..

0 0 0

l22

l32

l21

l31 l33

. . .

.

.

..
.
.

.

.

0

0

l
mm

l
m1

L =

.

.

.

.

.
.
.

.

.

.

. 00

. 00

.

..

0 0 0

l
32

l
21

l
31

. . .

.

.

..

.

.

1 1

1

1

11

1

1

u1n
u12

u
23

u13 . . .

.

.

.

.

..

. . . .

.

.

0

0

00

0

.

.

..

.

.

. 00

. 00

U =

.

.

.

.

.

0

0

l
m1

.l
n+1,1

l
n n+1,

l
n1

.l
n+2,1 l

n n+2,

. l
mn

.

.

.

L =

Chapter 3. Setting Up Your Data Structures 95

Trapezoidal Matrix Storage Representation
The storage modes used for storing trapezoidal matrices are described in the
following:
v “Upper-Trapezoidal Storage Mode”
v “Lower-Trapezoidal Storage Mode” on page 97

It is important to note that because the diagonal elements of a unit trapezoidal
matrix are always one, you do not need to set these values in the array for these
storage modes. ESSL always assumes that the values in these positions are one.

Upper-Trapezoidal Storage Mode: A trapezoidal matrix is stored in
upper-trapezoidal storage mode in a two-dimensional array. Only the elements in
the upper trapezoid of the matrix, including the diagonal, are stored in the upper
trapezoid of the array.

Following is an example of an upper trapezoidal matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:
┌ ┐
| 11 12 13 14 15 |
| 0 22 23 24 25 |
| 0 0 33 34 35 |
| 0 0 0 44 45 |
| 0 0 0 0 55 |
| 0 0 0 0 0 |
| 0 0 0 0 0 |
└ ┘

the array is:
┌ ┐
| 11 12 13 14 15 |
| * 22 23 24 25 |
| * * 33 34 35 |

UTA = | * * * 44 45 |
| * * * * 55 |
| * * * * * |
| * * * * * |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Following is an example of an upper trapezoidal matrix U with 5 rows and 7
columns and how it is stored in array UTA.

Given the following matrix U:

u1n
u12

u23

u13 . . .

.

.

.

.

..
. . . .

.
.

0

0

00

0
U = .

.

.

. . . .u1, +1m

u
m m, +1

u2, +1m

u1n

. . . . u2n

u
mn

. .
.

.

.
.
.

.

.
.

.

.

.
. .

..

0 0 0

l32

l21

l31

l
n1

. . .

.

.

..
.
.

.

.

0

0

L =

.

.

.

.

.
.
.

.

.

.

. 00

. 00

1

1
1

1

1
1

1

1

96 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 11 12 13 14 15 16 17 |
| 0 22 23 24 25 26 27 |
| 0 0 33 34 35 36 37 |
| 0 0 0 44 45 46 47 |
| 0 0 0 0 55 56 57 |
└ ┘

the array is:
┌ ┐
| 11 12 13 14 15 16 17 |
| * 22 23 24 25 26 27 |

UTA = | * * 33 34 35 36 37 |
| * * * 44 45 46 47 |
| * * * * 55 56 57 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Lower-Trapezoidal Storage Mode: A trapezoidal matrix is stored in
lower-trapezoidal storage mode in a two-dimensional array. Only the elements in
the lower trapezoid of the matrix, including the diagonal, are stored in the lower
trapezoid of the array.

Following is an example of a lower trapezoidal matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 |
| 21 22 0 0 0 |
| 31 32 33 0 0 |
| 41 42 43 44 0 |
| 51 52 53 54 55 |
| 61 62 63 64 65 |
| 71 72 73 74 75 |
└ ┘

the array is:
┌ ┐
| 11 * * * * |
| 21 22 * * * |

LTA = | 31 32 33 * * |
| 41 42 43 44 * |
| 51 52 53 54 55 |
| 61 62 63 64 65 |
| 71 72 73 74 75 |
└ ┘

where “*” means you do not have to store a value in that position in the array.

Following is an example of an lower trapezoidal matrix U with 5 rows and 7
columns and how it is stored in array LTA.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 0 0 |
| 21 22 0 0 0 0 0 |
| 31 32 33 0 0 0 0 |

Chapter 3. Setting Up Your Data Structures 97

| 41 42 43 44 0 0 0 |
| 51 52 53 54 55 0 0 |
└ ┘

the array is:
┌ ┐
| 11 * * * * * * |
| 21 22 * * * * * |

LTA = | 31 32 33 * * * * |
| 41 42 43 44 * * * |
| 51 52 53 54 55 * * |
└ ┘

where “*” means you do not have to store a value in that position in the array.

General Band Matrix
A general band matrix has its nonzero elements arranged uniformly near the
diagonal, such that:

aij = 0 if (i-j) > ml or (j-i) > mu

where ml and mu are the lower and upper band widths, respectively, and ml+mu+1
is the total band width.

The following matrix illustrates a square general band matrix of order n, where the
band widths are ml = q-1 and mu = p-1:

Some special types of band matrices are:
v Tridiagonal matrix: ml = mu = 1
v 9-diagonal matrix: ml = mu = 4

The following two matrices illustrate m by n rectangular general band matrices,
where the band widths are ml = q-1 and mu = p-1. For both matrices, the leading
diagonal is a11, a22, a33, ..., ann. Following is a general band matrix with m > n:

98 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Following is a general band matrix with m < n:

General Band Matrix Storage Representation
The two storage modes used for storing general band matrices are described in the
following:
v “General-Band Storage Mode”
v “BLAS-General-Band Storage Mode” on page 101

General-Band Storage Mode: (This storage mode is used only for square
matrices.) Only the band elements of a general band matrix are stored for
general-band storage mode. Additional storage must also be provided for fill- in.
General-band storage mode packs the matrix elements by columns into a
two-dimensional array, such that each diagonal of the matrix appears as a row in
the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a
leading dimension, lda, greater than or equal to 2ml+mu+16. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using array AGB, which is declared as AGB(2ml+mu+16, n), the columns of elements
in matrix A are stored in each column in array AGB as follows, where a11 is stored at

Chapter 3. Setting Up Your Data Structures 99

AGB(ml+mu+1, 1):

where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated
by an “*” are used for fill- in. Other positions may not be accessed at all.

Following is an example of a band matrix A of order 9 and band widths of ml = 2
and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 0 |
| 21 22 23 24 25 0 0 0 0 |
| 31 32 33 34 35 36 0 0 0 |
| 0 42 43 44 45 46 47 0 0 |
| 0 0 53 54 55 56 57 58 0 |
| 0 0 0 64 65 66 67 68 69 |
| 0 0 0 0 75 76 77 78 79 |
| 0 0 0 0 0 86 87 88 89 |
| 0 0 0 0 0 0 97 98 99 |
└ ┘

you store it in general-band storage mode in a 23 by 9 array AGB as follows, where
a11 is stored in AGB(6,1):

┌ ┐
| * * * * * * * * * |
| * * * * * * * * * |
| * * * 14 25 36 47 58 69 |
| * * 13 24 35 46 57 68 79 |

100 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| * 12 23 34 45 56 67 78 89 |
| 11 22 33 44 55 66 77 88 99 |
| 21 32 43 54 65 76 87 98 * |
| 31 42 53 64 75 86 97 * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |

AGB = | * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
| * * * * * * * * * |
└ ┘

Following is an example of how to transform your general band matrix, of order n,
to general-band storage mode:

MD=ML+MU+1
DO 1 J=1,N

DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
AGB(I-J+MD,J)=A(I,J)

1 CONTINUE

BLAS-General-Band Storage Mode: (This storage mode is used for both square
and rectangular matrices.) Only the band elements of a general band matrix are
stored for BLAS-general-band storage mode. The storage mode packs the matrix
elements by columns into a two-dimensional array, such that each diagonal of the
matrix appears as a row in the packed array.

For an m by n matrix A with band widths ml and mu, the array AGB must have a
leading dimension, lda, greater than or equal to ml+mu+1. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as AGB(ml+mu+1, n), the columns of
elements in matrix A are stored in each column in array AGB as follows, where a11 is
stored at AGB(mu+1, 1):

Chapter 3. Setting Up Your Data Structures 101

where “*” means you do not store an element in that position in the array. These
positions are not accessed by ESSL. Unused positions in the array always occur in
the upper left triangle of the array, but may not occur in the lower right triangle
of the array, as you can see from the examples given here.

Following is an example where m > n, and general band matrix A is 9 by 8 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 |
| 21 22 23 24 25 0 0 0 |
| 31 32 33 34 35 36 0 0 |
| 0 42 43 44 45 46 47 0 |
| 0 0 53 54 55 56 57 58 |
| 0 0 0 64 65 66 67 68 |
| 0 0 0 0 75 76 77 78 |
| 0 0 0 0 0 86 87 88 |
| 0 0 0 0 0 0 97 98 |
└ ┘

you store it in array AGB, declared as AGB(6,8), as follows, where a11 is stored in
AGB(4,1):

┌ ┐
| * * * 14 25 36 47 58 |
| * * 13 24 35 46 57 68 |

AGB = | * 12 23 34 45 56 67 78 |
| 11 22 33 44 55 66 77 88 |
| 21 32 43 54 65 76 87 98 |
| 31 42 53 64 75 86 97 * |
└ ┘

Following is an example where m < n, and general band matrix A is 7 by 9 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 0 0 0 |
| 21 22 23 24 25 0 0 0 0 |
| 31 32 33 34 35 36 0 0 0 |
| 0 42 43 44 45 46 47 0 0 |

102 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 0 0 53 54 55 56 57 58 0 |
| 0 0 0 64 65 66 67 68 69 |
| 0 0 0 0 75 76 77 78 79 |
└ ┘

you store it in array AGB, declared as AGB(6,9), as follows, where a11 is stored in
AGB(4,1) and the leading diagonal does not fill up the whole row:

┌ ┐
| * * * 14 25 36 47 58 69 |
| * * 13 24 35 46 57 68 79 |

AGB = | * 12 23 34 45 56 67 78 * |
| 11 22 33 44 55 66 77 * * |
| 21 32 43 54 65 76 * * * |
| 31 42 53 64 75 * * * * |
└ ┘

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all
values of m and n, to BLAS-general-band storage mode:

DO 20 J=1,N
K=MU+1-J
DO 10 I=MAX(1,J-MU),MIN(M,J+ML)

AGB(K+I,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Symmetric Band Matrix
A symmetric band matrix is a symmetric matrix whose nonzero elements are
arranged uniformly near the diagonal, such that:

aij = 0 if |i-j| > k

where k is the half band width.

The following matrix illustrates a symmetric band matrix of order n, where the
half band width k = q-1:

Symmetric Band Matrix Storage Representation
The two storage modes used for storing symmetric band matrices are described in
the following:
v “Upper-Band-Packed Storage Mode” on page 104

Chapter 3. Setting Up Your Data Structures 103

v “Lower-Band-Packed Storage Mode” on page 105

Upper-Band-Packed Storage Mode: Only the band elements of the upper
triangular part of a symmetric band matrix, including the main diagonal, are
stored for upper-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(lda,n), where p = lda = k+1, the elements
of a symmetric band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 3.

Given the following matrix A:
┌ ┐
| 11 12 13 14 0 0 |
| 12 22 23 24 25 0 |
| 13 23 33 34 35 36 |
| 14 24 34 44 45 46 |
| 0 25 35 45 55 56 |
| 0 0 36 46 56 66 |
└ ┘

you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6),
as follows.

┌ ┐
| * * * 14 25 36 |

ASB = | * * 13 24 35 46 |
| * 12 23 34 45 56 |
| 11 22 33 44 55 66 |
└ ┘

Following is an example of how to transform your symmetric band matrix to
upper-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

ASB(M+I,J)=A(I,J)
10 CONTINUE

20 CONTINUE

104 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Lower-Band-Packed Storage Mode: Only the band elements of the lower
triangular part of a symmetric band matrix, including the main diagonal, are
stored for lower-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(lda,n), where q = lda = k+1, the elements
of a symmetric band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 2.

Given the following matrix A:
┌ ┐
| 11 21 31 0 0 0 |
| 21 22 32 42 0 0 |
| 31 32 33 43 53 0 |
| 0 42 43 44 54 64 |
| 0 0 53 54 55 65 |
| 0 0 0 64 65 66 |
└ ┘

you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6),
as follows:

┌ ┐
| 11 22 33 44 55 66 |

ASB = | 21 32 43 54 65 * |
| 31 42 53 64 * * |
└ ┘

Following is an example of how to transform your symmetric band matrix to
lower-band-packed storage mode:

DO 20 J=1,N
DO 10 I=J,MIN(J+K,N)

ASB(I-J+1,J)=A(I,J)
10 CONTINUE

20 CONTINUE

Positive Definite Symmetric Band Matrix
A real symmetric band matrix A is positive definite if and only if xTAx is positive
for all nonzero vectors x.

Chapter 3. Setting Up Your Data Structures 105

Positive Definite Symmetric Band Matrix Storage Representation
The positive definite symmetric band matrix is stored in the same way a
symmetric band matrix is stored. For a description of this storage technique, see
“Symmetric Band Matrix” on page 103.

Complex Hermitian Band Matrix
A complex band matrix is Hermitian if it is equal to its conjugate transpose:

H = HH

Complex Hermitian Band Matrix Storage Representation
The complex Hermitian band matrix is stored using the same two techniques used
for symmetric band matrices:
v Lower-band-packed storage mode, as described in “Lower-Band-Packed Storage

Mode” on page 105
v Upper-band-packed storage mode, as described in “Upper-Band-Packed Storage

Mode” on page 104

Following is an example of a complex Hermitian band matrix H of order 5, having
a half band width of 2.

Given the following matrix H:
┌ ┐
| (11, 0) (21, -1) (31, 1) (0, 0) (0, 0) |
| (21, 1) (22, 0) (32, -1) (42, -1) (0, 0) |
| (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
| (0, 0) (42, 1) (43, 1) (44, 0) (54, -1) |
| (0, 0) (0, 0) (53, 1) (54, 1) (55, 0) |
└ ┘

you store it in a two-dimensional array HP, as follows:
v In lower-band-packed storage mode:

┌ ┐
| (11, *) (22, *) (33, *) (44, *) (55, *) |

HP = | (21, 1) (32, 1) (43, 1) (54, 1) * |
| (31, -1) (42, 1) (53, 1) * * |
└ ┘

v In upper-band-packed storage mode:
┌ ┐
| * * (31, 1) (42, -1) (53, -1) |

HP = | * (21, -1) (32, -1) (43, -1) (54, -1) |
| (11, *) (22, *) (33, *) (44, *) (55, *) |
└ ┘

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian band matrix
are always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Positive Definite Complex Hermitian Band Matrix
A complex Hermitian band matrix A is positive definite if and only if xHAx is
positive for all nonzero vectors x.

106 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Positive Definite Complex Hermitian Band Matrix Storage
Representation

The positive definite complex Hermitian band matrix is stored in the same way a
complex Hermitian band matrix is stored. For a description of this storage
technique, see “Complex Hermitian Band Matrix” on page 106.

Triangular Band Matrix
There are two types of triangular band matrices: upper triangular band matrix and
lower triangular band matrix. Triangular band matrices have the same number of
rows as they have columns; that is, they have n rows and n columns. They have an
upper or lower band width of k.

A band matrix U is an upper triangular band matrix if its nonzero elements are
found only in the upper triangle of the matrix, including the main diagonal; that
is:

uij = 0 if i > j

Its band elements are arranged uniformly near the diagonal in the upper triangle
of the matrix, such that:

uij = 0 if j-i > k

The following matrix U illustrates an upper triangular band matrix of order n with
an upper band width k = q-1:

A band matrix L is a lower triangular band matrix if its nonzero elements are
found only in the lower triangle of the matrix, including the main diagonal; that is:

lij = 0 if i < j

Its band elements are arranged uniformly near the diagonal in the lower triangle of
the matrix such that:

lij = 0 if i-j > k

The following matrix L illustrates an upper triangular band matrix of order n with
a lower band width k = q-1:

Chapter 3. Setting Up Your Data Structures 107

A triangular band matrix can also be a unit triangular band matrix if all the
diagonal elements have a value of 1. For an illustration of a unit triangular matrix,
see “Triangular Matrix” on page 91.

Triangular Band Matrix Storage Representation
The two storage modes used for storing triangular band matrices are described in
the following:
v “Upper-Triangular-Band-Packed Storage Mode”
v “Lower-Triangular-Band-Packed Storage Mode” on page 109

It is important to note that because the diagonal elements of a unit triangular
band matrix are always one, you do not need to set these values in the array for
these two storage modes. ESSL always assumes that the values in these positions
are one.

Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the
upper triangular part of an upper triangular band matrix, including the main
diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array UTB, which is declared as UTB(lda,n), where p = lda = k+1, the elements
of an upper triangular band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

108 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Following is an example of an upper triangular band matrix U of order 6 and an
upper band width of 3.

Given the following matrix U:
┌ ┐
| 11 12 13 14 0 0 |
| 0 22 23 24 25 0 |
| 0 0 33 34 35 36 |
| 0 0 0 44 45 46 |
| 0 0 0 0 55 56 |
| 0 0 0 0 0 66 |
└ ┘

you store it in upper-triangular-band-packed storage mode in array UTB, declared
as UTB(4,6), as follows:

┌ ┐
| * * * 14 25 36 |

UTB = | * * 13 24 35 46 |
| * 12 23 34 45 56 |
| 11 22 33 44 55 66 |
└ ┘

Following is an example of how to transform your upper triangular band matrix to
upper-triangular-band-packed storage mode:

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J

UTB(M+I,J)=U(I,J)
10 CONTINUE

20 CONTINUE

Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the
lower triangular part of a lower triangular band matrix, including the main
diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in
your subroutine in a special way so that ESSL selects the matrix elements properly,
and you can leave your matrix stored in full-matrix storage mode.

For a matrix L of order n and a lower band width of k, the array must have a
leading dimension, lda, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array LTB, which is declared as LTB(lda,n), where q = lda = k+1, the elements
of a lower triangular band matrix are stored as follows:

where “*” means you do not store an element in that position in the array.

Chapter 3. Setting Up Your Data Structures 109

Following is an example of a lower triangular band matrix L of order 6 and a
lower band width of 2.

Given the following matrix L:
┌ ┐
| 11 0 0 0 0 0 |
| 21 22 0 0 0 0 |
| 31 32 33 0 0 0 |
| 0 42 43 44 0 0 |
| 0 0 53 54 55 0 |
| 0 0 0 64 65 66 |
└ ┘

you store it in lower-triangular-band-packed storage mode in array LTB, declared
as LTB(3,6), as follows:

┌ ┐
| 11 22 33 44 55 66 |

LTB = | 21 32 43 54 65 * |
| 31 42 53 64 * * |
└ ┘

Following is an example of how to transform your lower triangular band matrix to
lower-triangular-band-packed storage mode:

DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)

LTB(M+I,J)=L(I,J)
10 CONTINUE

20 CONTINUE

General Tridiagonal Matrix
A general tridiagonal matrix is a matrix whose nonzero elements are found only
on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:

aij = 0 if |i-j| > 1

The following matrix illustrates a general tridiagonal matrix of order n:

General Tridiagonal Matrix Storage Representation
The storage modes used for storing trapezoidal matrices are described in the
following:
v “LAPACK-General Tridiagonal Storage Mode”
v “General Tridiagonal Storage Mode” on page 111

LAPACK-General Tridiagonal Storage Mode: This storage mode is for use with
LAPACK compatible tridiagonal subroutines.

110 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored for LAPACK-general-tridiagonal storage mode. The
diagonal elements of a general tridiagonal matrix, A, of order n are stored in a
one-dimensional array D of length n.

The subdiagonal and superdiagonal elements of a general tridiagonal matrix A of
order n are stored in one dimensional arrays DL and DU of length n-1, respectively.
DL, D, and DU are stored as follows:

DL = (a21, a32, a43 ...an,n-1)

D = (a11, a22, a33 ...an,n)

DU = (a12, a23, a34 ...an-1,n)

Following is an example of a general tridiagonal matrix A of order 5:
┌ ┐
| 11 12 0 0 0 |
| 21 22 23 0 0 |
| 0 32 33 34 0 |
| 0 0 43 44 45 |
| 0 0 0 54 55 |
└ ┘

which you store in LAPACK-general tridiagonal storage mode in arrays DL, D, and
DU, as follows:

DL = (21, 32, 43, 54)

D = (11, 22, 33, 44, 55)

DU = (12, 23, 34, 45)

General Tridiagonal Storage Mode: This storage mode is for use with
non-LAPACK compatible tridiagonal subroutines.

Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements
of a general tridiagonal matrix, A, of order n are stored in three one-dimensional
arrays, C, D, and E, each of length n, where array C contains the subdiagonal
elements, stored as follows:

C = (*, a21, a32, a43, ..., an,n-1)

and array D contains the main diagonal elements, stored as follows:

D = (a11, a22, a33, ..., ann)

and array E contains the superdiagonal elements, stored as follows:

E = (a12, a23, a34, ..., an-1,n, *)

where “*” means you do not store an element in that position in the array.

Following is an example of a general tridiagonal matrix A of order 5:
┌ ┐
| 11 12 0 0 0 |
| 21 22 23 0 0 |
| 0 32 33 34 0 |

Chapter 3. Setting Up Your Data Structures 111

| 0 0 43 44 45 |
| 0 0 0 54 55 |
└ ┘

which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5,
as follows:

C = (*, 21, 32, 43, 54)

D = (11, 22, 33, 44, 55)

E = (12, 23, 34, 45, *)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C, D, and E. These additional locations are
used for working storage by the ESSL subroutine. The reasons for choosing this
option are explained in the subroutine descriptions.

Symmetric Tridiagonal Matrix
A tridiagonal matrix A is also symmetric if and only if its nonzero elements are
found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its
subdiagonal elements and superdiagonal elements are equal; that is:

(aij = 0 if |i-j| > 1) and (aij = aji if |i-j| = 1)

The following matrix illustrates a symmetric tridiagonal matrix of order n:

Symmetric Tridiagonal Matrix Storage Representation
The two storage modes used for storing symmetric tridiagonal matrices are
described in the following:
v “LAPACK-Symmetric-Tridiagonal Storage Mode”
v “Symmetric-Tridiagonal Storage Mode” on page 113

LAPACK-Symmetric-Tridiagonal Storage Mode: This storage mode is for use
with LAPACK compatible tridiagonal subroutines.

Only the diagonal and subdiagonal elements of the symmetric tridiagonal matrix
are stored for LAPACK-symmetric-tridiagonal storage mode. The diagonal
elements of a symmetric tridiagonal matrix A of order n are stored in a one
dimensional array D length n. The subdiagonal elements of a symmetric matrix A
are stored in a one dimensional array E of length n-1. D and E are stored as follows:

D = (a11, a22, a33, ..., ann)
E = (a21, a32, a43, ..., an,n-1)

Following is an example of a symmetric tridiagonal matrix A of order 5:

112 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 10 1 0 0 0 |
| 1 20 2 0 0 |
| 0 2 30 3 0 |
| 0 0 3 40 4 |
| 0 0 0 4 50 |
└ ┘

which you store in LAPACK-symmetric-tridiagonal storage mode in arrays D and E,
each of length 4, as follows:

D = (10, 20, 30, 40, 50)
E = (1, 2, 3, 4)

Symmetric-Tridiagonal Storage Mode: This storage mode is for use with
non-LAPACK compatible tridiagonal subroutines.

Only the diagonal and subdiagonal elements of the symmetric tridiagonal matrix
are stored for symmetric-tridiagonal storage mode. The elements of a symmetric
tridiagonal matrix A of order n are stored in two one dimensional arrays C and D,
each of length n, where C contains the subdiagonal elements, stored as follows:

C = (*, a21, a32, a43, ..., an,n-1)

where “*” means you do not store an element in that position in the array. Then
array D contains the main diagonal elements, stored as follows:

D = (a11, a22, a33, ..., ann)

Following is an example of a symmetric tridiagonal matrix A of order 5:
┌ ┐
| 10 1 0 0 0 |
| 1 20 2 0 0 |
| 0 2 30 3 0 |
| 0 0 3 40 4 |
| 0 0 0 4 50 |
└ ┘

which you store in symmetric-tridiagonal storage mode in arrays C and D, each of
length 5, as follows:

C = (*, 1, 2, 3, 4)

D = (10, 20, 30, 40, 50)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C and D. These additional locations are
used for working storage by the ESSL subroutine. The reasons for choosing this
option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix
A real symmetric tridiagonal matrix A is positive definite if and only if xTAx is
positive for all nonzero vectors x.

Positive Definite Symmetric Tridiagonal Matrix Storage
Representation
The positive definite symmetric tridiagonal matrix is stored in the same way the
symmetric tridiagonal matrix is stored. For a description of this storage technique,
see “Symmetric Tridiagonal Matrix” on page 112.

Chapter 3. Setting Up Your Data Structures 113

Complex Hermitian Tridiagonal Matrix
A complex tridiagonal matrix is Hermitian if it is equal to its conjugate transpose:
H =HH.

Complex Hermitian Tridiagonal Storage Representation
Only the diagonal and subdiagonal elements of the complex Hermitian tridiagonal
matrix are stored for LAPACK-complex-Hermitian-tridiagonal storage mode. The
diagonal elements of a complex Hermitian tridiagonal matrix A of order n are
stored in a one dimensional array D of length n. The subdiagonal elements of a
complex Hermitian matrix A are stored in a one dimensional array E of length n-1.
D and E are stored as follows:

D = (a11, a22, a33, ..., ann)
E = (*, a21, a32, a43, ..., an,n-1)

Following is an example of a symmetric tridiagonal matrix A of order 5:

┌ ┐
| (10, 0) (1, 1) (1, 2) (1, 3) (1, 4) |
| (1, -1) (20, 0) (2, 1) (2, 2) (2, 3) |
| (1, -2) (2, -1) (30, 0) (3, 1) (3, 2) |
| (1, -3) (2, -2) (3, -1) (40, 0) (4, 1) |
| (1, -4) (2, -3) (3, -2) (4, -1) (50, 0) |
└ ┘

which you store in LAPACK-complex-Hermitian-tridiagonal storage mode in
arrays D of length 5 and complex array E, each of length 4, as follows:

D = (10, 20, 30, 40, 50)
E = ((1,-1), (2, -1), (3, -1), (4, -1))

Postive Definite Complex Hermitian Tridiagonal Matrix
A complex Hermitian tridiagonal matrix is positive definite if and only if xHAx is
positive for all nonzero vectors x.

Positive Definite Complex Hermitian Tridiagonal Matrix Storage
Representation
The positive definite complex Hermitian tridiagonal matrix is stored in the same
way a complex Hermitian tridiagonal matrix is stored. For a description of this
storage technique, see “Complex Hermitian Tridiagonal Matrix.”

Sparse Matrix
A sparse matrix is a matrix having a relatively small number of nonzero elements.

Consider the following as an example of a sparse matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

Sparse Matrix Storage Representation
A sparse matrix can be stored in full-matrix storage mode or a packed storage
mode. When a sparse matrix is stored in full-matrix storage mode, all its elements,
including its zero elements, are stored in an array.

114 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The seven packed storage modes used for storing sparse matrices are described in
the following:
v “Compressed-Matrix Storage Mode”
v “Compressed-Diagonal Storage Mode” on page 116
v “Storage-by-Indices” on page 119
v “Storage-by-Columns” on page 119
v “Storage-by-Rows” on page 120
v “Diagonal-Out Skyline Storage Mode” on page 122
v “Profile-In Skyline Storage Mode” on page 124

Note: When the elements of a sparse matrix are stored using any of these storage
modes, the ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in
compressed-matrix storage mode, uses two two-dimensional arrays to define the
sparse matrix storage, AC and KA. See reference [85 on page 1318]. Given the m by n
sparse matrix A, having a maximum of nz nonzero elements in each row:
v AC is defined as AC(lda,nz), where the leading dimension, lda, must be greater

than or equal to m. Each row of array AC contains the nonzero elements of the
corresponding row of matrix A. For each row in matrix A containing less than nz
nonzero elements, the corresponding row in array AC is padded with zeros. The
elements in each row can be stored in any order.

v KA is an integer array defined as KA(lda,nz), where the leading dimension, lda,
must be greater than or equal to m. It contains the column numbers of the
matrix A elements that are stored in the corresponding positions in array AC. For
each row in matrix A containing less than nz nonzero elements, the
corresponding row in array KA is padded with any values from 1 to n. Because
this array is used by the ESSL subroutines to access other target vectors in the
computation, you must adhere to these required values to avoid errors.

Unless all the rows of sparse matrix A contain approximately the same number
of nonzero elements, this storage mode requires a large amount of storage. This
diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a
maximum of four nonzero elements in each row. It shows how matrix A can be
stored in arrays AC and KA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 0 |
| 22 21 24 0 |

AC = | 33 32 35 0 |
| 44 43 46 0 |

Chapter 3. Setting Up Your Data Structures 115

| 55 51 54 0 |
| 66 61 62 65 |
└ ┘

┌ ┐
| 1 3 * * |
| 2 1 4 * |

KA = | 3 2 5 * |
| 4 3 6 * |
| 5 1 4 * |
| 6 1 2 5 |
└ ┘

where “*” means you can store any value from 1 to 6 in that position in the array.

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse
matrices; that is, all nonzero elements of a symmetric matrix A must be stored in
array AC, not just the elements of the upper triangle and diagonal of matrix A.

In general terms, this storage technique can be expressed as follows:

For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ nz,
such that AC(i,k) = aij and KA(i,k) = j.

For all other elements of AC and KA,
AC(i,k) ≤ n

where:
v aij are the elements of the m by n matrix A that has a maximum of nz nonzero

elements in each row.
v Array AC is defined as AC(lda,nz), where lda ≥ m.
v Array KA is defined as KA(lda,nz), where lda ≥ m.

Compressed-Diagonal Storage Mode: The storage mode used for square sparse
matrices stored in compressed-diagonal storage mode has two variations,
depending on whether the matrix is a general sparse matrix or a symmetric sparse
matrix. This explains both of these variations; however, the conventions used for
numbering the diagonals in the matrix, which apply to the storage descriptions,
are explained first.

Matrix A of order n has 2n-1 diagonals. Because k = j-i is constant for the elements
aij along each diagonal, each diagonal can be assigned a diagonal number, k,
having a value from 1-n to n-1. Then the diagonals can be referred to as dk, where
k = 1-n, n-1.

The following matrix shows the starting position of each diagonal, dk:

116 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For a general (square) sparse matrix A, compressed-diagonal storage mode uses
two arrays to define the sparse matrix storage, AD and LA. Using the above
convention for numbering the diagonals, and given that sparse matrix A contains
nd diagonals having nonzero elements, arrays AD and LA are set up as follows:
v AD is defined as AD(lda,nd), where the leading dimension, lda, must be greater

than or equal to n. Each diagonal of matrix A that has at least one nonzero
element is stored in a column of array AD. All of the elements of the diagonal,
including its zero elements, are stored in n contiguous locations in the array, in
the same order as they appear in the diagonal. Padding with zeros is required as
follows to fill the n locations in each column of array AD:
– Each superdiagonal (k > 0), which has n-k elements, is padded with k trailing

zeros.
– The main diagonal (k = 0), which has n elements, does not require padding.
– Each subdiagonal (k < 0), which has n-|k| elements, is padded with |k|

leading zeros.
The diagonals can be stored in any columns in array AD.

v LA is a one-dimensional integer array of length nd, containing the diagonal
numbers k for the diagonals stored in each corresponding column in array AD.

Because this storage mode requires entire diagonals to be stored, if the nonzero
elements in matrix A are not concentrated along a few diagonals, this storage
mode requires a large amount of storage. This diminishes the performance you
obtain by using this storage mode.

Consider the following as an example of how a 6 by 6 general sparse matrix A
with 5 nonzero diagonals is stored in arrays AD and LA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 51 0 0 54 55 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 0 0 |
| 22 24 21 0 0 |

AD = | 33 35 32 0 0 |
| 44 46 43 0 0 |
| 55 0 54 51 0 |
| 66 0 65 62 61 |

Chapter 3. Setting Up Your Data Structures 117

└ ┘

LA = (0, 2, -1, -4, -5)

For a symmetric sparse matrix, where each superdiagonal k is equal to subdiagonal
-k, compressed-diagonal storage mode uses the same storage technique as for the
general sparse matrix, except that only the nonzero main diagonal and one
diagonal of each couple of nonzero diagonals, k and -k, are used in setting up
arrays AD and LA. You can store either the upper or the lower diagonal of each
couple.

Consider the following as an example of a symmetric sparse matrix of order 6 and
how it is stored in arrays AD and LA, using only three nonzero diagonals in the
matrix.

Given the following matrix A:
┌ ┐
| 11 0 13 0 51 0 |
| 0 22 0 24 0 62 |
| 13 0 33 0 35 0 |
| 0 24 0 44 0 46 |
| 51 0 35 0 55 0 |
| 0 62 0 46 0 66 |
└ ┘

the arrays are:
┌ ┐
| 11 13 0 |
| 22 24 0 |

AD = | 33 35 0 |
| 44 46 0 |
| 55 0 51 |
| 66 0 62 |
└ ┘

LA = (0, 2, -4)

In general terms, this storage technique can be expressed as follows:

For each dk ≠ (0, ..., 0), for k = 1-n, n-1
for general square sparse matrices, or

for each unique dk ≠ (0, ..., 0), for k = 1-n, n-1
for symmetric sparse matrices,

there exists l, where 1 ≤ l ≤ nd,
such that LA(l) = k and column l in array AD contains dpk.

where:
v Array AD is defined as AD(lda,nd), where lda ≥ n, and where nd is the number of

nonzero diagonals, dk that are stored in array AD.
v Array LA has nd elements.
v k is the diagonal number of each diagonal, dk, where k = i-j.
v dpk are the diagonals, dk, with padding, which are constructed from the sparse

matrix A elements, aij, for i, j = 1, n as follows:
For superdiagonals (k > 0), dpk has k trailing zeros: dpk = (a1,k+1, a2,k+2, ..., an-k,n, 01,
..., 0k)

118 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For the main diagonal (k = 0), dp0 has no padding: dp0 = (a11, a22, ..., ann)
For subdiagonals (k < 0), dpk has |k| leading zeros: dpk = (01, ..., 0|k|, a|k|+1,1,
a|k|+2,2, ..., an, n-|k|)

Storage-by-Indices: For a sparse matrix A, storage-by-indices uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:
v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,

stored contiguously in any order.
v IA, an integer array of (at least) length ne contains the corresponding row

numbers of each nonzero element, aij, in matrix A.
v JA, an integer array of (at least) length ne contains the corresponding column

numbers of each nonzero element, aij, in matrix A.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.:

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 35 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 65 66 |
└ ┘

the arrays are:
AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)

IA = (1, 2, 3, 3, 1, 2, 4, 2, 6, 4, 3, 6, 6, 6, 4)

JA = (1, 2, 2, 3, 3, 1, 3, 4, 6, 6, 5, 2, 1, 5, 4)

In general terms, this storage technique can be expressed as follows:

For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ ne, such that:

AR(k) = aij

IA(k) = i
JA(k) = j

where:

aij are the elements of the m by n sparse matrix A.
Arrays AR, IA, and JA each have ne elements.

Storage-by-Columns: For a sparse matrix, A, storage-by-columns uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:
v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,

stored contiguously. The columns of matrix A are stored consecutively from 1 to
n in AR. The elements in each column of A are stored in any order in AR.

Chapter 3. Setting Up Your Data Structures 119

v IA, an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, aij, in matrix A.

v JA, an integer array of (at least) length n+1 contains the relative starting position
of each column of matrix A in array AR; that is, each element JA(j) of the column
pointer array indicates where column j begins in array AR. If all elements in
column j are zero, then JA(j) = JA(j+1). The last element, JA(n+1), indicates the
position after the last element in array AR, which is ne+1.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 0 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 0 66 |
└ ┘

the arrays are:
AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)

IA = (1, 6, 2, 6, 3, 2, 1, 3, 4, 4, 2, 4, 6)

JA = (1, 4, 7, 10, 12, 12, 14)

In general terms, this storage technique can be expressed as follows:

For each aij ≠ 0, for i = 1, m and j = 1, n
there exists k, where 1 ≤ k ≤ ne, such that

AR(k) = aij

IA(k) = i

And for j = 1, n,
JA(j) = k, where aij, in AR(k), is the first element stored in AR for column j
JA(j) = JA(j+1), where all aij = 0 in column j
JA(n+1) = ne+1

where:

aij are the elements of the m by n sparse matrix A.
Arrays AR and IA each have ne elements.
Array JA has n+1 elements.

Storage-by-Rows: The storage mode used for sparse matrices stored by rows has
three variations, depending on whether the matrix is a general sparse matrix or a
symmetric sparse matrix. This explains these variations.

For a general sparse matrix A, storage-by-rows uses three one-dimensional arrays
to define the sparse matrix storage, AR, IA, and JA. Given the m by n sparse matrix
A having ne nonzero elements, the arrays are set up as follows:
v AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,

stored contiguously. The rows of matrix A are stored consecutively from 1 to m
in AR. The elements in each row of A are stored in any order in AR.

120 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v IA, an integer array of (at least) length m+1 contains the relative starting position
of each row of matrix A in array AR; that is, each element IA(i) of the row pointer
array indicates where row i begins in array AR. If all elements in row i are zero,
then IA(i) = IA(i+1). The last element, IA(m+1), indicates the position after the
last element in array AR, which is ne+1.

v JA, an integer array of (at least) length ne contains the corresponding column
numbers of each nonzero element, aij, in matrix A.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it can be stored in arrays AR, IA, and JA.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 21 22 0 24 0 0 |
| 0 32 33 0 0 0 |
| 0 0 43 44 0 46 |
| 0 0 0 0 0 0 |
| 61 62 0 0 0 66 |
└ ┘

the arrays are:
AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)

IA = (1, 3, 6, 8, 11, 11, 14)

JA = (1, 3, 4, 2, 1, 2, 3, 4, 3, 6, 1, 2, 6)

For a symmetric sparse matrix of order m, storage-by-rows uses the same storage
technique as for the general sparse matrix, except that only the upper or lower
triangle and diagonal elements are used in setting up arrays AR, IA, and JA.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it can be stored in arrays AR, IA, and JA using upper-storage-by-rows,
which stores only the upper triangle and diagonal elements.

Given the following matrix A:
┌ ┐
| 11 0 13 0 0 0 |
| 0 22 23 24 0 0 |
| 13 23 33 0 35 0 |
| 0 24 0 44 0 46 |
| 0 0 35 0 55 0 |
| 0 0 0 46 0 0 |
└ ┘

the arrays are:
AR = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)

IA = (1, 3, 6, 8, 10, 11, 11)

JA = (1, 3, 2, 3, 4, 3, 5, 4, 6, 5)

Using the same symmetric matrix A, consider the following as an example of how
it can be stored in arrays AR, IA, and JA using lower-storage-by-rows, which stores
only the lower triangle and diagonal elements:

Chapter 3. Setting Up Your Data Structures 121

AR = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)

IA = (1, 2, 3, 6, 8, 10, 11)

JA = (1, 2, 2, 3, 1, 2, 4, 5, 3, 4)

In general terms, this storage technique can be expressed as follows:
For each aij ≠ 0,
for i = 1, m and j = 1, n for general sparse matrices
or
for i = 1, m and j = i, m for symmetric sparse matrices using the lower triangle

 or
for i = 1, m and j = 1, i for symmetric sparse matrices using the upper triangle
there exists k, where 1 ≤ k ≤ ne, such that
AR(k) = aij

JA(k) = j

And for i = 1, m,
IA(i) = k, where aij, in AR(k), is the first element stored in AR for row i
IA(i) = IA(i+1), where all aij = 0 in row i
IA(m+1) = ne+1

where:
v aij are the elements of sparse matrix A, which is either an m by n general sparse

matrix or a symmetric sparse matrix of order m containing ne nonzero elements.
v Arrays AR and JA each have ne elements.
v Array IA has m+1 elements.

Diagonal-Out Skyline Storage Mode: The diagonal-out skyline storage mode
used for sparse matrices has two variations, depending on whether the matrix is a
general sparse matrix or a symmetric sparse matrix. Both of these variations are
explained here.

For a general sparse matrix A, diagonal-out skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:
v AU of (at least) length nu contains the upper triangle of the sparse matrix A,

where the columns are stored consecutively from 1 to n in AU in the following
way. For each column, the elements starting at the diagonal element and ending
at the topmost nonzero element in the column are stored contiguously in AU. The
elements stored may include zero elements along with the nonzero elements. If
all elements in the column to be stored are zero, the diagonal element, aii, having
a value of zero, is stored in AU for that column. A total of nu elements are stored
for the upper triangle of A.

v IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

v AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to n in AL in the following way.

122 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For each row, the elements starting at the diagonal element and ending at the
leftmost nonzero element in the row are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, aii, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

v IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 21 22 0 24 0 0 |
| 31 0 33 34 0 36 |
| 41 42 43 44 45 0 |
| 0 0 0 54 55 56 |
| 0 0 63 0 65 66 |
└ ┘

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

IDU = (1, 2, 4, 7, 10, 12, 16) where nu=15
AL = (*, *, 21, *, 0, 31, *, 43, 42, 41, *, 54, *, 65, 0, 63)

IDL = (1, 2, 4, 7, 11, 13, 17) where nl=16

and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order n, diagonal-out skyline storage mode uses
the same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 12 22 0 24 0 0 |
| 13 0 33 34 0 36 |
| 0 24 34 44 45 0 |
| 0 0 0 45 55 56 |
| 0 0 36 0 56 66 |
└ ┘

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

Chapter 3. Setting Up Your Data Structures 123

IDU = (1, 2, 4, 7, 10, 12, 16) where nu=15

In general terms, this storage technique can be expressed as follows:

For general sparse matrices and symmetric sparse matrices:

For each aij for j = 1, n and i = j, k,
where akj is the topmost aij ≠ 0 in each column j,
there exists m, where 1 ≤ m ≤ nu, such that
AU(m+j-i) = aij

IDU(j) = m for each ajj

IDU(n+1) = nu+1

Also, for general sparse matrices:
For each aij for i = 1, n and i = j, k,
where aik is the leftmost aij ≠ 0 in each row i,
there exists m, where 1 ≤ m ≤ nl, such that
AL(m+i-j) = aij

IDL(i) = m for each aii

IDL(n+1) = nl+1

where:

aij are the elements of sparse matrix A, of order n.
Array AU has nu elements.
Array AL has nl elements.
Arrays IDU and IDL each have n+1 elements.

Profile-In Skyline Storage Mode: The profile-in skyline storage mode used for
sparse matrices has two variations, depending on whether the matrix is a general
sparse matrix or a symmetric sparse matrix. Both of these variations are explained
here.

For a general sparse matrix A, profile-in skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:
v AU of (at least) length nu contains the upper triangle of the sparse matrix A,

where the columns are stored consecutively from 1 to n in AU in the following
way. For each column, the elements starting at the topmost nonzero element in
the column and ending at the diagonal element are stored contiguously in AU.
The elements stored may include zero elements along with the nonzero
elements. If all elements in the column to be stored are zero, the diagonal
element, aii, having a value of zero, is stored in AU for that column. A total of nu
elements are stored for the upper triangle of A.

v IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

v AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to n in AL in the following way.
For each row, the elements starting at the leftmost nonzero element in the row
and ending at the diagonal element are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all

124 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

elements in the row to be stored are zero, the diagonal element, aii, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

v IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element aii is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 21 22 0 24 0 0 |
| 31 0 33 34 0 36 |
| 41 42 43 44 45 0 |
| 0 0 0 54 55 56 |
| 0 0 63 0 65 66 |
└ ┘

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

IDU = (1, 3, 6, 9, 11, 15, 16) where nu=15
AL = (*, 21, *, 31, 0, *, 41, 42, 43, *, 54, *, 63, 0, 65, *)

IDL = (1, 3, 6, 10, 12, 16, 17) where nl=16

and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order n, profile-in skyline storage mode uses the
same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:
┌ ┐
| 0 12 13 0 0 0 |
| 12 22 0 24 0 0 |
| 13 0 33 34 0 36 |
| 0 24 34 44 45 0 |
| 0 0 0 45 55 56 |
| 0 0 36 0 56 66 |
└ ┘

the arrays are:
AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

IDU = (1, 3, 6, 9, 11, 15, 16) where nu=15

In general terms, this storage technique can be expressed as follows:

Chapter 3. Setting Up Your Data Structures 125

For general sparse matrices and symmetric sparse matrices:
For each aij for j = 1, n and i = k, j,
where akj is the topmost aij ≠ 0 in each column j,
there exists m, where 1 ≤ m ≤ nu, such that
AU(m-j+i) = aij

IDU(j) = m for each ajj

IDU(n+1) = nu+1

Also, for general sparse matrices:
For each aij for i = 1, n and j = k, i,
where aik is the leftmost aij ≠ 0 in each row i,
there exists m, where 1 ≤ m ≤ nl, such that
AL(m-i+j) = aij

IDL(i) = m for each aii

IDL(n+1) = nl+1

where:

aij are the elements of sparse matrix A, of order n.
Array AU has nu elements.
Array AL has nl elements.
Arrays IDU and IDL each have n+1 elements.

Sequences
A sequence is an ordered collection of numbers. It can be a one-, two-, or
three-dimensional sequence. Sequences are used in the areas of sorting, searching,
Fourier transforms, convolutions, and correlations.

Real and Complex Elements in Storage
Sequences can contain either real or complex data. For sequences containing
complex data, a special storage arrangement is used to accommodate the two
parts, a and b, of each complex number, a+bi, in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex sequences as for real
sequences of the same precision. See “How Do You Set Up Your Scalar Data?” on
page 46 for a description of real and complex numbers, and “How Do You Set Up
Your Arrays?” on page 46 for a description of how real and complex data is stored
in arrays.

One-Dimensional Sequences
A one-dimensional sequence appears symbolically as follows, where the subscripts
indicate the element positions within the sequence:

(x1, x2, x3, ... xn)

One-Dimensional Sequence Storage Representation
A one-dimensional sequence is stored in an array using stride in the same way a
vector uses stride. For details, see “How Stride Is Used for Vectors” on page 76.

Two-Dimensional Sequences
A two-dimensional sequence appears symbolically as a series of columns of
elements. (They are represented in the same way as a matrix without the square
brackets.) The two subscripts indicate the element positions in the first and second

126 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

dimensions, respectively:

Two-Dimensional Sequence Storage Representation
A two-dimensional sequence is stored in an array using the stride for the second
dimension in the same way that a matrix uses leading dimension. In the simplest
form, it uses a stride of 1 for the first dimension; however, certain subroutines may
allow you to specify a stride for the first dimension that is greater than 1. For
details, see “How Leading Dimension Is Used for Matrices” on page 81. (In the
area of Fourier transforms, a two-dimensional sequence may be stored in
transposed form in an array. In this case, the stride for the second dimension is 1,
and the stride for the first dimension is the leading dimension of the array.)

Three-Dimensional Sequences
A three-dimensional sequence is represented as a series of blocks of elements. Each
block is equivalent to a two-dimensional sequence. The number of blocks indicates
the length of the third dimension. The three subscripts indicate the element
positions in the first, second, and third dimensions, respectively:

Chapter 3. Setting Up Your Data Structures 127

Three-Dimensional Sequence Storage Representation
Each block of elements in a three-dimensional sequence is stored successively in an
array. The stride for the third dimension is used to select the elements for each
successive block of elements in the array. The starting point of the
three-dimensional sequence is specified as the argument for the sequence in the
ESSL calling statement. For example, if the three-dimensional sequence is contained
in array BIG, declared as BIG(1:20,1:30,1:10), and starts at the second element in
the first dimension, the third element in the second dimension, and the first
element in the third dimension of array BIG, you should specify BIG(2,3,1) as the
argument for the sequence, such as in:

CALL SCFT3 (BIG(2,3,1),20,600,Y,32,2056,16,20,10,1,1.0,AUX,30000)

See “How Stride Is Used for Three-Dimensional Sequences” on page 129 for a
detailed description of how three-dimensional sequences are stored within arrays
using strides.

128 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

How Stride Is Used for Three-Dimensional Sequences
The elements of the three-dimensional sequence can be defined as aijk for i = 1, m, j
= 1, n, and k = 1, p. The first two subscripts, i and j, define the elements in the first
two dimensions of the sequence, and the third subscript, k, defines the elements in
the third dimension. Using this definition of three-dimensional sequences, this
explains how these elements are mapped into an array using the concepts of stride.
(Remember that the elements aijk are the elements of the conceptual data structure,
the three-dimensional sequence to be processed by ESSL. The sequence does not
have to include all the elements in the array. Strides are used by the ESSL
subroutines to select the desired elements to be processed in the array.)

The sequence elements in the first two dimensions are mapped into an array in the
same way a matrix or two-dimensional sequence is mapped into an array. It uses
all the items listed in “How Leading Dimension Is Used for Matrices” on page 81,
such as the starting point, the number of rows and columns, and the leading
dimension. In the simplest form, the stride for the first dimension, inc1, of a
three-dimensional sequence is assumed to be 1, as for matrices; however, certain
subroutines may allow you to specify a stride for the first dimension that is greater
than 1. The stride for the second dimension, inc2, of a three-dimensional sequence
is equivalent to the leading dimension for a matrix.

The stride for the third dimension, inc3, is used to define the array elements that
make up the third dimension of the three-dimensional sequence. The stride for the
third dimension is used as an increment to step through the array to find the
starting point for each of the p successive blocks of elements in the array. The
stride, inc3, must always be positive. It must always be greater than or equal to the
number of elements to be processed in the first two dimensions; that is, inc3 ≥
(inc2)(n).

A three-dimensional sequence is usually stored in a one-, two-, or
three-dimensional array; however, for the sake of this discussion, a
three-dimensional array is used here. For an array, A, declared as
A(E1:E2,F1:F2,G1:G2), the strides in the first, second, and third dimensions are:

inc1 = 1
inc2 = (E2-E1+1)
inc3 = (E2-E1+1)(F2-F1+1)

Given an array A, declared as A(1:7,1:3,0:3), where the lengths of the first,
second, and third dimensions are 7, 3, and 4, respectively, the resulting strides are
inc1 = 1, inc2 = 7, and inc3 = 21.

The starting point for a three-dimensional sequence in an array is at the location
specified by the argument for the sequence in the ESSL calling statement. Using
the array A, described above, if you specify A(2,2,1) for a three-dimensional
sequence, where A is defined as follows, in four blocks, for planes 0 - 3,
respectively:

1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0 64.0 71.0 78.0
2.0 9.0 16.0 23.0 30.0 37.0 44.0 51.0 58.0 65.0 72.0 79.0
3.0 10.0 17.0 24.0 31.0 38.0 45.0 52.0 59.0 66.0 73.0 80.0
4.0 11.0 18.0 25.0 32.0 39.0 46.0 53.0 60.0 67.0 74.0 81.0
5.0 12.0 19.0 26.0 33.0 40.0 47.0 54.0 61.0 68.0 75.0 82.0
6.0 13.0 20.0 27.0 34.0 41.0 48.0 55.0 62.0 69.0 76.0 83.0
7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0 77.0 84.0

Chapter 3. Setting Up Your Data Structures 129

then processing begins in the second block of elements at row 2 and column 2 in
array A, which is 30.0. The stride in the third dimension is then used to find the
starting point for each of the next p-1 successive blocks of elements in the array.
The stride, inc3, is added to the starting point p-1 times. In this example, the stride
for the third dimension is 21, and the number of blocks of elements, p, to be
processed is 3, so the starting points in array A are A(2,2,1), A(2,2,2), and
A(2,2,3). These are elements 30.0, 51.0, and 72.0. These array elements then
correspond to the sequence elements a111, a112, and a113, respectively.

In general terms, this results in the following starting positions for the blocks of
elements in the array:

A(BEGINI, BEGINJ, BEGINK)
A(BEGINI, BEGINJ, BEGINK+1)
A(BEGINI, BEGINJ, BEGINK+2)
.
.
A(BEGINI, BEGINJ, BEGINK+p-1)

Using m = 4, n = 2, and p = 3 to define the elements of the three-dimensional data
structure in this example, the resulting three-dimensional sequence is defined as
follows, in three blocks, for planes 0 - 2, respectively:

Plane 0: Plane 1: Plane 2:
a000 a010 a001 a011 a002 a012

a100 a110 a101 a111 a102 a112

a200 a210 a201 a211 a202 a212

a300 a310 a301 a311 a302 a312

Plane 0: Plane 1: Plane 2:
30.0 37.0 51.0 58.0 72.0 79.0
31.0 38.0 52.0 59.0 73.0 80.0
32.0 39.0 53.0 60.0 74.0 81.0
33.0 40.0 54.0 61.0 75.0 82.0

As shown in this example, the three-dimensional sequence does not have to
include all the blocks of elements in the array. In this case, the three-dimensional
sequence includes only the second through the fourth block of elements in the
array. The first block is not used. Elements of an array are selected as they are
arranged in storage, regardless of the number of dimensions defined in the array.
Therefore, when using a one- or two-dimensional array to store your
three-dimensional sequence, you should understand how your array elements are
stored to ensure that elements are selected properly. See “Setting Up Arrays in
Fortran” on page 132 for a description of array storage.

Note: Three-dimensional sequences are used by the three-dimensional Fourier
transform subroutines and the Multidimensional Fourier transform subroutines. By
specifying certain stride values for inc1, inc2, and inc3 and declaring your arrays to
have certain number of dimensions, you achieve optimal performance in these
subroutines. For details, see “Setting Up Your Data” on page 987 for each
subroutine.

130 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 4. Coding Your Program

This provides you with information you need to code your Fortran, C, and C++
programs.

Fortran Programs
This describes how to code your Fortran program using any of the ESSL run-time
libraries.

Calling ESSL Subroutines and Functions in Fortran
In Fortran programs, most ESSL subroutines are invoked with the CALL statement:

An example of a calling sequence for the SAXPY subroutine might be:

The remaining ESSL subroutines are invoked as functions by coding a function
reference. You first declare the type of value returned by the function: short- or
long-precision real, short- or long-precision complex, or integer. Then you code the
function reference as part of an expression in a statement. An example of declaring
and invoking the DASUM function might be:

Values are returned differently for ESSL subroutines and functions. For
subroutines, the results of the computation are returned in an argument specified
in the calling sequence. In the CALL statement above, the result is returned in
argument Y. For functions, the result is returned as the value of the function. In the
assignment statement above, the result is assigned to SUM.

See the Fortran publications for details on how to code the CALL statement and a
function reference.

Setting Up a User-Supplied Subroutine for ESSL in Fortran
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in Fortran, there are some coding rules you must
follow:
v You must declare subf as EXTERNAL in your program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 1200. For examples of coding
a subf subroutine in Fortran, see the subroutine descriptions there.

CALL subroutine-name (argument-1, . . . , argument-n)

CALL SAXPY (5,A,X,J+INC,Y,1)

DOUBLE PRECISION DASUM,SUM,X
.
.
.

SUM = DASUM (N,X,INCX)

© Copyright IBM Corp. 1986, 2015 131

Setting Up Scalar Data in Fortran
Table 43 lists the scalar data types in Fortran that are used for ESSL. Only those
types and lengths used by ESSL are listed.

Table 43. Scalar Data Types in Fortran Programs

Terminology Used by ESSL Fortran Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

CHARACTER*1

'N', 'T', 'C'

32-bit logical item 4

.TRUE., .FALSE.

LOGICAL or LOGICAL*4

.TRUE., .FALSE.

64-bit logical item 4

.TRUE., .FALSE.

LOGICAL or LOGICAL*8

.TRUE., .FALSE.

32-bit integer 2, 4

12345, -12345

INTEGER or INTEGER*4

12345, -12345

64-bit integer 4

12345, -12345

INTEGER or INTEGER*8

12345_8, -12345_8

Short-precision real number3

12.345

REAL or REAL*4

0.12345E2

Long-precision real number3

12.345

DOUBLE PRECISION, REAL, or REAL*8

0.12345D2

Short-precision complex number3

(123.45, -54321.0)

COMPLEX or COMPLEX*8

(123.45E0, -543.21E2)

Long-precision complex number3

(123.45, -54321.0)

COMPLEX or COMPLEX*16

(123.45D0, -543.21D2)

Note:

1. ESSL accepts character data in either upper- or lowercase in its calling sequences.

2. For a 32-bit integer, 64-bit pointer environment, in accordance with the LP64 data
model, all ESSL integer arguments remain 32 bits except for the iusadr argument for
ERRSET.

3. Short- and long-precision numbers look the same in this documentation.

4. The default size for INTEGER and LOGICAL data entities that have no length or kind
specified is 32 bits. However, the -qintsize=8 compiler option sets the size of such
INTEGER and LOGICAL data entities to 64 bits.

Setting Up Arrays in Fortran
Arrays are declared in Fortran by specifying the array name, the number of
dimensions, and the range of each dimension in a DIMENSION statement or an
explicit data type statement, such as REAL, DOUBLE PRECISION, and so forth.

Real and Complex Array Elements
Each array element can be either a real or complex data item of short or long
precision. The type of the array determines the size of the element storage
locations. Short-precision data requires 4 bytes, and long-precision data requires 8
bytes. Complex data requires two storage locations of either 4 or 8 bytes each, for
short or long precision, respectively, to accommodate the two parts of the complex

132 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

number: c = a+bi. Therefore, exactly twice as much storage is required for complex
data as for real data of the same precision. See “How Do You Set Up Your Scalar
Data?” on page 46 for a description of real and complex numbers.

Even though complex data items require two storage locations, the same number
of elements exist in the array as for real data. A reference to an element—for
example, C(3)—in an array containing complex data gives you the whole complex
number; that is, it contains both a and b, where the complex number is expressed
as follows:

C(I)←(ai, bi) for a one-dimensional array
C(I,J)←(aij, bij) for a two-dimensional array
C(I,J,K)←(aijk, bijk) for a three-dimensional array

One-Dimensional Array
For a one-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2)

where A is the name of the array, E1 is the lower bound, and E2 is the upper bound
of the single dimension in the array. If the lower bound is not specified, such as in
A(E2), the value is assumed to be 1. The upper bound is required.

A one-dimensional array is stored in ascending storage locations (relative to some
base storage address) in the following order:

Relative Location
Array Element

1 A(E1)
2 A(E1+1)
3 A(E1+2)
. .
. .
. .
E2–E1+1

A(E2)

For example, the array A of length 4 specified in the DIMENSION statement as
A(0:3) and containing the following elements:
A = (1, 2, 3, 4)

has its elements arranged in storage as follows:

Relative Location
Array Element Value

1 1
2 2
3 3
4 4

Two-Dimensional Array
For a two-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2,F1:F2)

where A is the name of the array. E1 and F1 are the lower bounds of the first and
second dimensions, respectively, and E2 and F2 are the upper bounds of the first
and second dimensions, respectively. If either of the lower bounds is not specified,
such as in A(E2,F1:F2), the value is assumed to be 1. The upper bounds are

Chapter 4. Coding Your Program 133

always required for each dimension. For examples of Fortran 77 usage, see
“SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX
(Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate
Transpose)” on page 324.

The elements of a two-dimensional array are stored in column-major order; that is,
they are stored in the following ascending storage locations (relative to some base
storage address) with the value of the first (row) subscript expression increasing
most rapidly and the value of the second (column) subscript expression increasing
least rapidly. Following are the locations of the elements in the array:

Relative Location
Array Element

1 A(E1,F1) (starting column 1)
2 A(E1+1,F1)
. .
. .
. .
E2–E1+1

A(E2,F1)
(E2–E1+1)+1

A(E1,F1+1) (starting column 2)
(E2–E1+1)+2

A(E1+1,F1+1)
. .
. .
. .
(E2–E1+1)(2)

A(E2,F1+1)
(E2–E1+1)(2)+1

A(E1,F1+2) (starting column 3)
(E2–E1+1)(2)+2

A(E1+1,F1+2)
. .
. .
. .
(E2–E1+1)(F2–F1)

A(E2,F2-1)
(E2–E1+1)(F2–F1)+1

A(E1,F2) (starting column F2-F1+1)
(E2–E1+1)(F2–F1)+2

A(E1+1,F2)
. .
. .
. .
(E2–E1+1)(F2–F1+1)

A(E2,F2)

For example, the 3 by 4 array A specified in the DIMENSION statement as
A(2:4,1:4) and containing the following elements:

┌ ┐
| 11 12 13 14 |

A = | 21 22 23 24 |
| 31 32 33 34 |
└ ┘

has its elements arranged in storage as follows:

134 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Relative Location
Array Element Value

1 11 (starting column 1)
2 21
3 31
4 12 (starting column 2)
5 22
6 32
7 13 (starting column 3)
8 23
9 33
10 14 (starting column 4)
11 24
12 34

Each element A(I,J) of the array A, declared A(1:n, 1:m), containing real or complex
data, occupies the storage location whose address is given by the following
formula:

address {A(I,J)} = address {A} + (I-1 + n(J-1))f

for:

I = 1, n and
J = 1, m

where:

f = 4 for short-precision real numbers
f = 8 for long-precision real numbers
f = 8 for short-precision complex numbers
f = 16 for long-precision complex numbers

Three-Dimensional Array
For a three-dimensional array in Fortran 77, you can code:

DIMENSION A(E1:E2,F1:F2,G1:G2)

where A is the name of the array. E1, F1, and G1 are the lower bounds of the first,
second, and third dimensions, respectively, and E2, F2, and G2 are the upper
bounds of the first, second, and third dimensions, respectively. If any of the lower
bounds are not specified, such as in A(E1:E2,F1:F2,G2), the value is assumed to be
1. The upper bounds are always required for each dimension. For examples of
Fortran 77 usage, see “SCFT3 and DCFT3 (Complex Fourier Transform in Three
Dimensions)” on page 1079.

The elements of a three-dimensional array can be thought of as a set of
two-dimensional arrays, stored sequentially in ascending storage locations in the
array. In the three-dimensional array, the value of the first (row) subscript
expression increases most rapidly, the second (column) subscript expression
increases less rapidly, and the third subscript expression (set of rows and columns)
increases least rapidly. Following are the locations of the elements in the array:

Relative Location
Array Element

1 A(E1,F1,G1) (starting the first set)
2 A(E1+1,F1,G1)

Chapter 4. Coding Your Program 135

. .

. .

. .
(E2–E1+1)(F2–F1+1)

A(E2,F2,G1)
(E2–E1+1)(F2–F1+1)+1

A(E1,F1,G1+1) (starting the second set)
(E2–E1+1)(F2–F1+1)+2

A(E1+1,F1,G1+1)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(2)

A(E2,F2,G1+1)
(E2–E1+1)(F2–F1+1)(2)+1

A(E1,F1,G1+2) (starting the third set)
(E2–E1+1)(F2–F1+1)(2)+2

A(E1+1,F1+2)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(G2–G1)

A(E2,F2,G2–1)
(E2–E1+1)(F2–F1+1)(G2–G1)+1

A(E1,F1,G2) (starting the last set*)
(E2–E1+1)(F2–F1+1)(G2–G1)+2

A(E1+1,F1,G2)
. .
. .
. .
(E2–E1+1)(F2–F1+1)(G2–G1+1)

A(E2,F2,G2)

* The last set is the G2–G1+1 set.

For example, the 3 by 2 by 4 array A specified in the DIMENSION statement as
A(1:3,0:1,2:5) and containing the following sets of rows and columns of
elements:

┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
| 111 121 | | 112 122 | | 113 123 | | 114 124 |

A = | 211 221 | | 212 222 | | 213 223 | | 214 224 |
| 311 321 | | 312 322 | | 313 323 | | 314 324 |
└ ┘ └ ┘ └ ┘ └ ┘

has its elements arranged in storage as follows:

Relative Location
Array Element Value

1 111 (starting the first set)
2 211
3 311
4 121
5 221
6 321
7 112 (starting the second set)
8 212
9 312

136 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

10 122
11 222
12 322
13 113 (starting the third set)
14 213
15 313
16 123
17 223
18 323
19 114 (starting the fourth set)
20 214
21 314
22 124
23 224
24 324

Each element A(I,J,K) of the array A, declared A(1:n, 1:m, 1:p), containing real or
complex data, occupies the storage location whose address is given by the
following formula:

address {A(I,J,K)} = address {A} + (I-1 + n(J-1) + mn(K-1))f

for:

I = 1, n
J = 1, m
K = 1, p

where:

f = 4 for short-precision real numbers
f = 8 for long-precision real numbers
f = 8 for short-precision complex numbers
f = 16 for long-precision complex numbers

Creating Multiple Threads and Calling ESSL from Your Fortran
Program

The following example shows how to create up to a maximum of eight threads,
where each thread calls the DURAND and DGEICD subroutines.

Note: Be sure to compile this program with the xlf_r command and the -qnosave
option.

Chapter 4. Coding Your Program 137

Handling Errors in Your Fortran Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

program matinv_example
implicit none

!
! program to invert m nxn random matrices
!

real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
real(8) :: dummy_aux, seed=1998, sd
integer :: rc, i, m=8, n=500, iopt=3, naux=0

!
! allocate storage
!

allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)
call error_exit(rc,"Allocation of rcond")

!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,a,iopt,rcond,det,dummy_aux,naux)

do i=1,m

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),

& dummy_aux,naux)
enddo

write(*,*)’Reciprocal condition numbers of the matrices are:’
write(*,’(4E12.4)’) rcond

!
deallocate(A,stat=rc)

call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)
call error_exit(rc,"Deallocation of det")
deallocate(rcond,stat=rc)
call error_exit(rc,"Deallocation of rcond")
stop

contains
subroutine error_exit(error_code,string)
character(*) :: string
integer :: error_code
if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code
stop 1
end subroutine error_exit

end

138 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the subroutine
descriptions.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in Fortran” and “Computational Errors in Fortran” on
page 142 explain how to use these facilities by describing the additional statements
you must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in Fortran”
and “Computational Errors in Fortran” on page 142 on each thread that calls ESSL.
An example is shown in “Example of Handling Errors in a Multithreaded
Application Program” on page 147.

Input-Argument Errors in Fortran
To obtain corrected input-argument values in a Fortran program and to avert
program termination for the optionally-recoverable input-argument errors 2015,
2030, and 2200 add the statements in the following steps your program. Steps 3
and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps
makes the effect of the call to ERRSET temporary.

Step 1. Declare ENOTRM as External:

This declares the ESSL error exit routine ENOTRM as an external reference in your
program. This should be coded in the beginning of your program before any of the
following statements.

Step 2. Call EINFO for Initialization:

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It
is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see “EINFO (ESSL Error Information-Handler
Subroutine)” on page 1252.

Step 3. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 7, for ERRSTR. For information on whether

EXTERNAL ENOTRM

CALL EINFO (0)

CALL ERRSAV (ierno,tabent)

Chapter 4. Coding Your Program 139

you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71. For an example, see “Computational Errors in Fortran Example 3” on
page 146, as the use is the same as for computational errors.

Step 4. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)
v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030 or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 210. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 5. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg-1,..., arg-n are the input and output arguments.
v yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran

statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to
the corresponding statement number when a nonzero return code value is
returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description.

Step 6. Perform the Desired Action:
These are the statements at statement number yyy or zzz, shown in the CALL
statement in Step 5, and preceded by an “*”. The statement to which control is
passed corresponds to the return code value for the error.

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

140 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

These statements perform whatever action is desired when the recoverable error
occurs. These statements may check the new values set in the input arguments to
determine whether adequate program storage is available, and then decide
whether to continue or terminate the program. Otherwise, these statements may
check that the size of the working storage arrays or the length of the transform
agrees with other data in the program. The program may also store this corrected
input argument value for future reference.

Step 7. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 3, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see “How Can You Control Error
Handling in Large Applications by Saving and Restoring Entries in the Error
Option Table?” on page 71. For an example, see “Computational Errors in Fortran
Example 3” on page 146, as the use is the same as for computational errors.

Input-Argument Errors in Fortran Example
This example shows an error code 2015, which resets the size of the work area aux,
specified in naux, if the value specified is too small. It also indicates that no error
messages should be issued.

CALL ERRSTR (ierno,tabent)

Chapter 4. Coding Your Program 141

Computational Errors in Fortran
To obtain information about an ESSL computational error in a Fortran program,
add the statements in the following steps to your program. Steps 2 and 7 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary. For a list of those computational errors that
return information and to which these steps apply, see “EINFO (ESSL Error
Information-Handler Subroutine)” on page 1252.

Step 1. Call EINFO for Initialization:

This calls the EINFO subroutine with one argument of value 0 to initialize the
ESSL error option table. It is required only if you call ERRSET in your program. It

.

.

.
C DECLARE ENOTRM AS EXTERNAL

EXTERNAL ENOTRM
.
.
.

C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C MAKE ERROR CODE 2015 A RECOVERABLE
C ERROR AND SUPPRESS PRINTING ALL
C ERROR MESSAGES FOR IT

CALL ERRSET(2015,0,-1,0,ENOTRM,2015)
.
.
.

C CALL ESSL ROUTINE SWLEV.
C IF THE NAUX INPUT
C ARGUMENT IS TOO SMALL, ERROR
C 2015 OCCURS. THE MINIMUM VALUE
C REQUIRED IS STORED IN THE NAUX
C INPUT ARGUMENT AND CONTROL GOES
C TO LABEL 400.

CALL SWLEV(X,INCX,U,INCU,Y,INCY,N,AUX,NAUX,*400)
.
.
.

C CHECK THE RESULTING INPUT ARGUMENT
C VALUE IN NAUX AND TAKE THE
C DESIRED ACTION
400 .

.

.

CALL EINFO (0)

142 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

is coded only once in the beginning of your program before any calls to ERRSET.
For a description of EINFO, see “EINFO (ESSL Error Information-Handler
Subroutine)” on page 1252.

Step 2. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, tabent, which is
accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 7, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71.

Step 3. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
“EINFO (ESSL Error Information-Handler Subroutine)” on page 1252. To allow
your program to continue after an error in the specified range occurs, inoal must be
set to a value greater than 1. For ESSL, iusadr should be specified as either 0 or 1 in
a 32-bit integer, 32-bit pointer environment (0_8 or 1_8 in a 32-bit integer, 64-bit
pointer environment or a 64-bit integer, 64-bit pointer environment), so a user exit
is not taken.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 215. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 4. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg-1,..., arg-n are the input and output arguments.

CALL ERRSAV (ierno,tabent)

CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

Chapter 4. Coding Your Program 143

v yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran
statement numbers indicating where you want to branch when you get a
nonzero return code. Each corresponds to a different ESSL value. Control goes to
the corresponding statement number when a nonzero return code value is
returned for the CALL statement. Return code values are described under “Error
Conditions” in each ESSL subroutine description.

Step 5. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v nmbr is the statement number yyy, zzz, or any of the other statement numbers

preceded by an “*” in the CALL statement in Step 4, corresponding to the return
code value for this error code.

v icode is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
For a description of EINFO, see “EINFO (ESSL Error Information-Handler
Subroutine)” on page 1252.

Step 6. Check the Values in the Information Receivers:
These statements check the values returned in the output argument information
receivers, inf1 and inf2, which contain the information about the computational
error.

Step 7. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area, tabent,
which is accessible to your program. ERRSTR must be called for each entry you
want to store. This step is used, along with step 2, for ERRSAV. For information on
whether you should use ERRSAV and ERRSTR, see “How Can You Control Error
Handling in Large Applications by Saving and Restoring Entries in the Error
Option Table?” on page 71.

Computational Errors in Fortran Example 1
This 32-bit integer, 64-bit pointer environment example shows an error code 2104,
which returns one piece of information: the index of the last diagonal with
nonpositive value (I1).

nmbr CALL EINFO (icode,inf1)
-or-
nmbr CALL EINFO (icode,inf1,inf2)

CALL ERRSTR (ierno,tabent)

144 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Computational Errors in Fortran Example 2
This 32-bit integer, 64-bit pointer environment example shows an error code 2103,
which returns one piece of information: the index of the zero diagonal (I1) found
by DGEF.

.

.

.
C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C ALLOW 100 ERRORS FOR CODE 2104
CALL ERRSET(2104,100,0,0,0_8,2104)
.
.
.

C CALL ESSL ROUTINE DPPF.
C IF THE INPUT MATRIX IS NOT
C POSITIVE DEFINITE, CONTROL GOES TO
C LABEL 400

IOPT=0
CALL DPPF(APP,N,IOPT,*400)
.
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2104 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST NONPOSITIVE DIAGONAL FOUND
C BY ROUTINE DPPF
400 CALL EINFO (2104,I1)

.

.

.

Chapter 4. Coding Your Program 145

Computational Errors in Fortran Example 3
This 32-bit integer, 64-bit pointer environment example shows an error code 2100,
which returns two pieces of information: the lower range (I1) and the upper range
(I2). It uses ERRSAV and ERRSTR to insulate the effects of the error handling for
error 2100 by this program.

.

.

.
C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
.
.
.

C ALLOW 100 ERRORS FOR CODE 2103
CALL ERRSET(2103,100,0,0,0_8,2103)
.
.
.

C CALL ESSL SUBROUTINE DGEF.
C IF THE INPUT MATRIX IS
C SINGULAR, CONTROL GOES TO
C LABEL 400

CALL DGEF(A,LDA,N,IPVT,*400)
.
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2103 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST ZERO DIAGONAL FOUND BY
C SUBROUTINE DGEF
400 CALL EINFO (2103,I1)

.

.

.

146 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example of Handling Errors in a Multithreaded Application
Program

This 32-bit integer, 64-bit pointer environment example shows how to modify the
MATINV_EXAMPLE program in “Creating Multiple Threads and Calling ESSL
from Your Fortran Program” on page 137 with calls to the ESSL error handling
subroutines. The ESSL error handling subroutines are called from each thread to:
initialize the error option table, save the current error option table values for
input-argument error 2015 and computational error 2105, change the default values
for errors 2015 and 2105, and then restore the original default values for errors
2015 and 2105.

.

.
C DECLARE AN AREA TO SAVE THE
C ERROR OPTION TABLE INFORMATION
C FOR ERROR CODE 2100

CHARACTER*8 SAV2100
.
.

C INITIALIZE THE ESSL ERROR
C OPTION TABLE

CALL EINFO(0)
C SAVE THE EXISTING ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2100

CALL ERRSAV(2100,SAV2100)
.
.

C ALLOW 255 ERRORS FOR CODE 2100
CALL ERRSET(2100,255,0,0,0_8,2100)
.
.

C CALL ESSL SUBROUTINE DQINT.
C IF AN INVALID INDEX IS
C COMPUTED, CONTROL GOES TO LABEL 400

CALL DQINT(S,G,OMEGA,X,INCX,N,T,INCT,Y,INCY,M,*400)
.
.

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2100 TO
C RETURN TWO PIECES OF INFORMATION.
C VARIABLE I1 CONTAINS THE LOWER RANGE
C FOR THE COMPUTED INDEX.
C VARIABLE I2 CONTAINS THE UPPER RANGE
C FOR THE COMPUTED INDEX.
400 CALL EINFO (2100,I1,I2)

.

.
C RESTORE THE PREVIOUS ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2100.
C ERROR PROCESSING RETURNS TO HOW IT
C WAS BEFORE IT WAS ALTERED BY THE ABOVE
C ERRSET STATEMENT.

CALL ERRSTR(2100,SAV2100)
.
.

Chapter 4. Coding Your Program 147

program matinv_example
implicit none

!
! program to invert m nxn random matrices
!

real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
real(8) :: dummy_aux, seed=1998, sd
integer :: rc, i, m=8, n=500, iopt=3, naux=0
integer :: inf1(8)
character(8) :: sav2015(8)
character(8) :: sav2105(8)!
external ENOTRM

!
! allocate storage

allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)

call error_exit(rc,"Allocation of rcond")
!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,m,a,iopt,rcond,det,dummy_aux,naux,sav2015,sav2105,inf1)

do i=1,m
!
! initialize error handling

call einfo(0)
!
! Save existing option table values for error 2015

call errsav(2015,sav2015(i))
!
! Set Error 2015 to be non-recoverable so dgeicd will dynamically
! allocate the work area.

call errset(2015,100,100,0,1_8,2015)
!
! Save existing option table values for error 2105

call errsav(2105,sav2105(i))
!
! Set Error 2105 to be recoverable

call errset(2105,100,100,0,ENOTRM,2105)
!

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),

& dummy_aux,naux,*10,*20)
10 goto 30
!
! Catch singular matrix returned by dgeicd.
20 CALL EINFO(2105,inf1(i))

WRITE(*,*) ’ERROR: Zero pivot found at location ’,inf1(i)
!
! Restore the error option table entries
30 continue

call errstr(2015,SAV2015(i))
call errstr(2105,SAV2105(i))

enddo

148 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C Programs
This describes how to code your C program.

Calling ESSL Subroutines and Functions in C
This shows how to call ESSL subroutines and functions from your C program.

Before You Call ESSL
Before you can call the ESSL subroutines from your C program, you must have the
appropriate ESSL header file installed on your system. The ESSL header file allows
you to code your function calls as described here. It contains entries for all the
ESSL subroutines. The ESSL header file is distributed with the ESSL package. The
ESSL header file to be used with the C compiler is named essl.h. You should
check with your system support group to verify that the appropriate ESSL header
file is installed.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are planning to create your own threads for the ESSL Thread-Safe or SMP
Libraries, you must include the pthread.h header file as the first include file in
your C program. For an example, see “Creating Multiple Threads and Calling ESSL
from Your C Program” on page 154.

Coding the Calling Sequences
In C programs, the ESSL subroutines, not returning a function value, are invoked
with the following type of statement:

An example of a calling sequence for SAXPY might be:

write(*,*)’Reciprocal condition numbers of the matrices are:’
write(*,’(4E12.4)’) rcond

!
deallocate(A,stat=rc)
call error_exit(rc,"Deallocation of matrix A")
deallocate(det,stat=rc)
call error_exit(rc,"Deallocation of det")

deallocate(rcond,stat=rc)
call error_exit(rc,"Deallocation of rcond")
stop
contains

subroutine error_exit(error_code,string)
character(*) :: string
integer :: error_code
if(error_code .eq. 0) return
write(0,*)string,": failing return code was ",error_code
stop 1
end subroutine error_exit

end

subroutine-name (argument-1, . . . , argument-n);

Chapter 4. Coding Your Program 149

saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

An example of invoking DASUM might be:
sum = dasum (n,x,incx);

See the C publications for details about how to code the function calls.

Passing Arguments in C
This describes how to pass arguments in your C program.

About the Syntax Shown in this Documentation
The argument syntax shown assumes that you have installed and are using the
ESSL header file. For further details, see “Calling ESSL Subroutines and Functions
in C” on page 149.

No Optional Arguments
In the ESSL calling sequences for C, there are no optional arguments, as for some
programming languages. You must code all the arguments listed in the syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL
calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output argument is a scalar data item, it
must be passed by reference. This is true for all scalar data types: real, complex,
and so forth. When this occurs, it is listed in the notes of each subroutine
description.

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings n and t, respectively:
sgeadd (a,5,"n",b,3,"t",c,4,4,3);

Altered Arguments When Using Error Handling: If you use ESSL error handling
in your C program, as described in “Handling Errors in Your C Program” on page
156, you must pass by reference all the arguments that can potentially be altered
by ESSL error handling. This applies to all your ESSL call statements after the

function-value-name=subroutine-name (argument-1, . . . , argument-n);

150 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

point where you code the #define statement, shown in step 1 in “Input-Argument
Errors in C” on page 156 and in step 1 in “Computational Errors in C” on page
161. The two types of ESSL arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

Setting Up a User-Supplied Subroutine for ESSL in C
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C, there are some coding rules you must follow
for the subf subroutine:
v You can code the subf subroutine using only C or Fortran.
v You must declare subf as an external subroutine in your application program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 1200. For an example of
coding a subf subroutine in C, see Example 1.

Setting Up Scalar Data in C
Table 44 lists the scalar data types in C that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 44. Scalar Data Types in C Programs

Terminology Used by ESSL C Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

char *

“n”, “t”, “c”

32-bit logical item5

.TRUE., .FALSE.

int

For additional information, see “Using
Logical Data in C” on page 153.2

64-bit logical item5

.TRUE., .FALSE.

long

For additional information, see “Using
Logical Data in C” on page 153.2

32-bit integer

12345, -12345

int

64-bit integer5

12345l, -12345l

long

Short-precision real number4

12.345

float

Long-precision real number4

12.345

double

Short-precision complex number4

(123.45, -54321.0)

Specify it as described in “Setting Up
Complex Data Types in C” on page 152.

Long-precision complex number4

(123.45, -54321.0)

Specify it as described in “Setting Up
Complex Data Types in C” on page 152.

Chapter 4. Coding Your Program 151

Table 44. Scalar Data Types in C Programs (continued)

Terminology Used by ESSL C Equivalent

Note:

1. ESSL accepts character data in either upper- or lowercase in its calling sequences.

2. There are no equivalent data types for logical data in C. These require special
procedures. For details, see “Using Logical Data in C” on page 153.

3. For a 32-bit integer, 64-bit pointer environment, in accordance with the LP64 data
model, all ESSL integer arguments remain 32-bits except for the iusadr argument for
ERRSET.

4. Short- and long-precision numbers look the same in this documentation.

5. If you are using the ESSL hear file in a 64-bit integer, 64-bit pointer environment, add
-D_ESV6464 to your compiler command to define the integer and logical arguments as
long.

Setting Up Complex Data Types in C
You can set up complex data as follows:
v “Complex Data on AIX”
v “Complex Data on Linux (little endian mode)” on page 153

Complex Data on AIX
ESSL provides identifiers, cmplx and dcmplx, for complex data types, defined in the
ESSL header file, as well as two macro definitions, RE and IM, for handling the
real and imaginary parts of complex numbers:

#ifndef _CMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { float _re, _im;}

_data; double _align;} cmplx;
#endif
#ifndef _DCMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { double _re, _im;}

_data; double _align;} dcmplx;
#endif
#ifdef _REIM
#define RE(x) ((x)._data._re)
#define IM(x) ((x)._data._im)
#endif

You must, therefore, code an include statement for the ESSL header file in the
beginning of your program to use these definitions. For details, see “Calling ESSL
Subroutines and Functions in C” on page 149.

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or dcmplx, you can pass them as short- and long-precision complex data
to ESSL, respectively. You may want to write a CSET macro to initialize complex
variables, using the RE and IM macros provided in the ESSL header file. Following
is an example of how to use the CSET macro to initialize the complex variable
alpha:

#include <essl.h>
#define CSET(x,a,b) (RE(x)=a, IM(x)=b)
main()
{

152 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

cmplx alpha,t[3],s[5];
.
.
.
CSET (alpha,2.0,3.0);
caxpy (3,alpha,s,1,t,2);
.
.
.
}

If you choose to use your own definitions for complex data, instead of those
provided in the ESSL header file, you can define _CMPLX and _DCMPLX in your
program for short- and long-precision complex data, respectively, using the
following #define statements. These statements are coded with your global
declares in the front of your program and must be coded before the #include
statement for the ESSL header file.

#define _CMPLX
#define _DCMPLX

If you prefer to define your complex data at compile time, you can use the job
processing procedures described in Chapter 5, “Processing Your Program,” on page
183.

Complex Data on Linux (little endian mode)
The ESSL header file supports C99 complex floating-point types for complex
arithmetic (<complex.h>).

Assuming you are using the ESSL header file, if you declare data items to be of
type float_Complex or double_Complex, you can pass them as short- and
long-precision complex data to ESSL, respectively.

Using Logical Data in C
Logical data types are not part of the C language; however, some ESSL subroutines
require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

For 32-bit logical arguments
Use this macro definition:

#define FALSE 0
#define TRUE 1

For 64-bit logical arguments
Use this macro definition:

#define FALSE 0l
#define TRUE 1l

Setting Up Arrays in C
C arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in “Setting Up Arrays in Fortran” on page 132. To pass an array from

Chapter 4. Coding Your Program 153

your C program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C program, you can do any of the
following:
v Build and process the matrix, logically transposed from the outset, and transpose

the results as necessary.
v Before the ESSL call, transpose the input arrays. Then, following the ESSL call,

transpose any arrays updated as output.
v If there are arguments in the ESSL calling sequence indicating whether the

arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see “SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's
Algorithm)” on page 445.

Creating Multiple Threads and Calling ESSL from Your C
Program

The 32-bit integer, 64-bit pointer environment example shown below shows how to
create two threads, where each thread calls the ISAMAX subroutine. To use the
pthreads library, you must specify the pthread.h header file as the first include file
in your program.

Note: Be sure to compile this program with the cc_r command.

154 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#include <essl.h>

/* Create structure for argument list */
typedef struct {
int n;
float *x;
int incx;

} arg_list;

/* Define prototype for thread routine */
void *Thread(void *v);

int main()
{
float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;
pthread_t second_th;
int rc;
arg_list a_l,b_l;

/* Creating argument list for the first thread */
a_l.n = 9;
a_l.incx = 1;
a_l.x = sx1;

/* Creating argument list for the second thread */
b_l.n = 8;
b_l.incx = 1;
b_l.x = sx2;

/* Creating first thread which calls the ESSL subroutine ISAMAX */
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
if (rc) exit(-1);

/* Creating second thread which calls the ESSL subroutine ISAMAX */
rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
if (rc) exit(-1);

sleep(1);
exit(0);
}

/* Thread routine which call ESSL routine ISAMAX */
void *Thread(void *v)
{
arg_list *al;
float *x;
int n,incx;
int i;

al = (arg_list *)(v);
x = al->x;
n = al->n;
incx = al->incx;

/* Calling the ESSL subroutine ISAMAX */
i = isamax(n,x,incx);
if (i == 8)
printf("max for sx2 should be 8 = %d\n",i);

else
printf("max for sx1 should be 6 = %d\n",i);

return NULL;
}

Chapter 4. Coding Your Program 155

Handling Errors in Your C Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200, which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the subroutine
descriptions.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in C” and “Computational Errors in C” on page 161
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in C” and
“Computational Errors in C” on page 161 on each thread that calls ESSL.

Input-Argument Errors in C
To obtain corrected input-argument values in a C program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
The extern statement declares the ESSL error exit routine ENOTRM as an external
reference in your program. After the point where you code these statements in
your program, you must pass by reference all ESSL calling sequence arguments
that can potentially be altered by ESSL error handling. This applies to all your
ESSL call statements. The two types of arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

Step 2. Declare the Variables:

/* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>

extern int enotrm();

156 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see “EINFO (ESSL Error Information-Handler Subroutine)”
on page 1252. These statements should be coded only once in the beginning of
your program before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71. For an example, see “Computational Errors in C Example” on page
163, as the use is the same as for computational errors.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)
v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

int (*iusadr) ();
int ierno,inoal,inomes,itrace,irange,irc,dummy;
char storarea[8];

iusadr = enotrm;
einfo (0,&dummy,&dummy);

errsav (&ierno,storarea);

errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

Chapter 4. Coding Your Program 157

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 210. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments. As explained in step 1, all

arguments that can potentially be altered by error handling must be coded by
reference.

v irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description.

Step 7. Perform the Desired Action:
These are the statements following the test for each value of the return code,
returned in irc in step 6. These statements perform whatever action is desired
when the recoverable error occurs. These statements may check the new values set
in the input arguments to determine whether adequate program storage is
available, and then decide whether to continue or terminate the program.
Otherwise, these statements may check that the size of the working storage arrays
or the length of the transform agrees with other data in the program. The program
may also store this corrected input argument value for future reference.

Step 8. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}

errstr (&ierno,storarea);

158 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 71. For an example, see “Computational Errors in
C Example” on page 163, as the use is the same as for computational errors.

Input-Argument Errors in C Example
This 32-bit integer, 64-bit pointer environment example shows an error code 2015,
which resets the size of the work area aux, specified in naux, if the value specified
is too small. It also indicates that no error messages should be issued.

Chapter 4. Coding Your Program 159

.

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define __ESVERR
#include <essl.h>
extern int enotrm();
.
.
.

/*DECLARE THE VARIABLES*/
main ()
{
int (*iusadr) ();
int ierno,inoal,inomes,itrace,irange,irc,dummy;
int naux;
.
.
.

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
iusadr = enotrm;
.
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);
.
.
.

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/

ierno = 2015;
inoal = 0;
inomes = -1;
itrace = 0;
irange = 2015;
errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);
.
.
.

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.*/

irc = swlev (x,incx,u,incu,y,incy,n,aux,&naux);
if irc == 1

{
. /*CHECK THE RESULTING INPUT ARGUMENT VALUE
. IN NAUX AND TAKE THE DESIRED ACTION*/
.
}

.

.

.
}

160 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Computational Errors in C
To obtain information about an ESSL computational error in a C program, add the
statements in the following steps to your program. Steps 4 and 9 for ERRSAV and
ERRSTR, respectively, are optional. Adding these steps makes the effect of the call
to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see “EINFO (ESSL Error
Information-Handler Subroutine)” on page 1252.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.
After the point where you code these statements in your program, you must pass
by reference all ESSL calling sequence arguments that can potentially be altered
by ESSL error handling. This applies to all your ESSL call statements. The two
types of arguments are:
v naux arguments for auxiliary storage
v n arguments for transform lengths

Step 2. Declare the Variables:

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

This statement calls the EINFO subroutine to initialize the ESSL error option table,
where dummy is a declared integer and is a placeholder. For a description of
EINFO, see “EINFO (ESSL Error Information-Handler Subroutine)” on page 1252.
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which

/* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>

int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char storarea[8];

einfo (0,&dummy,&dummy);

errsav (&ierno,storarea);

Chapter 4. Coding Your Program 161

is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71. For an example, see “Computational Errors in C Example” on page
163.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
“EINFO (ESSL Error Information-Handler Subroutine)” on page 1252. To allow
your program to continue after an error in the specified range occurs, inoal must be
set to a value greater than 1. For ESSL, iusadr should be specified as either 0 or 1 in
a 32-bit integer, 32-bit pointer environment (0l or 1l in a 32-bit integer, 64-bit
pointer environment or a 64-bit integer, 64-bit pointer environment), so a user exit
is not taken.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 215. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.

errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}
if irc == rc2

{
.
.
.

}

162 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v arg1,...,argn are the input and output arguments. As explained in step 1, all
arguments that can potentially be altered by error handling must be coded by
reference.

v irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description.

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v ierno is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C.
Both arguments must be passed by reference, because they are output scalar
arguments. For a description of EINFO, see “EINFO (ESSL Error
Information-Handler Subroutine)” on page 1252.

Step 8. Check the Values in the Information Receivers:
These statements check the values returned in the output argument information
receivers, inf1 and inf2, which contain the information about the computational
error.

Step 9. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 71. For an example, see “Computational Errors in
C Example.”

Computational Errors in C Example
This 32-bit integer, 64-bit pointer environment example shows an error code 2105,
which returns one piece of information: the index of the pivot element (i) near
zero, causing factorization to fail. It uses ERRSAV and ERRSTR to insulate the
effects of the error handling for error 2105 by this program.

einfo (ierno,&inf1,&inf2);

errstr (&ierno,storarea);

Chapter 4. Coding Your Program 163

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define __ESVERR
#include <essl.h>
.
.

/*DECLARE THE VARIABLES*/
main ()
{
int ierno,inoal,inomes,itrace,irange,irc;
long int iusadr;
int inf1,inf2,dummy;
char sav2105[8];
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);

/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105*/

ierno = 2105;
errsav (&ierno,sav2105);
.
.

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;
inoal = 0;
inomes = 0; /*A DUMMY ARGUMENT*/
itrace = 0; /*A DUMMY ARGUMENT*/
iusadr = 0l; /*A DUMMY ARGUMENT*/
irange = 2105;
errset (&ierno,&inoal,&inomes,&itrace, &iusadr,&irange);
.
.

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/

irc = dgeicd (a,lda,n,iopt,&rcond,det,aux,&naux);
if irc == 2

{
/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/

ierno = 2105;
einfo (ierno,&inf1,&inf2);

/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTION*/

.

.
}

.

.
/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT*/

ierno = 2105;
errstr (&ierno,sav2105);
.
.
}164 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C++ Programs
This describes how to code your C++ program.

Calling ESSL Subroutines and Functions in C++
This shows how to call ESSL subroutines and functions from your C++ program.

Before You Call ESSL
Before you can call the ESSL subroutines from your C++ program, you must have
the appropriate ESSL header file installed on your system. The ESSL header file
allows you to code your function calls as described here. It contains entries for all
the ESSL subroutines. The ESSL header file is distributed with the ESSL package.
The ESSL header file to be used with the C++ compiler is named essl.h.

In the beginning of your program, before you call any of the ESSL subroutines,
you must code the following statement for the ESSL header file:

#include <essl.h>

If you are creating your own threads for the ESSL Thread-Safe or SMP Libraries,
you must include the pthread.h header file in your C++ program. For an example,
see “Creating Multiple Threads and Calling ESSL from Your C++ Program” on
page 171.

Coding the Calling Sequences
In C++ programs, the ESSL subroutines, not returning a function value, are
invoked with the following type of statement:

An example of a calling sequence for SAXPY might be:
saxpy (5,a,x,incx,y,1);

The ESSL subroutines returning a function value are invoked with the following
type of statement:

An example of invoking DASUM might be:
sum = dasum (n,x,incx);

See the C++ publications for details about how to code the function calls.

Passing Arguments in C++
This describes how to pass arguments in your C++ program.

About the Syntax Shown in this Documentation
The argument syntax shown assumes that you have installed and are using the
ESSL header file. For further details, see “Calling ESSL Subroutines and Functions
in C++.”

subroutine-name (argument-1, . . . , argument-n);

function-value-name=subroutine-name (argument-1, . . . , argument-n);

Chapter 4. Coding Your Program 165

No Optional Arguments
In the ESSL calling sequences for C++, there are no optional arguments, as for
some programming languages. You must code all the arguments listed in the
syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL
calling sequence. (This refers to input-only scalar arguments, such as incx, m, and
lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a
pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.

Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The
name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output scalar argument is a scalar data item,
it must be passed by reference as shown below. This is true for all scalar data
types: real, complex, and so forth.

The ESSL header file supports two alternatives:
v The arguments are declared to be type reference in the function prototype. This

is the default. Following is an example of how you can call DURAND using this
alternative:
durand (seed, n, x);

v The arguments are declared as pointers in the function prototype. If you wish to
use this alternative, you must define _ESVCPTR using one of the following
methods:
– Define _ESVCPTR in your program using a #define statement, as shown

below:
#define _ESVCPTR

This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

– Define _ESVCPTR at compile time by using the job processing procedure
described in “C++ Program Procedures on AIX” on page 186 and “C++
Program Procedures on Linux (little endian mode)” on page 194.

Following is an example of how you can call DURAND using this alternative:
durand (&seed, n, x);

Character Arguments: Character arguments must be passed as strings, by
reference. You specify the character, in upper- or lowercase, in the ESSL calling
sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as
strings n and t, respectively:

sgeadd (a,5,"n",b,3,"t",c,4,4,3);

Setting Up a User-Supplied Subroutine for ESSL in C++
Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf,
identified in the ESSL calling sequence. If your program that calls the numerical
quadrature subroutines is coded in C++, there are some coding rules you must
follow for the subf subroutine:

166 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

v You can code the subf subroutine using only C, C++, or Fortran.
v You must declare subf as an external subroutine in your application program.
v You should code the subf subroutine to the specifications given in “Programming

Considerations for the SUBF Subroutine” on page 1200. For an example of
coding a subf subroutine in C++, see Example 1.

Setting Up Scalar Data in C++
Table 45 lists the scalar data types in C++ that are used for ESSL. Only those types
and lengths used by ESSL are listed.

Table 45. Scalar Data Types in C++ Programs

Terminology Used by ESSL C++ Equivalent

Character item1

'N', 'T', 'C' or 'n', 't', 'c'

char *

“n”, “t”, “c”

32-bit logical item8

.TRUE., .FALSE.

int

For additional information, see “Using
Logical Data in C++” on page 170.2

64-bit logical item8

.TRUE., .FALSE.

long

For additional information, see “Using
Logical Data in C++” on page 170.2

32-bit integer

12345, -12345

int

64-bit integer8

12345l, -12345l

long

Short-precision real number4

12.345

float

Long-precision real number4

12.345

double

Short-precision complex number4

(123.45, -54321.0)

complex <float>5, float_Complex7, or as
described in “On AIX—Setting Up
Short-Precision Complex Data Types If You
Are Using the IBM Open Class Complex
Mathematics Library in C++” on page 169.

Long-precision complex number4

(123.45, -54321.0)

complex <double>5, double_Complex7, or
complex6

Chapter 4. Coding Your Program 167

Table 45. Scalar Data Types in C++ Programs (continued)

Terminology Used by ESSL C++ Equivalent

Note:

1. ESSL accepts character data in either upper- or lowercase in its calling sequences.

2. There are no equivalent data types for logical data in C++. These require special
procedures. For details, see “Using Logical Data in C++” on page 170.

3. For a 32-bit integer, 64-bit pointer environment, in accordance with the LP64 data
model, all ESSL integer arguments remain 32-bits except for the iusadr argument for
ERRSET.

4. Short- and long-precision numbers look the same in this documentation.

5. This data type is defined in file <complex>.

6. This data type is defined in file <complex.h> (supported only on AIX).

7. This data type is defined in <complex.h> (supported only on Linux little endian mode).

8. If you are using the ESSL header file in a 64-bit integer, 64-bit pointer environment, add
-D_ESV6464 to your compiler command to define the integer and logical arguments as
long.

Using Complex Data in C++
On AIX, the ESSL header file supports both the IBM Open Class® Complex
Mathematics Library (<complex.h>) and the Standard Numerics Library facilities
for complex arithmetic (<complex>).

On Linux (little endian mode), the ESSL header file supports both the Standard
Numerics Library and C99 floating-point types for complex arithmetic
(<complex.h>).

On AIX—Selecting the <complex> or <complex.h> Header File
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible and cannot be simultaneously used.

If you wish to use the Standard Numerics Library facilities for complex arithmetic,
you must do one of the following:
v Code the #include statement for the Standard Numerics Library facilities for

complex arithmetic (#include <complex>) in your program prior to coding the
#include statement for the ESSL header file.

v Define _ESV_COMPLEX_, using one of the following methods:
– Define _ESV_COMPLEX_ in your program using a #define statement, as

shown below:
#define _ESV_COMPLEX_

This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

– Define _ESV_COMPLEX_ at compile time by using the job processing
procedures described in Chapter 5, “Processing Your Program,” on page 183.

If you take none of the preceding steps, the ESSL header file will use the IBM
Open Class Complex Mathematics Library. The ESSL header file will also use the
IBM Open Class Complex Mathematics Library if you:
v Code the #include statement for the IBM Open Class Complex Mathematics

Library (#include<complex.h>) in your program prior to coding the #include
statement for the ESSL header file.

168 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

On AIX—Setting Up Short-Precision Complex Data Types If You
Are Using the IBM Open Class Complex Mathematics Library in
C++
Short-precision complex data types are not part of the C++ language; however,
some ESSL subroutines require arguments of these data types.

Short-Precision Complex Data: ESSL provides an identifier, cmplx, for the
short-precision complex data type, defined in the ESSL header file, as well as two
member functions, sreal and simag, for handling the real and imaginary parts of
short-precision complex numbers:

#ifndef _CMPLX
class cmplx

{
private:
float _re,_im;

public:
cmplx() { _re = 0.0; _im = 0.0; }
cmplx(float r, float i = 0.0) { _re = r; _im = i; }
friend inline float sreal(const cmplx& a) { return a._re; }
friend inline float simag(const cmplx& a) { return a._im; }

};
#endif

You must, therefore, code an include statement for the ESSL header file in the
beginning of your program to use these definitions. For details, see “Calling ESSL
Subroutines and Functions in C++” on page 165.

Assuming you are using the ESSL header file, if you declare data items to be of
type cmplx or complex, you can pass them as short- or long-precision complex data
to ESSL, respectively. Following is an example of how you might code your
program:

#include <complex.h>
#include <essl.h>
main()
{
cmplx alpha,t[3],s[5];
complex beta,td[3],sd[5];
.
.
.
alpha = cmplx(2.0,3.0);
caxpy (3,alpha,s,1,t,2);
.
.
.
beta = complex(2.0,3.0);
zaxpy (3,beta,sd,1,td,2);
.
.
.
}

If you choose to use your own definition for short-precision complex data, instead
of that provided in the ESSL header file, your definition must conform to the
following rules:
v The definition must have exactly two variables of type float representing the

real and imaginary parts of the short-precision complex data. For example:
struct cmplx { float _re, _im; };

v The definition cannot include an explicit destructor.

Chapter 4. Coding Your Program 169

In addition, you must do one of the following:
v Define _CMPLX in your program using the #define statement. This statement is

coded with your global declares in the front of your program and must be
coded before the #include statement for the ESSL header file, as follows:
#define _CMPLX

v Use the job processing procedures described in Chapter 5, “Processing Your
Program,” on page 183 to define your short-precision complex data at compile
time.

On Linux (little endian mode) —Selecting the <complex> or
<complex.h> Header File
Although the header files <complex> and <complex.h> are similar in purpose, they
are mutually incompatible and cannot be simultaneously used.

If you wish to use the C99 complex floating-point types for complex arithmetic,
you must do one of the following:
v Code the #include statement for the C99 complex floating point types (#include

<complex.h>) in your program prior to coding the #include statement for the
ESSL header file.

v Define _ESV_COMPLEX99_, using one of the following methods:
– Define _ESV_COMPLEX99_ in your program using a #define statement, as

shown below:
#define _ESV_COMPLEX99_

This statement is coded with your global declares and must be coded before
the #include statement for the ESSL header file.

– Define _ESV_COMPLEX99_ at compile time by using the job processing
procedures described in Chapter 5, “Processing Your Program,” on page 183.

If you take none of the preceding steps, the ESSL header file will use the Standard
Numerics Library. The ESSL header file will also use the Standard Numerics
Library if you code the #include statement for the Standard Numerics Library
(#include<complex.h>) in your program prior to coding the #include statement for
the ESSL header file.

Using Logical Data in C++
Logical data types are not part of the C++ language; however, some ESSL
subroutines require arguments of these data types.

By coding the following simple macro definitions in your program, you can then
use TRUE or FALSE in assigning values to or specifying any logical arguments
passed to ESSL:

For 32-bit logical arguments
Use this macro definition:

#define FALSE 0
#define TRUE 1

For 64-bit logical arguments
Use this macro definition:

#define FALSE 0l
#define TRUE 1l

170 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Setting Up Arrays in C++
C++ arrays are arranged in storage in row-major order. This means that the last
subscript expression increases most rapidly, the next-to-the-last subscript
expression increases less rapidly, and so forth, with the first subscript expression
increasing least rapidly. ESSL subroutines require that arrays passed as arguments
be in column-major order. This is the array storage convention used by Fortran,
described in “Setting Up Arrays in Fortran” on page 132. To pass an array from
your C++ program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C++ program, you can do any of the
following:
v Build and process the matrix, logically transposed from the outset, and transpose

the results as necessary.
v Before the ESSL call, transpose the input arrays. Then, following the ESSL call,

transpose any arrays updated as output.
v If there are arguments in the ESSL calling sequence indicating whether the

arrays are to be processed in normal or transposed form, such as the transa and
transb arguments in the _GEMM subroutines, use these arguments in
combination with the matrix equivalence rules to avoid having to transpose your
data in separate operations. For further detail, see “SGEMMS, DGEMMS,
CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their
Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's
Algorithm)” on page 445.

Creating Multiple Threads and Calling ESSL from Your C++
Program

The 32-bit integer, 64-bit pointer environment example shown below shows how to
create two threads, where each thread calls the ISAMAX subroutine. To use the
pthreads library, you must remember to code the pthread.h header file in your
C++ program.

Note: Be sure to compile this program with the xlC_r command.

Chapter 4. Coding Your Program 171

#include "essl.h"
#ifdef __linux
#include <iostream>
std::cout;
#else
#include <iostream.h>
#endif

/* Define prototype for thread routine */
void *Thread(void *v);

/* Define prototype for thread library routine, which is in C */
extern "C" {
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);
}
/* Create structure for argument list */
struct arg_list {

int n;
float *x;
int incx;

};
int main()
{
float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;
pthread_t second_th;
int rc;
struct arg_list a_l,b_l;

a_l.n = 9;
a_l.incx = 1;
a_l.x = sx1;

b_l.n = 8;
b_l.incx = 1;
b_l.x = sx2;

/* Creating argument list for first thread */
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
if (rc) exit(-1);

/* Creating argument list for second thread */
rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
if (rc) exit(-1);

sleep(20);
exit(0);

}
/* Thread routine which calls the ESSL subroutine ISAMAX */
void* Thread(void *v)
{
struct arg_list *al;
float *t;
int n,incx;
int i;

al = (struct arg_list *)(v);
t = al->x;
n = al->n;
incx = al->incx;

172 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Handling Errors in Your C++ Program
ESSL provides you with flexibilities in handling both input-argument errors and
computational errors:
v For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable

errors, ESSL allows you to obtain corrected input-argument values and react at
run time.

Note: In the case where error 2015 is unrecoverable, you have the option of
dynamic allocation for most of the aux arguments. For details see the subroutine
descriptions.

v For computational errors, ESSL provides a return code and additional
information to help you analyze the problem in your program and react at run
time.

“Input-Argument Errors in C++” and “Computational Errors in C++” on page 178
explain how to use these facilities by describing the additional statements you
must code in your program.

For multithreaded application programs, if you want to initialize the error option
table and change the default settings for input-argument and computational errors,
you need to implement the steps shown in “Input-Argument Errors in C++” and
“Computational Errors in C++” on page 178 on each thread that calls ESSL.

Input-Argument Errors in C++
To obtain corrected input-argument values in a C++ program and to avert program
termination for the optionally-recoverable input-argument errors 2015, 2030, and
2200, add the statements in the following steps to your program. Steps 4 and 8 for
ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling:

/* Calling the ESSL subroutine ISAMAX */
i = isamax(n,t,incx);
if (i == 8)

cout << "max for sx2 should be 8 = " << i << "\n";
else

cout << "max for sx1 should be 6 = " << i << "\n";
return NULL;

}

Chapter 4. Coding Your Program 173

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statements for the ESSL header
file. The extern statements are required to call the ESSL error exit routine
ENOTRM as an external reference in your program.

Step 2. Declare the Variables:

This declares a pointer, iusadr, to be used for the ESSL error exit routine ENOTRM.
Also included are declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The first statement sets the function pointer, iusadr, to ENOTRM, the ESSL error
exit routine. The last statement calls the EINFO subroutine to initialize the ESSL
error option table, where dummy is a declared integer and is a placeholder. For a
description of EINFO, see “EINFO (ESSL Error Information-Handler Subroutine)”
on page 1252. These statements should be coded only once in the beginning of
your program before calls to ERRSET.

Step 4. Call ERRSAV:

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling

/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#ifdef __linux
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>
#include <essl.h>
extern “C” int enotrm(int &,int &);
extern “C” typedef int (*FN) (int &,int &);

FN iusadr;
int ierno,inoal,inomes,itrace,irange,irc,dummy;
char storarea[8];

iusadr = enotrm;
dummy = 0;
einfo (0,dummy,dummy);

errsav (ierno,storarea);

174 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71. For an example, see “Computational Errors in C++ Example” on page
180, as the use is the same as for computational errors.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For optionally-recoverable ESSL input-argument
errors, you need to call ERRSET only if you want to avoid terminating your
program and you want the input arguments associated with this error to be
assigned correct values in your program when the error occurs. For one error
(ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)
v The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being
recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want
to eliminate error messages, you should indicate a negative number for inomes;
otherwise, you should specify 0 for this argument. All the other ERRSET
arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the input-argument errors, see “Input-Argument Error
Messages(2001-2099)” on page 210. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments.
v irc is the integer variable containing the return code resulting from the

computation performed by the ESSL subroutine.

errset (ierno,inoal,inomes,itrace,&iusadr,irange);

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}
if irc == rc2

{
.
.
.

}

Chapter 4. Coding Your Program 175

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description.

Step 7. Perform the Desired Action:
These are the statements following the test for each value of the return code,
returned in irc in step 6. These statements perform whatever action is desired
when the recoverable error occurs. These statements may check the new values set
in the input arguments to determine whether adequate program storage is
available, and then decide whether to continue or terminate the program.
Otherwise, these statements may check that the size of the working storage arrays
or the length of the transform agrees with other data in the program. The program
may also store this corrected input argument value for future reference.

Step 8. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 71. For an example, see “Computational Errors in
C++ Example” on page 180, as the use is the same as for computational errors.

Input-Argument Errors in C++ Example
This 32-bit integer, 64-bit pointer environment example shows an error code 2015,
which resets the size of the work area aux, specified in naux, if the value specified
is too small. It also indicates that no error messages should be issued.

errstr (ierno,storarea);

176 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

.

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define _ESVERR
#include <essl.h>
#ifdef __linux
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>
extern “C” int enotrm(int &,int &);
extern “C” typedef int (*FN) (int &,int &);
.
.
.

/*DECLARE THE VARIABLES*/
int main ()
{
FN iusadr;
int ierno,inoal,inomes,itrace,irange,irc,dummy;
int naux;
.
.
.

/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
iusadr = enotrm;
.
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy);
.
.
.

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/

ierno = 2015;
inoal = 0;
inomes = -1;
itrace = 0;
irange = 2015;
errset (ierno,inoal,inomes,itrace,&iusadr,irange);
.
.
.

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
RETURN CODE OF 1 IS SET IN IRC.*/

irc = swlev (x,incx,u,incu,y,incy,n,aux,naux);
if irc == 1

{
. /*CHECK THE RESULTING INPUT ARGUMENT VALUE
. IN NAUX AND TAKE THE DESIRED ACTION*/
.
}

.

.

.
}

Chapter 4. Coding Your Program 177

Computational Errors in C++
To obtain information about an ESSL computational error in a C++ program, add
the statements in the following steps to your program. Steps 4 and 9 for ERRSAV
and ERRSTR, respectively, are optional. Adding these steps makes the effect of the
call to ERRSET temporary. For a list of those computational errors that return
information and to which these steps apply, see “EINFO (ESSL Error
Information-Handler Subroutine)” on page 1252.

Step 1. Code the Global Statements for ESSL Error Handling:

These statements are coded with your global declares in the front of your program.
The #define must be coded before the #include statement for the ESSL header file.

Step 2. Declare the Variables:

These statements include declares for the variables used by the ESSL and Fortran
error-handling subroutines. Note that storarea must be 8 characters long. These
should be coded in the beginning of your program before any of the following
statements.

Step 3. Do Initialization for ESSL:

The last statement calls the EINFO subroutine to initialize the ESSL error option
table, where dummy is a declared integer and is a placeholder. For a description of
EINFO, see “EINFO (ESSL Error Information-Handler Subroutine)” on page 1252.
These statements should be coded only once in the beginning of your program
before calls to ERRSET.

Step 4. Call ERRSAV:

/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#ifdef __linux
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>
#include <essl.h>

int ierno,inoal,inomes,itrace,iusadr,irange,irc;
int inf1,inf2,dummy;
char storarea[8];

dummy = 0;
einfo (0,dummy,dummy);

errsav (ierno,storarea);

178 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error
option table entry for error number ierno in an 8-byte storage area, storarea, which
is accessible to your program. ERRSAV must be called for each entry you want to
save. This step is used, along with step 8, for ERRSTR. For information on whether
you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling
in Large Applications by Saving and Restoring Entries in the Error Option Table?”
on page 71. For an example, see “Computational Errors in C++ Example” on page
180.

Step 5. Call ERRSET:

This calls the ERRSET subroutine, which allows you to dynamically modify the
action taken when an error occurs. For ESSL computational errors, you need to call
ERRSET only if you want to change the default values in the ESSL error option
table. For one error (ierno) or a range of errors (irange), you can specify:
v How many times each error can occur before execution terminates (inoal)
v How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the
default values. For ESSL, ierno should be set to one of the eligible values listed in
“EINFO (ESSL Error Information-Handler Subroutine)” on page 1252. To allow
your program to continue after an error in the specified range occurs, inoal must be
set to a value greater than 1. For ESSL, iusadr should be specified as either 0 or 1 in
a 32-bit environment (0l or 1l in a 32-bit integer, 64-bit pointer environment or a
64-bit integer, 64-bit pointer environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see “How Do You
Control Error Handling by Setting Values in the ESSL Error Option Table?” on
page 69. For a description of the computational errors, see “Computational Error
Messages(2100-2199)” on page 215. For a description of ERRSET, see Chapter 17,
“Utilities,” on page 1249.

Step 6. Call ESSL:

This calls the ESSL subroutine and specifies a branch on one or more return code
values, where:
v name specifies the ESSL subroutine.
v arg1,...,argn are the input and output arguments.

errset (ierno,inoal,inomes,itrace,&iusadr,irange);

irc = name (arg1,...,argn);
if irc == rc1

{
.
.
.

}
if irc == rc2

{
.
.
.

}

Chapter 4. Coding Your Program 179

v irc is the integer variable containing the return code resulting from the
computation performed by the ESSL subroutine.

v rc1, rc2, and so forth are the possible return code values that can be passed back
from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return
code values are described under “Error Conditions” in each ESSL subroutine
description.

The statements following each test of the return code can perform any desired
action. This includes calling EINFO for more information about the error, as
described in step 7.

Step 7. Call EINFO for Information:

This calls the EINFO subroutine, which returns information about certain
computational errors, where:
v ierno is the error code of interest.
v inf1 and inf2 are the integer variables used to receive the information, where inf1

is assigned a value for all errors, and inf2 is assigned a value for some errors.
You must specify both arguments, as there are no optional arguments for C. For
a description of EINFO, see “EINFO (ESSL Error Information-Handler
Subroutine)” on page 1252.

Step 8. Check the Values in the Information Receivers:
These statements check the values returned in the output argument information
receivers, inf1 and inf2, which contain the information about the computational
error.

Step 9. Call ERRSTR:

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can You
Control Error Handling in Large Applications by Saving and Restoring Entries in
the Error Option Table?” on page 71. For an example, see “Computational Errors in
C++ Example.”

Computational Errors in C++ Example
This 32-bit integer, 64-bit pointer environment example shows an error code 2105,
which returns one piece of information: the index of the pivot element (i) near
zero, causing factorization to fail. It uses ERRSAV and ERRSTR to insulate the
effects of the error handling for error 2105 by this program.

einfo (ierno,inf1,inf2);

errstr (ierno,storarea);

180 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

.

.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/

#define _ESVERR
#include <essl.h>
#if defined(__linux)
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stdio.h>
.
.

/*DECLARE THE VARIABLES*/
int main ()
{
int ierno,inoal,inomes,itrace,irange,irc;
long int iusadr;
int inf1,inf2,dummy;
char sav2105[8];
.
.

/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;

einfo (0,dummy,dummy);
/*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105*/

ierno = 2105;
errsav (ierno,sav2105);
.
.

/*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
FOR THEM. THIS SHOWS HOW YOU CODE THE
ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */

ierno = 2101;
inoal = 0;
inomes = 0; /*A DUMMY ARGUMENT*/
itrace = 0; /*A DUMMY ARGUMENT*/
iusadr = 0l; /*A DUMMY ARGUMENT*/
irange = 2105;
errset (ierno,inoal,inomes,itrace,&iusadr,irange);
.
.

/*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/

irc = dgeicd (a,lda,n,iopt,rcond,det,aux,naux);
if irc == 2

{
/*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
CODE 2105 TO RETURN ONE PIECE OF INFORMATION
IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
INF2 IS NOT USED, BUT MUST BE SPECIFIED.
BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/

ierno = 2105;
einfo (ierno,inf1,inf2);

/*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
DESIRED ACTION*/

.

.
}

Chapter 4. Coding Your Program 181

.

.
/*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
FOR ERROR CODE 2105. ERROR PROCESSING
RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
THE ABOVE ERRSAV STATEMENT*/

ierno = 2105;
errstr (ierno,sav2105);
.
.
}

182 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 5. Processing Your Program

This describes the ESSL-specific changes you need to make to your job procedures
for compiling, linking, and running your program.

You can use any procedures you are currently using to compile, link, and run your
Fortran, C, and C++ programs, as long as you make the necessary modifications
required by ESSL.

Processing Your Program on AIX
The following notes apply to processing your program on AIX.

Notes:

1. The default search path for the ESSL libraries is: /usr/lib. (Note that /lib is a
symbolic link to /usr/lib.)
If the libraries are installed somewhere else, add the path name of that
directory to the beginning of the LIBPATH environment variable, being careful
to keep /usr/lib in the path. The correct LIBPATH setting is needed both for
linking and executing the program.
For example, if you installed the ESSL libraries in /home/me/lib you would
issue ksh commands similar to the following in order to compile and link a
program:

LIBPATH=/home/me/lib:/usr/lib
export LIBPATH
xlf -o myprog myprog.f -lessl

After setting the LIBPATH command, the /home/me/lib directory is the
directory that gets searched first for the necessary libraries. This same search
criterion is used at both compile and link time and run time.

2. For the ESSL SMP Libraries, you can use the XLSMPOPTS or
OMP_NUM_THREADS environment variable to specify options which affect
SMP execution. For details, see the IBM Compiler publications.

3. If you are accessing ESSL from a 32-bit integer, 64-bit pointer environment
program or a 64-bit integer, 64-bit pointer environment program, you must add
the -q64 compiler option.

4. If you are accessing ESSL from a 64-bit integer, 64-bit pointer environment
program, you may want to use the -qintsize=8 compiler option.

5. ESSL supports the XL Fortran compile-time option -qextname. For details, see
the Fortran manuals.

6. Fortran 90 programmers may be interested in the -qessl compiler option which
allows the use of ESSL routines in place of Fortran 90 intrinsic procedures. For
details, see the Fortran manuals.

7. In your job procedures, you must use only the required software products
listed in “Required Software Products on AIX” on page 9.

Fortran Program Procedures on AIX
You do not need to modify your existing Fortran compilation procedures when
using ESSL.

© Copyright IBM Corp. 1986, 2015 183

|
|

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

If you are accessing ESSL from a Fortran program, you can compile and link using
the commands shown in the table below.

Table 46. Fortran Compile Commands on AIX

ESSL
Library Environment Fortran Compile Command

Serial

32-bit integer,
32-bit pointer

xlf_r -O -qnosave xyz.f -lessl

32-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lessl

64-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lessl6464

SMP

32-bit integer,
32-bit pointer

xlf_r -O -qnosave xyz.f -lesslsmp

32-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lesslsmp

64-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lesslsmp6464

where xyz.f is the name of your Fortran program.

If you want to use the FFTW Wrapper libraries with your Fortran program, the
header file fftw3.f contains the constant definitions used by the FFTW wrappers. To
use these definitions, you can do one of the following:
v Add the following line to your Fortran application:

include "fftw3.f"

v Imbed the fftw3.f header file in your application.

You can compile and link with the FFTW Wrapper libraries using the command
shown in the table below (assuming that the FFTW Wrapper header files were
installed in /usr/local/include).

Table 47. Fortran Compile Commands on AIX for use with FFTW Wrapper libraries

ESSL
Library Environment Fortran Compile Command

Serial

32-bit integer,
32-bit pointer

xlf_r -O -qnosave xyz.f -lessl
-I/usr/local/include -lfftw3_essl -L/usr/local/lib

32-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lessl
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib

SMP

32-bit integer,
32-bit pointer

xlf_r -O -qnosave xyz.f -lesslsmp
-I/usr/local/include -lfftw3_essl -L/usr/local/lib

32-bit integer,
64-bit pointer

xlf_r -O -qnosave -q64 xyz.f -lesslsmp
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib

For additional information on the FFTW Wrapper libraries, see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303.

184 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ESSL supports the XL Fortran compile-time option -qextname. For details, see the
Fortran manuals.

C Program Procedures on AIX
The ESSL header file essl.h, used for C and C++ programs, is installed in the
/usr/include directory. If you are using the ESSL header file in a 64-bit integer,
64-bit pointer environment, add -D_ESV6464 to your compile and link command.

If you do want to specify your own definitions for short- and long-precision
complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile
and link command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the ESSL header file (as shown in the
table below).

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

Table 48. C Compile and Link Commands on AIX

ESSL
Library Environment C Compile Command

Serial

32-bit integer,
32-bit pointer

cc_r -O xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lessl

32-bit integer,
64-bit pointer

cc_r -O -q64 xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl

64-bit integer,
64-bit pointer

cc_r -O -D_ESV6464 -q64 xyz.c -lessl6464

cc_r -O -D_ESV6464 -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl6464

SMP

32-bit integer,
32-bit pointer

cc_r -O xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lesslsmp

32-bit integer,
64-bit pointer

cc_r -O -q64 xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp

64-bit integer,
64-bit pointer

cc_r -O -D_ESV6464 -q64 xyz.c -lesslsmp6464

cc_r -O -D_ESV6464 -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp6464

If you want to use the FFTW Wrapper libraries with your C program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the command shown in the table below (assuming
that the FFTW Wrapper header files were installed in /usr/local/include).

Table 49. C Compile and Link Commands on AIX for use with FFTW Wrapper Libraries

ESSL
Library Environment C Compile Command

Serial

32-bit integer,
32-bit pointer

cc_r -O xyz.c -lessl
-I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

32-bit integer,
64-bit pointer

cc_r -O -q64 xyz.c -lessl
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

Chapter 5. Processing Your Program 185

Table 49. C Compile and Link Commands on AIX for use with FFTW Wrapper Libraries (continued)

ESSL
Library Environment C Compile Command

SMP

32-bit integer,
32-bit pointer

cc_r -O xyz.c -lesslsmp
-I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

32-bit integer,
64-bit pointer

cc_r -O -q64 xyz.c -lesslsmp
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

For additional information on the FFTW Wrapper libraries, see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303.

C++ Program Procedures on AIX
The ESSL header file essl.h, used for C and C++ programs, is installed in the
/usr/include directory. When using ESSL, the compiler option
-qnocinc=/usr/include/essl must be specified.

If you are using the ESSL header file in a 64-bit integer, 64-bit pointer environment,
add -D_ESV6464 to your compile and link command.

If you are using the IBM Open Class Complex Mathematics Library, you
automatically use the definition of short-precision complex data provided in the
ESSL header file. If you prefer to specify your own definition for short-precision
complex data, add -D_CMPLX to your compile and link commands (as shown in
the table below). Otherwise, ESSL will use the IBM Open Class Complex
Mathematics Library or the Standard Numerics Library, as described in “On
AIX—Selecting the <complex> or <complex.h> Header File” on page 168.

If you prefer to explicitly specify that you want to use the Standard Numerics
Library facilities for complex arithmetic, add -D_ESV_COMPLEX_ to your compile
and link command as shown in the table below.

The ESSL header file supports two alternatives for declaring scalar output
arguments. By default, the arguments are declared to be type reference. If you
prefer for them to be declared as pointers, add -D_ESVCPTR to your compile and
link commands as shown in the table below.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

186 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 50. C++ Compile and Link Commands on AIX

ESSL
Library Environment

C++ Compile Command

Serial

32-bit integer,
32-bit pointer

xlC_r -O xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C
-lessl -qnocinc=/usr/include/essl

32-bit integer,
64-bit pointer

xlC_r -O -q64 xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C
-lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C
-lessl -qnocinc=/usr/include/essl

64-bit integer,
64-bit pointer

xlC_r -O -D_ESV6464 -q64 xyz.C
-lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_CMPLX -q64 xyz.C
-lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESV_COMPLEX_ -q64 xyz.C
-lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESVCPTR -q64 xyz.C
-lessl6464 -qnocinc=/usr/include/essl

Chapter 5. Processing Your Program 187

Table 50. C++ Compile and Link Commands on AIX (continued)

ESSL
Library Environment

C++ Compile Command

SMP

32-bit integer,
32-bit pointer

xlC_r -O xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C
-lesslsmp -qnocinc=/usr/include/essl

32-bit integer,
64-bit pointer

xlC_r -O -q64 xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C
-lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C
-lesslsmp -qnocinc=/usr/include/essl

64-bit integer,
64-bit pointer

xlC_r -O -D_ESV6464 -q64 xyz.C
-lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_CMPLX -q64 xyz.C
-lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESV_COMPLEX_ -q64 xyz.C
-lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESVCPTR -q64 xyz.C
-lesslsmp6464 -qnocinc=/usr/include/essl

If you want to use the FFTW Wrapper libraries with your C++ program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the compile and link commands shown in the table
below (assuming that the FFTW Wrapper header files were installed in
/usr/local/include).

Table 51. C++ Compile and Link Commands on AIX for Use with FFTW Wrapper Libraries

ESSL
Library Environment C++ Compile Command

Serial

32-bit integer,
32-bit pointer

xlC_r -O xyz.C -lessl -qnocinc=/usr/include/essl
-I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

32-bit integer,
64-bit pointer

xlC_r -O -q64 xyz.C -lessl -qnocinc=/usr/include/essl
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

SMP

32-bit integer,
32-bit pointer

xlC_r -O xyz.C -lesslsmp -qnocinc=/usr/include/essl
-I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

32-bit integer,
64-bit pointer

xlC_r -O -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl
-I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

188 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Processing Your Program on Linux (little endian mode)
The following notes apply to processing your program on Linux.

Notes:

1. The default search paths for the ESSL shared libraries are as follows:

Environment Shared Library Default Search Path

32-bit integer, 64-bit pointer /usr/lib64

64-bit integer, 64-bit pointer /usr/lib64

If the shared libraries are in another location, you must set the link-time and
run-time library search paths. There are two ways to set these search paths:
v Use one of the following compile/link options:

-R (or -rpath)
Writes the specified run-time library search paths into the executable
program.

-L Searches the library search paths at link time, but does not write
them into the executable as run-time library search paths.

—or—

v Use one of the following environment variables:

LD_LIBRARY_PATH
Specifies the directories that are to be searched for libraries at run
time.

LD_RUN_PATH
Specifies the directories that are to be searched for libraries at both
link and run time.

For example, if you copied the ESSL 32-bit/64-bit pointer libraries in
/home/me/lib64, you would issue commands similar to the following in
order to compile and link a program:

LD_LIBRARY_PATH=/home/me/lib64:$LD_LIBRARY_PATH
LD_RUN_PATH=/home/me/lib64:$LD_RUN_PATH
export LD_LIBRARY_PATH
export LD_RUN_PATH
xlf_r -o myprog myprog.f -lessl

The result would be that the /home/me/lib64 directory is the directory that
gets searched at link time and run time.

For more information on link options and environment variables, see the
manpage for the ld command

2. If you changed Makefile or Makefile.gcc to install the FFTW Wrapper libraries
in /usr/local/lib instead of /usr/local/lib64 (see Appendix C, “FFTW Version
3.1.2 to ESSL Wrapper Libraries,” on page 1303), then you must specify
-L/usr/local/lib instead of -L/usr/local/lib64 in the commands in Table 53 on
page 191, Table 55 on page 192, Table 56 on page 192, and Table 59 on page 195.

3. For the ESSL SMP and SMP CUDA Libraries, you can use the XLSMPOPTS or
OMP_NUM_THREADS environment variable to specify options which affect
SMP execution. For details, see the IBM Compiler publications.

4. If you are accessing ESSL from a 64-bit integer, 64-bit pointer environment
program, you may want to use the -qintsize=8 compiler option.

Chapter 5. Processing Your Program 189

|

|

5. ESSL supports the XL Fortran compile-time option -qextname. For details, see
the Fortran publications.

6. Fortran 90 programmers may be interested in the -qessl compiler option which
allows the use of ESSL routines in place of Fortran 90 intrinsic procedures. For
details, see the Fortran manuals.

7. The commands in the table below assume that you installed:
v The IBM compilers in the default directory, /opt/ibm. If you used different

directories, you need to make the appropriate changes to the -L and -R
options.

v ESSL in the default directory /opt/ibmmath. If you used different directories,
you need to make the appropriate changes to the -I, -L, and -R options.

8. In your job procedures, you must use only the required software products
listed in “Required Software Products on Linux” on page 9.

Fortran Program Procedures on Linux (little endian mode)
You do not need to modify your existing Fortran compilation procedures when
using ESSL.

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

If you are accessing ESSL from a Fortran program, you can compile and link using
the commands shown in the table below.

Note: ESSL supports the XL Fortran compile-time option -qextname. For details,
see the Fortran manuals.

Table 52. Fortran Compile Commands on Linux (little endian mode)

ESSL
Library Environment

Fortran Compile Command

Serial

32-bit integer,
64-bit pointer

xlf_r -O -qnosave xyz.f -lessl

64-bit integer,
64-bit pointer

xlf_r -O -qnosave xyz.f -lessl6464

SMP

32-bit integer,
64-bit pointer

xlf_r -O -qnosave -qsmp xyz.f -lesslsmp
xlf_r -O -qnosave xyz.f -lesslsmp -lxlsmp

64-bit integer,
64-bit pointer

xlf_r -O -qnosave -qsmp xyz.f -lesslsmp6464
xlf_r -O -qnosave xyz.f -lesslsmp6464 -lxlsmp

SMP CUDA
32-bit integer,
64-bit pointer

xlf_r -O -qnosave -qsmp xyz.f -lesslsmpcuda -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64

xlf_r -O -qnosave xyz.f -lesslsmpcuda -lxlsmp -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64

where xyz.f is the name of your Fortran program.

If you want to use the FFTW Wrapper libraries with your Fortran program, the
header file fftw3.f contains the constant definitions used by the FFTW wrappers. To
use these defintions, you can do one of the following:
v Add the following line to your Fortran application

include "fftw3.f"

v Imbed the fftw3.f header file in your application.

190 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|

You can compile and link with the FFTW Wrapper libraries using the command
shown in the table below (assuming that the FFTW Wrapper header files were
installed in /usr/local/include).

Table 53. Fortran Compile Commands on Linux for Use with FFTW Wrapper Libraries

ESSL
Library Environment Fortran Compile Command

Serial
32-bit integer,
64-bit pointer

xlf_r -O -qnosave xyz.f -lessl
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

SMP
32-bit integer,
64-bit pointer

xlf_r -O -qnosave xyz.f -lesslsmp
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

For additional information on the FFTW Wrapper libraries, see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303.

C Program Procedures on Linux (little endian mode)
If you are using the ESSL header file in a 64-bit integer, 64-bit pointer environment,
add -D_ESV6464 to your compile and link command.

When linking and running your program, you must modify your existing job
procedures for ESSL in order to set up the necessary libraries.

Table 54. C Compile and Link Commands on Linux (little endian mode)

ESSL
Library Environment C Compile Command

Serial

32-bit integer,
64-bit pointer

cc_r -O xyz.c
-lessl -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

cc_r -O -D_ESV6464 xyz.c
-lessl6464 -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP

32-bit integer,
64-bit pointer

cc_r -O xyz.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

cc_r -O -D_ESV6464 xyz.c
-lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP
CUDA

32-bit integer,
64-bit pointer

cc_r -O xyz.c
-lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Note: In the commands listed in the table above, you must specify the following
values:

Chapter 5. Processing Your Program 191

|
|
|
|
|

|
|
|
|
|

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

If you want to use the FFTW Wrapper libraries with your C program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the command shown in the table below (assuming
that the FFTW Wrapper header files were installed in /usr/local/include).

Table 55. C Compile and Link Commands on Linux for Use with FFTW Wrapper Libraries (little endian mode)

ESSL
Library Environment C Compile Command

Serial
32-bit integer,
64-bit pointer

cc_r -O xyz.c
-lessl -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

SMP
32-bit integer,
64-bit pointer

cc_r -O xyz.c
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

Note: In the commands listed in the table above, you must specify the following
values:

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

For additional information on the FFTW Wrapper libraries, see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303.

If you want to use gcc compile and link commands, use the commands shown in
Table 56

Table 56. gcc Compile and Link Commands on Linux (little endian mode)

ESSL
Library Environment C Compile Command

Serial

32-bit integer,
64-bit pointer

gcc xyz.c
-lessl -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

gcc -D_ESV6464 xyz.c
-lessl6464 -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

192 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|
|
|
|
|
|

|

|

Table 56. gcc Compile and Link Commands on Linux (little endian mode) (continued)

ESSL
Library Environment C Compile Command

SMP*

32-bit integer,
64-bit pointer

gcc xyz.c
-lesslsmp -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

gcc -D_ESV6464 xyz.c
-lesslsmp6464 -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP
CUDA*

32-bit integer,
64-bit pointer

gcc xyz.c
-lesslsmpcuda -lxlf90_r -lxl -lxlsmp -lxlfmath -lm -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

* The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL
OpenMP runtime.

Note: In the commands listed in Table 56 on page 192, you must specify the
following values:

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

If you want to use the FFTW Wrapper libraries with your C program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the command shown in the table below (assuming
that the FFTW Wrapper header files were installed in /usr/local/include).

Table 57. gcc Compile and Link Commands on Linux for Use with FFTW Wrapper Libraries (little endian mode)

ESSL
Library Environment C Compile Command

Serial
32-bit integer,
64-bit pointer

gcc xyz.c
-lessl -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

SMP*
32-bit integer,
64-bit pointer

gcc xyz.c
-lesslsmp -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

* The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL
OpenMP runtime.

Note: In the commands listed in Table 57, you must specify the following values:

Chapter 5. Processing Your Program 193

|
|

|

|

|

|

|
|

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

C++ Program Procedures on Linux (little endian mode)
The ESSL header file supports two alternatives for handling complex floating-point
arguments. By default the Standard Numerics Library complex floating-point types
are used. If you prefer to use the C99 complex floating-point types, add
-D_ESV_COMPLEX99_ to your compile and link commands.

The ESSL header file supports two alternatives for declaring scalar output
arguments. By default, the arguments are declared to be type reference. If you
prefer for them to be declared as pointers, add -D_ESVCPTR to your compile and
link commands.

If you are using the ESSL header file in a 64-bit integer, 64-bit pointer environment,
add -D_ESV6464 to your compile and link command.

When linking and running your program, you must modify your existing job
procedures for ESSL, to set up the necessary libraries.

Table 58. C++ Compile and Link Commands on Linux (little endian mode)

ESSL
Library Environment C++ Compile Command

Serial

32-bit integer,
64-bit pointer

xlC_r -O xyz.C
-lessl -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

xlC_r -O -D_ESV6464 xyz.C
-lessl6464 -lxlf90_r -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP

32-bit integer,
64-bit pointer

xlC_r -O xyz.C
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

xlC_r -O -D_ESV6464 xyz.C
-lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP
CUDA

32-bit integer,
64-bit pointer

xlC_r -O xyz.C
-lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Note: In the commands listed in the table above, you must specify the following
values:

194 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|
|
|
|
|

|
|
|
|
|

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

If you want to use the FFTW Wrapper libraries with your C++ program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the command shown in the table below (assuming
that the FFTW Wrapper header files were installed in /usr/local/include).

Table 59. C++ Compile and Link Commands on Linux for Use with FFTW Wrapper Libraries (little endian mode)

ESSL
Library Environment C++ Compile Command

Serial
32-bit integer,
64-bit pointer

xlC_r -O xyz.C
-lessl -lxlf90_r -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

SMP
32-bit integer,
64-bit pointer

xlC_r -O xyz.C
-lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

Note: In the commands listed in the table above, you must specify the following
values:

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

For additional information on the FFTW Wrapper libraries, see Appendix C,
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1303.

If you want to use g++ compile and link commands, use the commands shown in
Table 60

Table 60. g++ Compile and Link Commands on Linux (little endian mode)

ESSL
Library Environment C++ Compile Command

Serial

32-bit integer,
64-bit pointer

g++ xyz.C
-lessl -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

g++ -D_ESV6464 xyz.C
-lessl6464 -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

Chapter 5. Processing Your Program 195

|

|

|

|

|

|
|

||

|
|||

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

Table 60. g++ Compile and Link Commands on Linux (little endian mode) (continued)

ESSL
Library Environment C++ Compile Command

SMP*

32-bit integer,
64-bit pointer

g++ xyz.C
-lesslsmp -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

64-bit integer,
64-bit pointer

g++ -D_ESV6464 xyz.C
-lesslsmp6464 -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

SMP
CUDA*

32-bit integer,
64-bit pointer

g++ xyz.C
-lesslsmpcuda -lxlf90_r -lxl -lxlsmp -lxlfmath -lm -lcublas -lcudart
-L/usr/local/cuda/lib64
-R/usr/local/cuda/lib64
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib

* The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL
OpenMP runtime.

Note: In the commands listed in Table 60 on page 195, you must specify the
following values:

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

If you want to use the FFTW Wrapper libraries with your C program, you must
use header file fftw3_essl.h instead of fftw3.h. You can compile and link with the
FFTW Wrapper libraries using the command shown in the table below (assuming
that the FFTW Wrapper header files were installed in /usr/local/include).

Table 61. g++ Compile and Link Commands on Linux for Use with FFTW Wrapper Libraries (little endian mode)

ESSL
Library Environment C++ Compile Command

Serial
32-bit integer,
64-bit pointer

g++ xyz.C
-lessl -lxlf90_r -lxl -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

SMP*
32-bit integer,
64-bit pointer

g++ xyz.C
-lesslsmp -lxlf90_r -lxl -lxlsmp -lxlfmath -lm
-L/opt/ibm/xlsmp/xlsmp_version.release/lib
-L/opt/ibm/xlf/xlf_version.release/lib
-R/opt/ibm/lib
-I/usr/local/include -lfftw3_essl -L/usr/local/lib64

* The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL
OpenMP runtime.

Note: In the commands listed in Table 61, you must specify the following values:

196 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|||

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

||

|
|||

|||

|
|
|
|
|
|

|||

|
|
|
|
|
|

|
|
|

|

xlf_version.release
15.1.2 or later

xlsmp_version.release
4.1.2 or later

Chapter 5. Processing Your Program 197

|
|

|
|

198 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 6. Migrating Your Programs

This explains what is required to migrate your application programs to the current
release of ESSL.

Migrating Programs from ESSL for Linux on Power Version 5 Release
3.2 to Version 5 Release 4

The calling sequences for the subroutines in ESSL Version 5 Release 3.2 and ESSL
Version 5 Release 4 are identical; therefore, no changes to your application
programs are required.

Migrating Programs from ESSL for Linux on Power Version 5 Release
3.1 to Version 5 Release 3.2

The calling sequences for the subroutines in ESSL Version 5 Release 3.1 and ESSL
Version 5 Release 3.2 are identical; therefore, no changes to your application
programs are required.

Migrating Programs from ESSL for Linux on Power Version 5 Release
2 or ESSL Version 5 Release 3 to Version 5 Release 3.1

The following support is not provided for ESSL 5.3.1 (little endian mode)
v 32-bit applications
v C applications that use the ESSL header file and user-defined definitions for

short- and long-precision complex data. You must change these applications to
use C99 complex floating point types instead.

No source code changes to your other application programs are required to
migrate to ESSL 5.3.1.

Migrating Programs from ESSL for Linux on Power Version 5 Release
2 to Version 5 Release 3

The calling sequences for the subroutines in ESSL Version 5 Release 3 and ESSL
Version 5 Release 2 are identical; therefore, no changes to your application
programs are required.

Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on
Power Version 5 Release 1.1 to Version 5 Release 2

Source code changes may be required in C or C++ application programs that call
the cpocon or zpocon subroutines because the prototype contained in the ESSL
Header Files (essl.h) prior to ESSL 5.2 incorrectly specified WORK as real instead of
complex. This has been corrected in the ESSL 5.2 essl.h file.

The following non-LAPACK-conforming subroutines are no longer provided in
ESSL 5.2. To run with ESSL 5.2, existing applications using these subroutines
require source code changes to replace these subroutines as shown in Table 62 on
page 200:

© Copyright IBM Corp. 1986, 2015 199

|

|

|
|
|

Table 62. Replacing Non-LAPACK-Conforming subroutines with LAPACK subroutines

Non-LAPACK Conforming Subroutines in
ESSL 5.1

Corresponding ESSL LAPACK Subroutines
in ESSL 5.2

SGEEV, DGEEV, CGEEV, ZGEEV SGEEVX, DGEEVX, CGEEVX, ZGEEVX

See “SGEEVX, DGEEVX, CGEEVX, and
ZGEEVX (Eigenvalues and, Optionally, Right
Eigenvectors, Left Eigenvectors, Reciprocal
Condition Numbers for Eigenvalues, and
Reciprocal Condition Numbers for Right
Eigenvectors of a General Matrix)” on page
913

SSPEV, DSPEV, CHPEV, ZHPEEV

SSPSV, DSPSV, CHPSV, ZHPESV

SSPEVX, DSPEVX, CHPEVX, ZHPEVX

See “SSPEVX, DSPEVX, CHPEVX, ZHPEVX,
SSYEVX, DSYEVX, CHEEVX, and ZHEEVX
(Eigenvalues and, Optionally, the
Eigenvectors of a Real Symmetric or
Complex Hermitian Matrix)” on page 927

SGEGV, DGEGV SGGEV, DGGEV

See “SGGEV, DGGEV, CGGEV, and ZGGEV
(Eigenvalues and, Optionally, Left and/or
Right Eigenvectors of a General Matrix
Generalized Eigenproblem)” on page 955

SSYGV, DSYGV SSYGVX, DSYGVX

See “SSPGVX, DSPGVX, CHPGVX,
ZHPGVX, SSYGVX, DSYGVX, CHEGVX,
and ZHEGVX (Eigenvalues and, Optionally,
the Eigenvectors of a Positive Definite Real
Symmetric or Complex Hermitian
Generalized Eigenproblem)” on page 965

Existing applications that do not use these non_LAPACK-conforming subroutines
will work without source code changes for migration from ESSL 5.1 to ESSL 5.2.

Migrating Programs from ESSL for Linux on Power Version 5 Release
1 to Version 5 Release 1.1

The calling sequences for the subroutines in ESSL Version 5 Release 1 and ESSL
Version 5 Release 1.1 are identical; therefore, no changes to your application
programs are required.

Migrating Programs from ESSL Version 4 Release 4 to Version 5
Release 1

The Processor-Independent Formulas for SCFTD and DCFTD for NAUX2 have
been corrected. For the corrected formulas, see “SCFTD and DCFTD
(Multidimensional Complex Fourier Transform)” on page 992.

Otherwise, the calling sequences for the subroutines in ESSL Version 4 Release 4
and ESSL Version 5 Release 1 are identical; therefore, no changes to your
application programs are required.

200 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Migrating Programs from ESSL Version 4 Release 3 to Version 4
Release 4

The calling sequences for the subroutines in ESSL Version 4 Release 3 and ESSL
Version 4 Release 4 are identical; therefore, no changes to your application
programs are required.

Migrating Programs from ESSL Version 4 Release 2.2 or Later to ESSL
Version 4 Release 3

For 32-bit integer, 32-bit pointer environments and 32-bit integer, 64-bit pointer
environments, the calling sequences for the subroutines in ESSL Version 4 Release
2.2 or later are identical to those in ESSL Version 4 Release 3; therefore, no changes
to those in your application programs are required.

If you wish to use the new ESSL Serial and SMP Libraries that support a 64-bit
integer, 64-bit pointer environment, note the following:
v You must modify your application to use 64-bit integers and logicals instead of

32-bit integers and logicals.
v You may need to increase the size of naux and lwork to obtain a larger

workspace. (See “Setting Up Auxiliary Storage When Dynamic Allocation Is Not
Used” on page 51.)

v You must add -D_ESV6464 to your C and C++ compile commands. (See
Chapter 5, “Processing Your Program,” on page 183.)

v You must change the library specified in your compile command to either
-lesslsmp6464 or -lessl6464, as appropriate. (See Chapter 5, “Processing Your
Program,” on page 183.)

Migrating Programs from ESSL Version 4 Release 2.1 to Version 4
Release 2.2

In the ESSL Blue Gene Library, the Fourier Transform subroutines and the
Convolutions and Correlations subroutines require that the alignments of certain
arrays do not change between initialization and computation. If the array
alignment does change, in some cases error message 2152 will be issued and your
program will terminate. If you want your program to continue processing with
degraded performance, use ERRSET with an ESSL error exit routine, ENOTRM, to
make error 2152 recoverable.

For all other subroutines, the calling sequences for the subroutines in ESSL Version
4 Release 2.1 and ESSL Version 4 Release 2.2 are identical; therefore, no changes to
your application programs are required.

Migrating Programs from ESSL Version 4 Release 2 to Version 4
Release 2.1

The calling sequences for the subroutines in ESSL Version 4 Release 2 and ESSL
Version 4 Release 2.1 are identical; therefore, no changes to your application
programs are required.

Chapter 6. Migrating Your Programs 201

Migrating Programs from ESSL Version 4 Release 1 to Version 4
Release 2

The calling sequences for the subroutines in ESSL Version 4 Release 1 and ESSL
Version 4 Release 2 are identical; therefore, no changes to your application
programs are required.

ESSL Version 4 Release 2 does not support SLES8. In most cases, binary
compatibility does not exist between SLES8 and SLES9. Therefore, SLES8
applications must be recompiled and rebuilt on SLES9.

On Linux, if you are accessing ESSL from a C or C++ program, you must change
your compile and link commands so that they specify IBM XL Fortran Enterprise
EditionVersion 9.1 for Linux.

Planning for Future Migration
With respect to planning for the future, if working storage does not need to persist
after the subroutine call, you should use dynamic allocation. Otherwise, you
should use the processor-independent formulas or simple formulas for calculating
the values for the naux arguments in the ESSL calling sequences. Two things may
occur that could cause the minimum values of naux, returned by ESSL error
handling, to increase in the future:
v If changes are made to the ESSL subroutines to improve performance
v If changes are necessary to support future processors

The formulas allow you to specify your auxiliary storage large enough to
accommodate any future improvements to ESSL and any future processors. If you
do not provide, at least, these amounts of storage, your program may not run in
the future.

You should use the following rule of thumb: To protect your application from
having to be recoded in the future because of possible increased requirements for
auxiliary storage, use dynamic allocation if possible. If the working storage must
persists after the subroutine call, then you should provide as much storage as
possible in your current application. In determining the right amount to specify,
you should weigh your storage constraints against the inconvenience of making
future changes, then specify what you think is best. If possible, you should provide
this larger amount of storage to prevent future migration problems.

Migrating From One Hardware Platform to Another
This describes all the aspects of migrating your ESSL application programs from
one hardware platform to another.

Auxiliary Storage
The minimum amount of auxiliary storage returned by ESSL error handling may
vary from one hardware platform to another for the following subroutines:
v all the Fourier transform subroutines
v SCONF
v SCORF
v SACORF

202 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Therefore, to guarantee that your application programs always migrate from any
platform to any other platform, you should use the processor-independent
formulas to determine the amount of auxiliary storage to use.

Bitwise-Identical Results
Because of hardware and ESSL design differences, the results you obtain when
migrating from one ESSL service level to another, one ESSL library to another, or
one hardware platform to another may not be bitwise-identical. The results,
however, are mathematically equivalent.

Migrating from Other Libraries to ESSL
This describes some general aspects of moving from an IBM or non-IBM
engineering and scientific library to ESSL.

Migrating from ESSL/370
There is a high degree of compatibility between ESSL/370 and ESSL. However you
may need to make some coding changes for certain subroutines.

Migrating from Another IBM Subroutine Library
If you are migrating from other IBM library products—such as Subroutine
Library—Mathematics (SL MATH) or Scientific Subroutine Package (SSP), which
have some functions similar to ESSL—the ESSL calling sequences differ from the
calling sequences you are currently using. Your program must be modified to add
the ESSL calling sequences and make the other ESSL-related coding changes.

If you are migrating from the Basic Linear Algebra Subroutine Library provided
with AIX, your calling sequences do not need to be changed.

Migrating from LAPACK
ESSL contains some subroutines that conform to the LAPACK interface. If you are
using these subroutines, no coding changes are needed to migrate to ESSL.

Migrating from FFTW Version 3.1.2
ESSL includes header files and C and Fortran wrappers in source form for a subset
of the FFTW Version 3.1.2 subroutines. If you want to use these wrappers, you
must include the header file fftw3_essl.h instead of fftw3.h. For additional
information on the FFTW Wrapper libraries, see Appendix C, “FFTW Version 3.1.2
to ESSL Wrapper Libraries,” on page 1303.

Migrating from a Non-IBM Subroutine Library
If you are using a non-IBM library, ESSL may provide subroutines corresponding
to those you are currently using. You may choose to migrate your program to
benefit from the increased performance offered by the ESSL subroutines. In this
case, you may have to recode your program to use the ESSL calling sequences,
because the names and arguments used by ESSL may be different from those used
by the non-IBM library. On the other hand, if you are using any of the standard
Level 1, 2, and 3 BLAS or LAPACK routines that correspond to ESSL subroutines,
you do not need to recode the calling sequences. The ESSL calling sequences are
the same as the public domain code.

Chapter 6. Migrating Your Programs 203

204 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 7. Handling Problems

This provides the following information for your use when dealing with errors.
v How to obtain IBM support.
v What to do about NLS (National Language Support) problems.
v A description of the different types of errors that can occur in ESSL. It explains

what happens when an error occurs and, in some instances, how you can use
error handling to obtain further information.

v All of the ESSL error messages are categorized into the different error types.
There is also a description of the error message format.

Where to Find More Information About Errors
Specific errors associated with each ESSL subroutine are listed under "Error
Conditions" in each subroutine description.

Getting Help from IBM Support
Should you require help from IBM in resolving an ESSL problem, report it and
provide the following information, if available and appropriate.
1. Your customer number
2. The ESSL program number:

ESSL for AIX
5765-H25

ESSL for Linux
5765-L51

This is important information that speeds up the correct routing of your call.
3. The version and release of the operating system that you are running on.

On AIX
Enter the following command:

oslevel -r

On Linux
Enter the following command:

uname -a

This is important information that speeds up the correct routing of your call.
4. The names and versions of key products being run.

On AIX
Enter the following command:

lslpp -h product

where the appropriate values of product are listed in Table 63 on page
206.

© Copyright IBM Corp. 1986, 2015 205

On Linux
Enter the following command:

rpm -q package

where the appropriate values of package are listed in Table 63.

Table 63. Product File Set and Package Names

Descriptive Name Product File Sets on
AIX

Product Packages on Linux
little endian mode

ESSL essl.* essl.rte
essl.3264.rte
essl.3264.rtecuda
essl.6464.rte

XL Fortran Runtime
Environment

xlfrte libxlf

SMP Runtime
Environment

xlsmp.rte libxlsmp

XL Fortran compiler xlfcmp.15.1.0 xlf.15.1.2

XL C compiler xlccmp.13.1.0 xlc.13.1.2

XL C++ compiler xlCcmp.13.1.0 xlc.13.1.2

5. The message that is returned when an error is detected.
6. Any error message relating to core dumps.
7. The compiler listings, including compiler options in effect, and any run-time

listings produced
8. Program changes made in comparison with a previous successful run
9. A small test case demonstrating the problem using the minimum number of

statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support
For National Language Support (NLS), all ESSL subroutines display messages
located in externalized message catalogs. English versions of the message catalogs
are shipped with the product, but your site may be using its own translated
message catalogs. The environment variable NLSPATH is used by the various
ESSL subroutines to find the appropriate message catalog. NLSPATH specifies a
list of directories to search for message catalogs. The directories are searched, in
the order listed, to locate the message catalog. In resolving the path to the message
catalog, NLSPATH is affected by the value of the environment variables
LC_MESSAGES and LANG.

The ESSL message catalogs are in English, and are located in the following
directories:

On AIX
/usr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

206 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

On Linux (little endian mode)
/opt/ibmmath/essl/5.4/msg/en_US/essl.cat
/usr/share/locale/en_US.UTF-8/essl.cat
/usr/share/locale/en_US/essl.cat
/usr/share/locale/en/essl.cat
/usr/share/locale/C/essl.cat

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see AIX General Programming
Concepts: Writing and Debugging Programs.

Dealing with Errors
At run time, you can encounter a number of different types of errors that are
specifically related to the use of the ESSL subroutines:
v Program exceptions
v Input-argument errors (2001-2099) and (2200-2299)
v Computational errors (2100-2199)
v Resource errors (2401-2499)
v Informational and Attention messages (2600-2699)
v Miscellaneous errors (2700-2799)

Program Exceptions
The program exceptions you can encounter in ESSL are described in ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

ESSL Input-Argument Error Messages
If you receive an error message in the form 2538-20nn or 2538–22nn, you have an
input-argument error in the calling sequence for an ESSL subroutine. Your program
terminated at this point unless you did one of the following:
v Specified the ESSL user exit routine, ENOTRM, with ERRSET to determine the

correct input argument values in your program for the optionally-recoverable
ESSL errors 2015, 2030 or 2200. For details on how to do this, see Chapter 4,
“Coding Your Program,” on page 131.

v Reset the number of allowable errors (2099) during ESSL installation or using
ERRSET in your program. This is not recommended for input-argument errors.

Note: For many of the ESSL subroutines requiring auxiliary storage, you can avoid
program termination due to error 2015 by allowing ESSL to dynamically allocate
auxiliary storage for you. You do this by setting naux = 0 and making error 2015
unrecoverable. For details on which aux arguments allow dynamic allocation and
how to specify them, see the subroutine descriptions.

The name of the ESSL subroutine detecting the error is listed as part of the
message. The argument number(s) involved in the error appears in the message
text. See “Input-Argument Error Messages(2001-2099)” on page 210 for a complete
description of the information contained in each message and for an indication of
which messages correspond to optionally-recoverable errors. Regardless of whether
the name in the message is a user-callable ESSL subroutine or an internal ESSL
routine, the message-text and its unique parts apply to the user-callable ESSL
subroutine. Return code values are described under “Error Conditions” for each
ESSL subroutine.

Chapter 7. Handling Problems 207

|

You may get more than one error message, because most of the arguments are
checked by ESSL for possible errors during each call to the subroutine. The ESSL
subroutine returns as many messages as there are errors detected. As a result,
fewer runs are necessary to diagnose your program.

Fix the error(s), recompile, relink, and rerun your program.

ESSL Computational Error Messages
If you receive an error message in the form 2538-21nn, you have a computational
error in the ESSL subroutine. A computational error is any error occurring in the
ESSL subroutine while using the computational data (that is, scalar and array
data). The name of the ESSL subroutine detecting the error is listed as part of the
message. Regardless of whether the name in the message is a user-callable ESSL
subroutine or an internal ESSL routine, the message-text and its unique parts apply
to the user-callable ESSL subroutine. A nonzero return code is returned when the
ESSL subroutine encounters a computational error. See “Computational Error
Messages(2100-2199)” on page 215 for a complete description of the information in
each message. Return code values are described under “Error Conditions” for each
ESSL subroutine.

Your program terminates for some computational errors unless you have called
ERRSET to reset the number of allowable errors for that particular error, and the
number has not been exceeded. A message is issued for each computational error.
You should use the message to determine where the error occurred in your
program.

If you called ERRSET and you have not reached the limit of errors you had set,
you can check the return code. If it is not 0, you should call the EINFO subroutine
to obtain information about the data involved in the error. EINFO provides the
same information provided in the messages; however, it is provided to your
program so your program can check the information during run time. Depending
on what you want to do, you may choose to continue processing or terminate your
program after the error occurs. For information on how to make these changes in
your program to reset the number of allowable errors, how to diagnose the error,
and how to decide whether to continue or terminate your program, see Chapter 4,
“Coding Your Program,” on page 131.

If you are unable to solve the problem, report it and provide the following
information, if available and appropriate:
v The message number and the module that detected an error
v The system dump, system error code, and system log of this job
v The compiler listings, including compiler options in effect, and any run-time

listings produced
v Program changes made in comparison with a previous successful run
v A small test case demonstrating the problem using the minimum number of

statements and variables, including input data
v A brief description of the problem

ESSL Resource Error Messages
If you receive a message in the form 2538-24nn, it means that ESSL issued a
resource error message.

208 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A resource error occurs when a buffer storage allocation request fails in a ESSL
subroutine. In general, the ESSL subroutines allocate internal auxiliary storage
dynamically as needed. Without sufficient storage, the subroutine cannot complete
the computation.

When a buffer storage allocation request fails, a resource error message is issued,
and the application program is terminated. You need to reduce the memory
constraint on the system or increase the amount of memory available before
rerunning the application program.

The following ways may reduce memory constraints:
v Investigate the load of your process and run in a more dedicated environment.
v Increase your processor's paging space.
v Select a machine with more memory.
v For a 32-bit integer, 32-bit pointer environment application on AIX, consider

specifying the -bmaxdata binder option when linking your program. For details
see the Fortran publications.

v Check the setting of your user ID's user limit (ulimit). (See the AIX Commands
Reference).

ESSL Informational and Attention Messages
If you receive a message in the form 2538-26nn, it means that ESSL issued an
informational or attention message.

Informational Messages
When you receive an informational message, check your application to determine
why the condition was detected.

ESSL Attention Messages
An attention message is issued to describe a condition that occurred. ESSL is able
to continue processing, but performance may be degraded.

One condition that may produce an attention message is when enough work area
was available to continue processing, but was not the amount initially requested.
ESSL does not terminate your application program, but performance may be
degraded. If you want to reduce the memory constraint on the system or increase
the amount of memory available to eliminate the attention message, see the
suggestions in “ESSL Resource Error Messages” on page 208.

Miscellaneous Error Messages
If you receive a message in the form 2538-27nn, it means that ESSL issued a
miscellaneous error message.

A miscellaneous error is an error that does not fall under any other categories.

When ESSL detects a miscellaneous error, you receive an error message with
information on how to proceed and your application program is terminated.

Messages
This explains the conventions used for the ESSL messages and lists all the ESSL
messages. For a description of each of the four types of ESSL messages, see
“Dealing with Errors” on page 207.

Chapter 7. Handling Problems 209

Message Conventions
This describes the message conventions for the ESSL product.

About Upper- and Lowercase
Literals, such as, 'N', 'T', 'U', and so forth, appear in the messages in this
documentation in uppercase; however, they may be specified in your ESSL calling
sequence in either upper- or lowercase, for example, 'n', 't', and 'u'.

Message Format
The ESSL messages are issued in your output in the following format:

The parts of the ESSL message are as follows:

rtn-name
gives the name of the ESSL subroutine that encountered the error. If
rtn-name is ESSL, this indicates that at least one ESSL subroutine
encountered this error.

2538 is the ESSL component identification number.

mm indicates the type of ESSL error message:

20—Input-argument error message
21—Computational error message
22—Input-argument error message
24—Resource error message
26—Information and attention message
27—Miscellaneous error message

nn is the message identification number.

message-text
describes the nature of the error. Where one of several possible
message-texts can be issued for a particular ESSL error, they are listed with
an “or” between them. The possible unique parts are:
v The argument number of each argument involved in the error is

included in the message description as (ARG NO. _)
v Additional information about the error is included in the message. The

placement of this information is shown in the messages as (_)

Input-Argument Error Messages(2001-2099)

Note: There are more input-argument error messages listed in “Input-Argument
Error Messages(2200-2299)” on page 217

2538-2001 The number of elements (ARG NO. _)
in a vector must be greater than or equal
to zero.

2538-2002 The stride (ARG NO. _) for a vector
must be nonzero.

2538-2003 The number of rows (ARG NO. _) in a
matrix must be greater than or equal to
zero.

rtn-name : 2538-mmnn
message-text

Figure 10. Message Format

2538-2001 • 2538-2003

210 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2538-2004 The number of columns (ARG NO. _) in
a matrix must be greater than or equal
to zero.

2538-2005 The size of the leading dimension (ARG
NO. _) of an array must be greater than
zero.

2538-2006 The number of rows (ARG NO. _) of a
matrix must be less than or equal to the
size of the leading dimension (ARG
NO. _) of its array.

2538-2007 The degree of a polynomial (ARG NO.
_) must be greater than or equal to zero.

2538-2008 The number of elements (ARG NO. _)
to be scanned must be greater than or
equal to 2.

2538-2009 The number of elements (ARG NO. _)
in a vector to be processed must be
greater than or equal to 3.

2538-2010 The transform length (ARG NO. _) must
be a power of 2.

2538-2011 The number of points used in the
interpolation (ARG NO. _) must be
greater than or equal to zero and less
than or equal to the number of data
points (ARG NO. _).

2538-2012 The transform length (ARG NO. _) must
be less than or equal to (_).

2538-2013 The transform length (ARG NO. _) must
be greater than or equal to (_).

2538-2014 The routine must be initialized with the
present value of (ARG NO. _).

2538-2015 The number of elements (ARG NO. _)
in a work array must be greater than or
equal to (_).

2538-2016 The form (ARG NO. _) of a matrix must
be 'N' or 'T'. or The form (ARG NO. _)
of a matrix must be 'N', 'T', or 'C'. or
The form (ARG NO. _) of a matrix must
be 'N' or 'C'.

2538-2017 The dimension (ARG NO. _) of the
matrices must be greater than or equal
to zero.

2538-2018 The matrix form is specified by (ARG
NO. _); therefore, the leading dimension
(ARG NO. _) of its array must be
greater than or equal to the number of
its rows (ARG NO. _).

2538-2019 The number of sequences (ARG NO. _)
must be greater than zero.

2538-2020 (ARG NO. _) must be nonzero.

2538-2021 The storage control switch (ARG NO. _)
must be 1, 2, 3, or 4.

2538-2022 (ARG NO. _) must be less than (_).

2538-2023 The outer loop increment (ARG NO. _)
must be greater than or equal to zero.

2538-2024 The stride (ARG NO. _) for a vector
must be greater than or equal to zero.

2538-2025 The stride (ARG NO. _) for a vector
must be greater than zero.

2538-2026 The stride (ARG NO. _) for a vector
must be greater than or equal to (_).

2538-2027 The order (ARG NO. _) of a matrix must
be greater than or equal to zero.

2538-2028 The job option argument (ARG NO. _)
must be [one of the following: 0, 1, or 2;
0, 1, 2, or 3; 0, 1, 2, 10, 11, or 12; 0, 1, 10,
or 11; 0, 1, 20, or 21; 0, 1, 10, 11, 20, 21,
30, or 31; 0, 1, 2, 3, or 4].

2538-2029 The job option argument (ARG NO. _)
must be 0 or 1.

2538-2030 The transform length (ARG NO. _) is
not an allowed value. The next higher
allowed value is (_).

2538-2031 The resulting convolution length
obtained from ARG NO. 10 = (_), ARG
NO. 11 = (_), ARG NO. 13 = (_), and
ARG NO. 14 = (_) must be less than (_).

2538-2004 • 2538-2031

Chapter 7. Handling Problems 211

2538-2032 The size of the leading dimension (ARG
NO. _) of the matrix must be greater
than or equal to (_), the bandwidth
constraint.

2538-2033 The lower bandwidth (ARG NO. _)
must be greater than or equal to zero.

2538-2034 The upper bandwidth (ARG NO. _)
must be greater than or equal to zero.

2538-2035 The half-band bandwidth (ARG NO. _)
must be greater than or equal to zero.

2538-2036 The lower bandwidth (ARG NO. _)
must be less than the order (ARG NO.
_) of the matrix.

2538-2037 The upper bandwidth (ARG NO. _)
must be less than the order (ARG NO.
_) of the matrix.

2538-2038 The half-band bandwidth (ARG NO. _)
must be less than the order (ARG NO.
_) of the matrix.

2538-2039 (ARG NO. _) must be greater than zero.

2538-2040 Insufficient storage allocated for
positive definite solve. (_) additional
bytes required.

2538-2041 The resulting correlation length
obtained from ARG NO. 8 = (_) and
ARG NO. 10 = (_) must be less than (_).

2538-2042 (ARG NO. _) must be greater than or
equal to zero.

2538-2043 (ARG NO. _) must be greater than (_).

2538-2044 The number of initialized coefficients
(ARG NO. _) cannot exceed the size of
the coefficient vector (ARG NO. _).

2538-2045 The order specified (ARG NO. _) is not
supported for this quadrature method.
The nearest supported order is (_).

2538-2046 The scaling parameter (ARG NO. _)
must be greater than zero for this
quadrature method.

2538-2047 The scaling parameter (ARG NO. _)
must be nonzero for this quadrature
method.

2538-2048 The sum of (ARG NO. _) and (ARG
NO. _) must be nonzero for this
quadrature method.

2538-2049 The number of data points (ARG NO. _)
must be greater than one in order to
perform numerical quadrature.

2538-2050 The number of columns specified for
the arrays to store the matrix in
compressed matrix mode (ARG NO. _)
must be greater than or equal to (_).

2538-2051 The number of columns (ARG NO. _)
specified for the matrix used to store the
sparse matrix in compressed mode must
be greater than zero.

2538-2052 The total number of non-zero elements
of the input sparse matrix stored by
rows, obtained from element (_) of the
row pointers array (ARG NO. _), must
be greater than or equal to zero.

2538-2053 The number of non-zero elements in
row (_) obtained from the row pointer
array (ARG NO. _) is less than zero.

2538-2054 The number of diagonals (ARG NO. _)
specified for the matrix used to store the
sparse matrix in compressed diagonal
mode must be greater than zero.

2538-2055 Element (_) of the vector used to store
the diagonal numbers (ARG NO. _) is
incompatible with the order of the
sparse matrix (ARG NO. _).

2538-2056 The matrix is singular because the
number of non-zero entries (ARG NO.
_) is zero.

2538-2032 • 2538-2056

212 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2538-2057 Element (_) in the integer parameter
vector (ARG NO. _) must be greater
than or equal to zero.

2538-2058 Element (_) in the integer parameter
vector (ARG NO. _) must be (_),(_), or
(_).

2538-2059 Element (_) in the real parameter vector
(ARG NO. _) must be greater than zero.

2538-2060 The size of the leading dimension (ARG
NO. _) of an array must be greater than
or equal to the maximum of (ARG NO.
_) and (ARG NO. _).

2538-2061 Parameter (ARG NO. _), which specifies
the number of columns of the input
sparse matrix (ARG NO. _ and ARG
NO. _), must be greater than or equal to
(_).

2538-2062 The number of random numbers
generated (ARG NO. _) must be even
and greater than or equal to zero.

2538-2063 SIDE (ARG NO. _), which specifies
whether the triangular input matrix
(ARG NO. _) appears on the left or right
of the other input matrix, must be 'L' or
'R'.

2538-2064 UPLO (ARG NO. _), which specifies
whether an input matrix (ARG NO. _) is
upper or lower triangular, must be 'U' or
'L'.

2538-2065 DIAG (ARG NO. _), which specifies
whether an input matrix (ARG NO. _) is
unit triangular, must be 'U' or 'N'.

2538-2066 Given the value which has been
assigned to SIDE (ARG NO. _), the
leading dimension (ARG NO. _) for the
triangular input matrix must be greater
than or equal to (ARG NO. _).

2538-2067 TRANSA (ARG NO. _) specifies
whether an input matrix (ARG NO. _),
its transpose, or its conjugate transpose
should be used. TRANSA must be 'N',
'T', or 'C'.

2538-2068 The size of the leading dimension (ARG
NO. _) of an array must be greater than
or equal to zero.

2538-2070 Element (_) in (ARG NO. _) must be
[one of the following: 0 or 1; greater
than zero; greater than or equal to zero;
greater than or equal to zero and less
than or equal to 1; greater than the
preceding element; greater than or equal
to 1 and less than or equal to n; -1 or 1;
nonzero; 0, 1, 2, 10, or 11; 0, 1, 2, 10, 11,
100, 102, or 110; 0; 1; 0, 1, 2, 10, 11, 100,
101, 102, 110, or 111; 1, 2, 3, or 4; 1, 2, 3,
4, or 5].

2538-2071 The number of eigenvalues (ARG NO.
_) must be less than or equal to the
order of the matrix (ARG NO. _).

2538-2072 The work area (ARG NO. _) does not
contain a valid vector seed. The routine
must be called with a nonzero value of
ISEED (ARG NO. _).

2538-2073 (ARG NO. _) must be a double
precision whole number greater than or
equal to 1.0 and less than 2147483647.0.

2538-2074 Performance can be improved by using
a larger work array. For best
performance, specify the number of
elements (ARG NO. _) in the work array
to be greater than or equal to (_).

2538-2075 The data type parameter (ARG NO. _)
must be 'S', 'D', 'C', or 'Z'.

2538-2076 (ARG NO. _) must be greater than or
equal to (_) and smaller than (_).

2538-2077 The matrix is singular. Column (_) is
empty in the matrix specified by (ARG
NO. _), (ARG NO. _), and (ARG NO. _).

2538-2078 The matrix is singular. Row (_) is empty
in the matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _).

2538-2079 The matrix, specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _),
contains at least one duplicate column
index in row (_).

2538-2057 • 2538-2079

Chapter 7. Handling Problems 213

2538-2080 Element (_) in (ARG NO. _) must be
[one of the following: greater than or
equal to (_) and less than or equal to (_);
greater than or equal to (_) and less than
or equal to (ARG NO. _); greater than or
equal to element (_) and less than or
equal to (_); zero or must be greater
than or equal to (_)].

2538-2081 Element (_) in (ARG NO. _) must be
less than or equal to (_).

2538-2082 Element (_) in (ARG NO. _) may cause
incorrect or misleading results. [One of
the following: A nonzero number with
absolute value less than or equal to 1; a
positive number less than or equal to 1]
is recommended.

2538-2083 The pivot tolerance (element (_) in
(ARG NO. _)) may cause incorrect or
misleading results. A number greater
than or equal to 0 and less than or equal
to 1 is recommended.

2538-2084 The dimension (ARG NO. _) of the
array (ARG NO. _) must be greater than
or equal to (_).

2538-2085 The number of steps after which the
generalized minimum residual method
is restarted, element (_) in (ARG NO. _),
must be greater than 0.

2538-2086 The acceleration parameter, element (_)
in (ARG NO. _), must be greater than 0
when using the SSOR preconditioner.

2538-2087 STOR (ARG NO. _), which specifies the
storage variation used to represent the
input sparse matrix, must be 'G', 'L', or
'U'.

2538-2088 INIT (ARG NO. _), which specifies the
type of computation to be performed,
must be 'I' or 'S'.

2538-2089 Element (_) in (ARG NO. _) must be
[one of the following: greater than or
equal to (_); greater than or equal to
element (_)].

2538-2090 For level (_), the number of grid points
for dimension (_) must be an odd
number greater than 1.

2538-2091 Since the mesh spacing (ARG NO. _)
here is not constant, the second order
prolongation method must be used.
That is, element (_) of (ARG NO. _)
must be (_).

2538-2092 The index into (ARG NO. _) is out of
range. This index is element (_,_) of
(ARG NO. _).

2538-2093 The index into (ARG NO. _) is out of
range. This index is element (_,_,_) of
(ARG NO. _).

2538-2094 For dimension (_) on level (_), the mesh
spacing must be changed to a positive
value.

2538-2095 Excess space in (ARG NO. _) has been
decreased and may be inadequate. To
avoid this, specify the coarse level
matrix as the final item in this
argument.

2538-2096 For level (_), the matrix type, solver, and
preconditioner are incompatible.

2538-2097 The solver requested for level (_)
requires a square matrix. Elements
(_,_,_) and (_,_,_) in (ARG NO. _) must
be equal.

2538-2098 Element (_,_) of (ARG NO. _) must be
greater than or equal to (_).

2538-2099 End of input argument error reporting.
For more information, refer to
Engineering and Scientific Subroutine
Library Guide and Reference.

2538-2080 • 2538-2099

214 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Computational Error Messages(2100-2199)

2538-2100 The computed index of a vector is out of
the range (_) to (_).

2538-2101 Eigenvalue (_) failed to converge after
(_) iterations.

2538-2102 Eigenvector (_) failed to converge after
(_) iterations.

2538-2103 The matrix (ARG NO. _) is singular.
Zero diagonal element (_) has been
detected.

2538-2104 The matrix (ARG NO. _) is not positive
definite. The last diagonal element with
nonpositive value is (_).

2538-2105 Factorization failed due to near zero
pivot number (_).

2538-2106 Vector boundary misalignment detected
in ESSL scalar library.

2538-2107 Singular value (_) failed to converge
after (_) iterations.

2538-2108 The matrix specified by (ARG NO. _)
and (ARG NO. _) is not definite because
the diagonal is not of constant sign.

2538-2109 The matrix specified by (ARG NO. _)
and (ARG NO. _) is not definite and the
iterative process is stopped at iteration
number (_).

2538-2110 The maximum allowed number of
iterations, element number (_) of (ARG
NO. _), were performed but the iterative
process did not converge to a solution
according to the stopping procedure.

2538-2111 The factorization matrix (ARG NO. _) is
not consistent with the sparse matrix
specified by (ARG NO. _) and (ARG
NO. _).

2538-2112 The incomplete factorization of the
sparse matrix specified by (ARG NO. _)
and (ARG NO. _) is not stable.

2538-2113 Unexpected nonzero vector mask
detected in ESSL scalar routine. Contact
your IBM Service Representative.

2538-2114 Eigenvalue (_) failed to converge after
(_) iterations.

2538-2115 The matrix (ARG NO. _) is not positive
definite. The leading minor of order (_)
has a nonpositive determinant.

2538-2116 The matrix specified by (ARG NO. _)
and (ARG NO. _) is singular.

2538-2117 The pivot element in column (_) is
smaller than the first element in (ARG
NO. _).

2538-2118 The pivot element in row (_) is smaller
than the first element in (ARG NO. _).

2538-2119 The storage space, specified by (ARG
NO. _), is insufficient.

2538-2120 The matrix is singular. The last row
processed in the matrix was row (_).

2538-2121 The matrix is singular. the last column
processed was column (_).

2538-2122 The factorization failed. No pivot
element was found in the active
submatrix.

2538-2123 Performance can be improved by
specifying a larger value for (ARG NO.
). () compressions were performed.

2538-2124 The data contained in AUX1, (ARG NO.
_), was computed for a different
algorithm.

2538-2126 The pivot value at row (_) is not
acceptable based on pivot criteria ((ARG
NO. _) and (ARG NO. _)). No fixup was
applicable to this pivot. The matrix
(ARG NO. _) may be singular or not
definite.

2538-2100 • 2538-2126

Chapter 7. Handling Problems 215

2538-2127 The pivot value at row (_) was replaced
with element (_) in (ARG NO. _). The
matrix (ARG NO. _) may be singular or
not definite.

2538-2128 Internal ESSL error. contact your IBM
service representative.

2538-2129 The matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is not
definite because the diagonal is not of
constant sign or some diagonal element
is zero.

2538-2130 The incomplete factorization of the
sparse matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is not
stable.

2538-2131 The matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is
singular.

2538-2132 Element (_) in (ARG NO. _) indicates
that factorization was done on a
previous call. The data passed is not the
result of a prior valid factorization.

2538-2133 An error occurred on level (_) in the
user-supplied subroutine specified by
(ARG NO. _).

2538-2134 The data contained in (ARG NO. _) is
not consistent with the sparse matrix
specified by (ARG NO. _), (ARG NO. _),
and (ARG NO. _).

2538-2135 For level (_), loss of orthogonality
occurred in a minimum residual solver
because the input matrix (element (_,_)
of (ARG NO. _)) is inappropriate.
Choose one of the other non-symmetric
solvers.

2538-2136 For level (_), the main diagonal element
for row (_) of a matrix is 0.

2538-2145 The input matrix (ARG NO. _) is
singular. The first diagonal element
found to be exactly zero was in column
(_).

2538-2146 The input matrix (ARG NO. _) is
singular. The first diagonal element
found to be exactly zero was in column
(_).

2538-2147 The matrix (ARG NO. _) is singular.
Zero diagonal element (_) has been
detected.

2538-2148 The matrix (ARG NO. _) is not positive
definite. The leading minor of order (_)
has a nonpositive determinant.

2538-2149 Factorization failed due to near zero
pivot number (_).

2538-2150 The inverse of matrix (ARG NO. _)
could not be computed. The first
diagonal element of the factored matrix
found to be exactly zero was in column
(_).

2538-2151 The inverse of matrix (ARG NO. _)
could not be computed. The first
diagonal element of the factored matrix
found to be exactly zero was in column
(_).

2538-2152 The alignment of (ARG NO. _) changed
after initialization. Performance may be
significantly degraded.

2538-2153 Eigenvalue (_) failed to converge. Arrays
WR (ARG NO. _) and WI (ARG NO. _)
contain the eigenvalues successfully
computed. For more information, refer
to Engineering and Scientific
Subroutine Library Guide and
Reference.

2538-2154 Bisection failed to converge for some
eigenvalues. The eigenvalues may not
be as accurate as the absolute and
relative tolerances.

2538-2155 The number of eigenvalues computed
(ARG NO. _) does not match the
number of eigenvalues requested.

2538-2156 No eigenvalues were computed since
the Gershgorin interval initially used
was incorrect.

2538-2127 • 2538-2156

216 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2538-2157 (_) eigenvectors failed to converge after
(_) iterations. The indices are stored in
IFAIL (ARG NO. _).

2538-2158 Eigenvalue (_) failed to converge. Array
W (ARG NO. _) contains the
eigenvalues successfully computed. For
more information, refer to Engineering
and Scientific Subroutine Library Guide
and Reference.

2538-2159 Eigenvalue (_) failed to converge in the
QZ iteration. Arrays ALPHAR (ARG
NO. _), ALPHAI (ARG NO. _) and
BETA (ARG NO. _) contain the
eigenvalues successfully computed. For
more information, refer to Engineering
and Scientific Subroutine Library Guide
and Reference.

2538-2160 Eigenvalue (_) failed to converge in the
computation of shifts. Arrays ALPHAR
(ARG NO. _), ALPHAI (ARG NO. _)
and BETA (ARG NO. _) contain the
eigenvalues successfully computed. For
more information, refer to Engineering
and Scientific Subroutine Library Guide
and Reference.

2538-2161 An eigenvector failed to converge
because the 2-by-2 block (_ : _) did not
have a complex eigenvalue.

2538-2162 The algorithm failed to converge
because (_) off-diagonal elements of an
intermediate tridiagonal form did not
converge to zero.

2538-2163 An eigenvalue failed to converge in the
submatrix starting at row and column
(_) and ending at row and column (_).

2538-2164 Eigenvalue (_) failed to converge in the
QZ iteration. Arrays ALPHA (ARG NO.
_) and BETA (ARG NO. _) contain the
eigenvalues successfully computed. For
more information, refer to Engineering
and Scientific Subroutine Library Guide
and Reference.

2538-2165 Eigenvalue (_) failed to converge in the
computation of shifts. Arrays ALPHA
(ARG NO. _) and BETA (ARG NO. _)
contain the eigenvalues successfully
computed. For more information, refer
to Engineering and Scientific
Subroutine Library Guide and
Reference.

2538-2166 The matrix specified by (ARG NO. _)
and (ARG NO. _) is not positive
definite. The leading minor of order (_)
has a nonpositive determinant.

2538-2167 (_) superdiagonals of an intermediate
bidiagonal form B did not converge to
zero. For more information, refer to
Engineering and Scientific Subroutine
Library Guide and Reference.

2538-2168 The matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is
singular. The first diagonal element
found to be exactly zero was in column
(_).

2538-2169 A singular value failed to converge.

2538-2199 End of computational error reporting.
For more information, refer to
Engineering and Scientific Subroutine
Library Guide and Reference.

Input-Argument Error Messages(2200-2299)

2538-2200 The dimension (ARG NO. _) of the
array (ARG NO. _) must be greater than
or equal to (_).

2538-2201 The number of elements (ARG NO. _)
in a work array (ARG NO. _) must be
zero, to indicate dynamic allocation,
minus one, to indicate workspace query,
or greater than or equal to (_) if a work
array is being supplied.

2538-2207 The number of elements in the array
(ARG NO. _) must be less than or equal
to (_).

2538-2208 ANORM (ARG NO. _) must be equal to
zero or greater than or equal to (_) and
less than or equal to (_).

2538-2209 NORM (ARG NO. _), which specifies
the computation to be performed, must
be 'M', '1', 'O', 'I', 'F', or 'E'.

2538-2157 • 2538-2209

Chapter 7. Handling Problems 217

2538-2210 NORM (ARG NO. _), which specifies
whether to calculate the 1-norm
condition number or the infinity-norm
condition number, must be '1', 'O', or 'I'.

2538-2211 The alignment of (ARG NO. _) changed
after initialization.

2538-2212 JOBZ (ARG NO. _), which specifies
whether or not to compute eigenvectors,
must be 'N' or 'V'.

2538-2213 RANGE (ARG NO. _), which specifies
which eigenvalues to find, must be 'A',
'V', or 'I'.

2538-2214 VU (ARG NO. _), which specifies the
upper bound of the interval to be
searched for eigenvalues, must be
greater than VL (ARG NO. _), which
specifies the lower bound of the interval
to be searched for eigenvalues.

2538-2215 IL (ARG NO. _), which specifies the
index of the smallest eigenvalue to be
returned, must be greater than or equal
to 1 and less than or equal to the larger
of 1 and the order (ARG NO. _) of the
matrix (ARG NO. _).

2538-2216 IU (ARG NO. _), which specifies the
index of the largest eigenvalue to be
returned, must be greater than or equal
to the smaller of the order (ARG NO. _)
of the matrix (ARG NO. _) and IL (ARG
NO. _) and less than or equal to the
order of the matrix.

2538-2217 BALANC (ARG NO. _), which specifies
whether or not to diagonally scale the
input matrix (ARG NO. _) and whether
or not to permute the input matrix, must
be 'N', 'P', 'S', or 'B'.

2538-2218 JOBVL (ARG NO. _), which specifies
whether or not to compute left
eigenvectors, must be 'N' or 'V'.

2538-2219 JOBVR (ARG NO. _), which specifies
whether or not to compute right
eigenvectors, must be 'N' or 'V'.

2538-2220 SENSE (ARG NO. _), which specifies
which reciprocal condition numbers are
to be computed, must be 'N', 'E', 'V', or
'B'.

2538-2221 JOBVL (ARG NO. _) and JOBVR (ARG
NO. _) must be 'V' if SENSE (ARG. NO
_) is 'E' or 'B'.

2538-2222 ITYPE (ARG NO. _), which specifies the
problem type, must be 1, 2, or 3.

2538-2223 The routine must be initialized with the
present value of element (_) of (ARG
NO. _).

2538-2224 UPLO (ARG NO. _), which specifies
whether off-diagonal E (ARG NO. _) is
the superdiagonal or the subdiagonal of
the bidiagonal factorization, must be 'U'
or 'L'.

2538-2225 The lower bandwidth (ARG NO. _)
must be less than the number of rows
(ARG NO. _) of the matrix.

2538-2226 The upper bandwidth (ARG NO. _)
must be less than the number of
columns (ARG NO. _) of the matrix.

2538-2227 JOBU (ARG NO. _), which specifies
whether or not to compute left singular
vectors, must be 'N', 'A', 'S', or 'O'.

2538-2228 JOBVT (ARG NO. _), which specifies
whether or not to compute left singular
vectors, must be 'N', 'A', 'S', or 'O'.

2538-2229 JOBU (ARG NO. _) and JOBVT (ARG
NO. _) cannot both be 'O'.

2538-2230 The size of the leading dimension (ARG
NO. _) of an array must be greater than
or equal to the smaller of (ARG NO. _)
and (ARG NO. _).

2538-2231 IOPT (ARG NO. _) must be 1 or 2.

2538-2232 IREPEAT (ARG NO. _) must be 0 or 1.

2538-2210 • 2538-2232

218 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2538-2233 LISEED (ARG NO. _), which depends
on IOPT (ARG NO. _), must be greater
than or equal to (_).

2538-2234 LISTATE (ARG NO. _), which depends
on IOPT (ARG NO. _), must be minus
one to indicate an ISTATE (ARG NO. _)
size query, or greater than or equal to (_)
if the state vector has been supplied.

2538-2235 ISTATE (ARG NO. _) is not initialized.

2538-2236 (ARG NO. _) must be less than (ARG
NO. _).

2538-2237 ISTATE (ARG NO. _) must be
initialized with IOPT equal to (_).

2538-2238 ESSL_CUDA_HYBRID must be "yes",
"no", or unset.

2538-2239 ESSL_CUDA_PIN must be "yes", "no",
"pinned", or unset.

2538-2240 Element (_) of array IDS (ARG NO. _)
must be greater than or equal to zero or
less than the number of CUDA devices
(_).

2538-2241 This subroutine may be called only
once, and it must be called before any
ESSL GPU enabled subroutines.

2538-2242 The CUDA device corresponding to
element (_) in array IDS (ARG NO. _)
must be in NVIDIA compute mode 0
(DEFAULT), 1 (EXCLUSIVE_PROCESS),
or 3 (EXCLUSIVE_THREAD).

2538-2243 cblas_order (ARG NO. _), which
specifies whether matrices are stored in
row major or column major order, must
be CblasRowMajor or
CblasColumnMajor.

2538-2244 The form (ARG NO. _) of a matrix must
be CblasNoTrans or CblasTrans.

2538-2245 The form (ARG NO. _) of a matrix must
be CblasNoTrans, CblasTrans, or
CblasConjTrans.

2538-2246 The form (ARG NO. _) of a matrix must
be CblasNoTrans or CblasConjTrans.

2538-2247 cblas_diag (ARG NO. _), which specifies
whether an input matrix (ARG NO. _) is
unit triangular, must be CblasUnit or
CblasNonUnit.

2538-2248 cbla_side (ARG NO. _), which specifies
whether the triangular input matrix
(ARG NO. _) appears on the left or right
of the other input matrix, must be
CblasLeft or CblasRight.

2538-2249 cblas_uplo (ARG NO. _), which
specifies whether an input matrix (ARG
NO. _) is upper or lower triangular,
must be CblasUpper or CblasLower.

2538-2233 • 2538-2249

Chapter 7. Handling Problems 219

||
|
|
|
|

||
|

||
|
|

||
|

||
|
|
|

||
|
|
|
|

||
|
|
|

Resource Error Messages(2400-2499)

2538-2400 An internal buffer allocation has failed
due to insufficient memory.

Informational and Attention Error Messages(2600-2699)

2538-2600 Performance may be degraded due to
limited buffer space availability.

2538-2601 Execution terminating due to error count
for error number (_) Message summary:
Message number - Count

2538-2602 User error corrective routine entered.
User corrective action taken. Execution
continuing.

2538-2603 Standard corrective action taken.
Execution continuing.

2538-2604 Execution terminating due to error count
for error number _.

2538-2605 Message summary: _ - _

2538-2606 Serial execution is taking place since the
input array is equal to the output array
and either: INC2X (ARG NO. _) is not
equal to 2 times INC2Y (ARG NO. _) or
INC3X (ARG NO. _) is not equal to 2
times INC3Y (ARG NO. _).

2538-2607 Serial execution is taking place since the
input array is equal to the output array
and either: INC2X (ARG NO. _) is not
equal to INC2Y (ARG NO. _) or INC3X
(ARG NO. _) is not equal to INC3Y
(ARG NO. _).

2538-2608 Performance may be improved by using
a larger work array. For best
performance, specify the number of
elements (ARG NO. _) in the work array
to be greater than or equal to (_).

2538-2609 Performance may be improved by
specifying a larger value for (ARG NO.
). () compressions were performed.

2538-2610 Performance may be degraded due to
the alignment of (ARG NO. _).

2538-2611 Performance may be improved by
specifying an even value for (ARG NO.
_).

2538-2612 Performance may be improved by
specifying a multiple of four for (ARG
NO. _).

2538-2613 ESSL computed the eigenvalues using
multiple algorithms. Performance may
be degraded.

2538-2614 Performance may be degraded because
the number of available GPUs is zero.

2538-2615 Performance may be improved by
specifying the number of threads (_)
greater than or equal to the number of
available GPUs (_).

2538-2616 _returned with CUDA message: _

Miscellaneous Error Messages(2700-2799)

2538-2700 Internal ESSL error number (_). Contact
your IBM service representative.

2538-2703 Internal ESSL error: message number
requested (_) is outside of the valid
range. Contact your IBM service
representative.

2538-2799 Unable to locate message number (_).
Please refer to 'Using Error Handling' in
the ESSL Guide and Reference for the
full message text.

2538-2400 • 2538-2799

220 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Part 2. Reference Information

This documentation is organized into ten areas, providing reference information for
coding the ESSL calling sequences. It is organized as follows:
v Linear Algebra Subprograms
v Matrix Operations
v Linear Algebraic Equations
v Eigensystem Analysis
v Fourier Transforms, Convolutions and Correlations, and Related Computations
v Sorting and Searching
v Interpolation
v Numerical Quadrature
v Random Number Generation
v Utilities

© Copyright IBM Corp. 1986, 2015 221

222 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 8. Linear Algebra Subprograms

The linear algebra subprograms, provided in four areas, are described here.

Overview of the Linear Algebra Subprograms
This describes the subprograms in each of the four linear algebra subprogram
areas:
v Vector-scalar linear algebra subprograms (“Vector-Scalar Linear Algebra

Subprograms”)
v Sparse vector-scalar linear algebra subprograms (“Sparse Vector-Scalar Linear

Algebra Subprograms” on page 225)
v Matrix-vector linear algebra subprograms (“Matrix-Vector Linear Algebra

Subprograms” on page 225)
v Sparse matrix-vector linear algebra subprograms (“Sparse Matrix-Vector Linear

Algebra Subprograms” on page 227)

Note:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the
BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms
The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [91 on page 1318]. The
remainder of the vector-scalar linear algebra subprograms are commonly used
computations provided for your applications. Both real and complex versions of
the subprograms are provided.

Table 64. List of Vector-Scalar Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

ISAMAX†u

ICAMAX†u

cblas_isamaxu

cblas_icamaxu

IDAMAX†u

IZAMAX†u

cblas_idamaxu

cblas_izamaxu

“ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last
Occurrence of the Vector Element Having the Largest Magnitude)” on page
230

ISAMIN† IDAMIN† “ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector
Element Having Minimum Absolute Value)” on page 233

ISMAX† IDMAX† “ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector
Element Having the Maximum Value)” on page 236

ISMIN† IDMIN† “ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector
Element Having Minimum Value)” on page 239

SASUM†u

SCASUM†u

cblas_sasumu

cblas_scasumu

DASUM†u

DZASUM†u

cblas_dasumu

cblas_dzasumu

“SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the
Elements in a Vector)” on page 242

© Copyright IBM Corp. 1986, 2015 223

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

Table 64. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SAXPYu

CAXPYu

cblas_saxbyu

cblas_caxpyu

DAXPYu

ZAXPYu

cblas_daxbyu

cblas_zaxpyu

“SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add
to a Vector Y, and Store in the Vector Y)” on page 245

SCOPYu

CCOPYu

cblas_scopyu

cblas_ccopyu

DCOPYu

ZCOPYu

cblas_dcopyu

cblas_zcopyu

“SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)” on page 248

SDOT†u

CDOTU†u

CDOTC†u

cblas_sdotu

cblas_cdotu_subu

cblas_cdotc_subu

DDOT†u

ZDOTU†u

ZDOTC†u

cblas_ddotu

cblas_zdotu_subu

cblas_zdotc_subu

“SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two
Vectors)” on page 251

SNAXPY DNAXPY “SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)” on page
255

SNDOT DNDOT “SNDOT and DNDOT (Compute Special Dot Products N Times)” on page
260

SNRM2†u

SCNRM2†u

cblas_snrm2u

cblas_scnrm2u

DNRM2†u

DZNRM2†u

cblas_dnrm2u

cblas_dznrm2u

“SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector
with Scaling of Input to Avoid Destructive Underflow and Overflow)” on
page 265

SNORM2†

CNORM2†
DNORM2†

ZNORM2†
“SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a
Vector with No Scaling of Input)” on page 268

SROTGu

CROTGu

cblas_srotgu

DROTGu

ZROTGu

cblas_drotgu

“SROTG, DROTG, CROTG, and ZROTG (Construct a Given Plane Rotation)”
on page 271

SROTu

CROTu

CSROTu

cblas_srot

DROTu

ZROTu

ZDROTu

cblas_drot

“SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)”
on page 277

SSCALu

CSCALu

CSSCALu

cblas_sscalu

cblas_cscalu

cblas_csscalu

DSCALu

ZSCALu

ZDSCALu

cblas_dscalu

cblas_zscalu

cblas_zdscalu

“SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector
X by a Scalar and Store in the Vector X)” on page 281

SSWAPu

CSWAPu

cblas_sswapu

cblas_cswapu

DSWAPu

ZSWAPu

cblas_dswapu

cblas_zswapu

“SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two
Vectors)” on page 284

SVEA
CVEA

DVEA
ZVEA

“SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in
a Vector Z)” on page 287

SVES
CVES

DVES
ZVES

“SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and
Store in a Vector Z)” on page 291

SVEM
CVEM

DVEM
ZVEM

“SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and
Store in a Vector Z)” on page 295

SYAX
CYAX
CSYAX

DYAX
ZYAX
ZDYAX

“SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a
Scalar and Store in a Vector Y)” on page 299

224 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

Table 64. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SZAXPY
CZAXPY

DZAXPY
ZZAXPY

“SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a
Scalar, Add to a Vector Y, and Store in a Vector Z)” on page 302

† This subprogram is invoked as a function in a Fortran program.

u Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms
The sparse vector-scalar linear algebra subprograms operate on sparse vectors
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the vector-scalar
subprograms. These subprograms represent a subset of the sparse extensions to the
Level 1 BLAS described in reference [37 on page 1315]. Both real and complex
versions of the subprograms are provided.

Table 65. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SSCTR
CSCTR

DSCTR
ZSCTR

“SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X
in Compressed-Vector Storage Mode into Specified Elements of a Sparse
Vector Y in Full-Vector Storage Mode)” on page 307

SGTHR
CGTHR

DGTHR
ZGTHR

“SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a
Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode)” on page 310

SGTHRZ
CGTHRZ

DGTHRZ
ZGTHRZ

“SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of
a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified Elements of Y)” on
page 313

SAXPYI
CAXPYI

DAXPYI
ZAXPYI

“SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in
Full-Vector Storage Mode, and Store in the Vector Y)” on page 316

SDOTI†

CDOTCI†

CDOTUI†

DDOTI†

ZDOTCI†

ZDOTUI†

“SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of
a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y
in Full-Vector Storage Mode)” on page 319

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data
structure - matrix-vector rather than vector-scalar - using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of
Level 2 BLAS. For details on the Level 2 BLAS, see [42 on page 1315] and [43 on
page 1315]. Both real and complex versions of the subprograms are provided.

Chapter 8. Linear Algebra Subprograms 225

Table 66. List of Matrix-Vector Linear Algebra Subprograms

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SGEMV◄

CGEMV◄

SGEMX§

SGEMTX§

cblas_sgemv◄

cblas_cgemv◄

DGEMV◄

ZGEMV◄

DGEMX§

DGEMTX§

cblas_dgemv◄

cblas_zgemv◄

“SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose)” on page 324

SGER◄

CGERU◄

CGERC◄

cblas_sger◄

cblas_cgeru◄

cblas_cgerc◄

DGER◄

ZGERU◄

ZGERC◄

cblas_dger◄

cblas_zgeru◄

cblas_zgerc◄

“SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of
a General Matrix)” on page 335

SSPMV◄

CHPMV◄

SSYMV◄

CHEMV◄

SSLMX§

cblas_sspmv◄

cblas_chpmv◄

cblas_ssymv◄

cblas_chemv◄

DSPMV◄

ZHPMV◄

DSYMV◄

ZHEMV◄

DSLMX§

cblas_dspmv◄

cblas_zhpmv◄

cblas_dsymv◄

cblas_zhemv◄

“SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix)” on page 343

SSPR◄

CHPR◄

SSYR◄

CHER◄

SSLR1§

cblas_sspr◄

cblas_chpr◄

cblas_ssyr◄

cblas_cher◄

DSPR◄

ZHPR◄

DSYR◄

ZHER◄

DSLR1§

cblas_dspr◄

cblas_zhpr◄

cblas_dsyr◄

cblas_zher◄

“SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1
(Rank-One Update of a Real Symmetric or Complex Hermitian Matrix)” on
page 352

SSPR2◄

CHPR2◄

SSYR2◄

CHER2◄

SSLR2§

cblas_sspr2◄

cblas_chpr2◄

cblas_ssyr2◄

cblas_cher2◄

DSPR2◄

ZHPR2◄

DSYR2◄

ZHER2◄

DSLR2§

cblas_dspr2◄

cblas_zhpr2◄

cblas_dsyr2◄

cblas_zher2◄

“SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2,
and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
Matrix)” on page 360

SGBMV◄

CGBMV◄

cblas_sgbmv◄

cblas_cgbmv◄

DGBMV◄

ZGBMV◄

cblas_dgbmv◄

cblas_zgbmv◄

“SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a
General Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page
369

SSBMV◄

CHBMV◄

cblas_ssbmv◄

cblas_chbmv◄

DSBMV◄

ZHBMV◄

cblas_dsbmv◄

cblas_zhbmv◄

“SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real
Symmetric or Complex Hermitian Band Matrix)” on page 376

226 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

Table 66. List of Matrix-Vector Linear Algebra Subprograms (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

STRMV◄

CTRMV◄

STPMV◄

CTPMV◄

cblas_strmv◄

cblas_ctrmv◄

cblas_stpmv◄

cblas_ctpmv◄

DTRMV◄

ZTRMV◄

DTPMV◄

ZTPMV◄

cblas_dtrmv◄

cblas_ztrmv◄

cblas_dtpmv◄

cblas_ztpmv◄

“STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV
(Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose)” on page 381

STRSV◄

CTRSV◄

STPSV◄

CTPSV◄

cblas_strsv◄

cblas_ctrsv◄

cblas_stpsv◄

cblas_ctps◄v

DTRSV◄

ZTRSV◄

DTPSV◄

ZTPSV◄

“STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV
(Solution of a Triangular System of Equations with a Single Right-Hand
Side)” on page 388

STBMV◄

CTBMV◄

cblas_stbmv◄

cblas_ctbmv◄

DTBMV◄

ZTBMV◄

cblas_dtbmv◄

cblas_ztbmv◄

“STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a
Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page
395

STBSV◄

CTBSV◄

cblas_stbsv◄

cblas_ctbsv◄

DTBSV◄

ZTBSV◄

cblas_dtbsv◄

cblas_ztbsv◄

“STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)” on
page 401

◄ Level 2 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Matrix-Vector Linear Algebra Subprograms
The sparse matrix-vector linear algebra subprograms operate on sparse matrices
using optimized storage techniques; that is, only the nonzero elements of the
vector are stored. These subprograms provide similar functions to the
matrix-vector subprograms.

Table 67. List of Sparse Matrix-Vector Linear Algebra Subprograms

Long-Precision
Subprogram Descriptive Name and Location

DSMMX “DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)”
on page 408

DSMTM “DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)” on page 411

DSDMX “DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode)” on page 415

Chapter 8. Linear Algebra Subprograms 227

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

Use Considerations
If your program uses a sparse matrix stored by rows, as defined in
“Storage-by-Rows” on page 120, you should first convert your sparse matrix to
compressed-matrix storage mode by using the subroutine DSRSM (see “DSRSM
(Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage
Mode)” on page 1279). DSRSM converts a matrix to compressed-matrix storage
mode. To convert your sparse matrix to compressed-diagonal storage mode, you
need to perform this conversion in your application program before calling the
ESSL subroutine.

Performance and Accuracy Considerations
1. In ESSL, the SSCAL and DSCAL subroutines provide the fastest way to zero

out contiguous (stride 1) arrays, by specifying incx = 1 and α = 0.
2. Where possible, use the matrix-vector linear algebra subprograms, rather than

the vector-scalar, to optimize performance. Because data is presented in
matrices rather than vectors, multiple operations can be performed by a single
ESSL subprogram.

3. Where possible, use subprograms that do multiple computations, such as
SNDOT and SNAXPY, rather than individual computations, such as SDOT and
SAXPY. You get better performance.

4. Many of the short-precision subprograms provide increased accuracy by
accumulating results in long precision. However, when short-precision
subroutines use the AltiVec or VSX unit to improve performance, they do not
accumulate intermediate results in long precision. This is noted in the
functional description of each subprogram.

5. In some of the subprograms, because implementation techniques vary to
optimize performance, accuracy of the results may vary for different array
sizes. In the subprograms in which this occurs, a general description of the
implementation techniques is given in the functional description for each
subprogram.

6. To select the sparse matrix subroutine that gives you the best performance, you
must consider the layout of the data in your matrix. From this, you can
determine the most efficient storage mode for your sparse matrix. ESSL
provides two versions of each of its sparse matrix-vector subroutines that you
can use. One operates on sparse matrices stored in compressed-matrix storage
mode, and the other operates on sparse matrices stored in compressed-diagonal
storage mode. These two storage modes are described in “Sparse Matrix” on
page 114.
Compressed-matrix storage mode is generally applicable. It should be used
when each row of the matrix contains approximately the same number of
nonzero elements. However, if the matrix has a special form—that is, where the
nonzero elements are concentrated along a few diagonals—compressed-
diagonal storage mode gives improved performance.

7. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 62.

228 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Vector-Scalar Subprograms

This contains the vector-scalar subprogram descriptions.

Chapter 8. Linear Algebra Subprograms 229

ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last
Occurrence of the Vector Element Having the Largest Magnitude)

Purpose

ISAMAX and IDAMAX find the position i of the first or last occurrence of a vector
element having the maximum absolute value. ICAMAX and IZAMAX find the
position i of the first or last occurrence of a vector element having the largest sum
of the absolute values of the real and imaginary parts of the vector elements.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 68. Data Types

x Subprogram

Short-precision real ISAMAX

Long-precision real IDAMAX

Short-precision complex ICAMAX

Long-precision complex IZAMAX

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran ISAMAX | IDAMAX | ICAMAX | IZAMAX (n, x, incx)

C and C++ isamax | idamax | icamax | izamax (n, x, incx);

CBLAS cblas_isamax | cblas_idamax | cblas_icamax | cblas izamax (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 68.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as:
v an integer; 0 ≤ i ≤ n (for Fortran, C, and C++)

230 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||

|

v a CBLAS_INDEX; 0 ≤ i ≤ n-1

Notes

Declare the ISAMAX, IDAMAX, ICAMAX, and IZAMAX functions in your
program as returning an integer value.

Function

ICAMAX and IZAMAX find the first element xk, where k is defined as the smallest
index k, such that:

|ak|+|bk| = max{|aj|+|bj| for j = 1, n}
where xk = (ak, bk)

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n-k+1

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then 0 is returned as the value of the function.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(9 , X , 1)

X = (1.0, 2.0, 7.0, -8.0, -5.0, -10.0, -9.0, 10.0, 6.0)

Output:
IMAX = 6

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(5 , X , 2)

X = (1.0, . , 7.0, . , -5.0, . , -9.0, . , 6.0)

Output:

Chapter 8. Linear Algebra Subprograms 231

|

IMAX = 4

Example 3
This example shows a vector, x, with a stride of 0.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(9 , X , 0)

X = (1.0, . , . , . , . , . , . , . , .)

Output:
IMAX = 1

Example 4
This example shows a vector, x, with a negative stride. Processing begins at
element X(15), which is 2.0.

Function Reference and Input:
N X INCX
| | |

IMAX = ISAMAX(8 , X , -2)

X = (3.0, . , 5.0, . , -8.0, . , 6.0, . , 8.0, . ,
4.0, . , 8.0, . , 2.0)

Output:
IMAX = 7

Example 5
This example shows a vector, x, containing complex numbers and having a
stride of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ICAMAX(5 , X , 1)

X = ((9.0 , 2.0) , (7.0 , -8.0) , (-5.0 , -10.0) , (-4.0 , 10.0),
(6.0 , 3.0))

Output:
IMAX = 2

232 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ISAMIN and IDAMIN (Position of the First or Last Occurrence of the
Vector Element Having Minimum Absolute Value)

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum absolute value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 69. Data Types

x Subprogram

Short-precision real ISAMIN

Long-precision real IDAMIN

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran ISAMIN | IDAMIN (n, x, incx)

C and C++ isamin | idamin (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 69.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: an integer; 0 ≤ i ≤ n.

Notes

Declare the ISAMIN and IDAMIN functions in your program as returning an
integer value.

Chapter 8. Linear Algebra Subprograms 233

Function

These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

|xk| = min{|xj| for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n-k+1

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then 0 is returned as the value of the function.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output
IMIN = 3

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

Output:
IMIN = 1

Example 3
This example shows a vector, x, with a positive stride and two elements with
the minimum absolute value. The position of the first occurrence is returned.

Function Reference and Input:

234 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N X INCX
| | |

IMIN = ISAMIN(4 , X , 2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

Output:
IMIN = 2

Example 4
This example shows a vector, x, with a negative stride and two elements with
the minimum absolute value. The position of the last occurrence is returned.
Processing begins at element X(7), which is 1.0.

Function Reference and Input:
N X INCX
| | |

IMIN = ISAMIN(4 , X , -2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

Output:
IMIN = 4

Chapter 8. Linear Algebra Subprograms 235

ISMAX and IDMAX (Position of the First or Last Occurrence of the
Vector Element Having the Maximum Value)

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the maximum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 70. Data Types

x Subprogram

Short-precision real ISMAX

Long-precision real IDMAX

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran ISMAX | IDMAX (n, x, incx)

C and C++ ismax | idmax (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 70.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: an integer; 0 ≤ i ≤ n.

Notes

Declare the ISMAX and IDMAX functions in your program as returning an integer
value.

236 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

xk = max{xj for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n-k+1

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then 0 is returned as the value of the function.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 8.0)

Output:
IMAX = 4

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(4 , X , 2)

X = (-3.0, . , 9.0, . , -8.0, . , 3.0)

Output:
IMAX = 2

Example 3
This example shows a vector, x, with a positive stride and two elements with
the maximum value. The position of the first occurrence is returned.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 237

N X INCX
| | |

IMAX = ISMAX(4 , X , 2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

Output:
IMAX = 2

Example 4
This example shows a vector, x, with a negative stride and two elements with
the maximum value. The position of the last occurrence is returned. Processing
begins at element X(7), which is 1.0.

Function Reference and Input:
N X INCX
| | |

IMAX = ISMAX(4 , X , -2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

Output:
IMAX = 3

238 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ISMIN and IDMIN (Position of the First or Last Occurrence of the
Vector Element Having Minimum Value)

Purpose

These subprograms find the position i of the first or last occurrence of a vector
element having the minimum value.

You get the position of the first or last occurrence of an element by specifying
positive or negative stride, respectively, for vector x. Regardless of the stride, the
position i is always relative to the location specified in the calling sequence for
vector x (in argument x).

Table 71. Data Types

x Subprogram

Short-precision real ISMIN

Long-precision real IDMIN

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran ISMIN | IDMIN (n, x, incx)

C and C++ ismin | idmin (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 71.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value

is the position i of the element in the array, where:

If incx ≥ 0, i is the position of the first occurrence.

If incx < 0, i is the position of the last occurrence.

Returned as: an integer; 0 ≤ i ≤ n.

Notes

Declare the ISMIN and IDMIN functions in your program as returning an integer
value.

Chapter 8. Linear Algebra Subprograms 239

Function

These subprograms find the first element xk, where k is defined as the smallest
index k, such that:

xk = min{xj for j = 1, n}

By specifying a positive or negative stride for vector x, the first or last occurrence,
respectively, is found in the array. The position i, returned as the value of the
function, is always figured relative to the location specified in the calling sequence
for vector x (in argument x). Therefore, depending on the stride specified for incx, i
has the following values:

For incx ≥ 0, i = k
For incx < 0, i = n-k+1

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then 0 is returned as the value of the function.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output:
IMIN = 3

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

Output:
IMIN = 2

Example 3

This example shows a vector, x, with a positive stride and two elements with
the minimum value. The position of the first occurrence is returned. Processing
begins at element X(7), which is 1.0.

Function Reference and Input:

240 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N X INCX
| | |

IMIN = ISMIN(4 , X , 2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

Output:
IMIN = 2

Example 4
This example shows a vector, x, with a negative stride and two elements with
the minimum value. The position of the last occurrence is returned. Processing
begins at element X(7), which is 1.0.

Function Reference and Input:
N X INCX
| | |

IMIN = ISMIN(4 , X , -2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

Output:
IMIN = 4

Chapter 8. Linear Algebra Subprograms 241

SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of
the Elements in a Vector)

Purpose

SASUM and DASUM compute the sum of the absolute values of the elements in
vector x. SCASUM and DZASUM compute the sum of the absolute values of the
real and imaginary parts of the elements in vector x.

Table 72. Data Types

x Result Subprogram

Short-precision real Short-precision real SASUM

Long-precision real Long-precision real DASUM

Short-precision complex Short-precision real SCASUM

Long-precision complex Long-precision real DZASUM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran SASUM | DASUM | SCASUM | DZASUM (n, x, incx)

C and C++ sasum | dasum | scasum | dzasum (n, x, incx);

CBLAS cblas_sasum | cblas_dasum | cblas_scasum | cblas_dzasum (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 72.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the result of the summation. Returned as: a number of the data type
indicated in Table 72.

Notes

Declare this function in your program as returning a value of the type indicated in
Table 72.

Function

SASUM and DASUM compute the sum of the absolute values of the elements of x,
which is expressed as follows:

242 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||

SCASUM and DZASUM compute the sum of the absolute values of the real and
imaginary parts of the elements of x, which is expressed as follows:

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then 0.0 is returned as the value of the function. For SASUM and SCASUM,
intermediate results are accumulated in long precision when the AltiVec or VSX
unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(7 , X , 1)

X = (1.0, -3.0, -6.0, 7.0, 5.0, 2.0, -4.0)

Output:
SUMM = 28.0

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(4 , X , 2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

Output:
SUMM = 16.0

Example 3
This example shows a vector, x, with negative stride. Processing begins at
element X(7), which is -4.0.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 243

N X INCX
| | |

SUMM = SASUM(4 , X , -2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

Output:
SUMM = 16.0

Example 4
This example shows a vector, x, with a stride of 0. The result in SUMM is nx1.

Function Reference and Input:
N X INCX
| | |

SUMM = SASUM(7 , X , 0)

X = (-2.0, . , . , . , . , . , .)

Output:
SUMM = 14.0

Example 5
This example shows a vector, x, containing complex numbers and having a
stride of 1.

Function Reference and Input:
N X INCX
| | |

SUMM = SCASUM(5 , X , 1)

X = ((1.0, 2.0), (-3.0, 4.0), (5.0, -6.0), (-7.0, -8.0),
(9.0, 10.0))

Output:
SUMM = 55.0

244 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar,
Add to a Vector Y, and Store in the Vector Y)

Purpose

These subprograms perform the following computation, using the scalar α and
vectors x and y:

y ← y+αx

Table 73. Data Types

alpha, x, y Subprogram

Short-precision real SAXPY

Long-precision real DAXPY

Short-precision complex CAXPY

Long-precision complex ZAXPY

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SAXPY | DAXPY | CAXPY | ZAXPY (n, alpha, x, incx, y, incy)

C and C++ saxpy | daxpy | caxpy | zaxpy (n, alpha, x, incx, y, incy);

CBLAS cblas_saxpy | cblas_daxpy | cblas_caxpy | cblas_zaxpy (n, alpha, x, incx, y, incy);

On Entry

n is the number of elements in vectors x and y.

Specified as: an integer; n ≥ 0.

alpha
is the scalar alpha.

Specified as: a number of the data type indicated in Table 73.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 73.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 73.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

On Return

Chapter 8. Linear Algebra Subprograms 245

||

y is the vector y, containing the results of the computation y+αx. Returned as: a
one-dimensional array, containing numbers of the data type indicated in
Table 73 on page 245.

Notes
1. If you specify the same vector for x and y, incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 73.

Function

The computation is expressed as follows:

See reference [91 on page 1318]. If alpha or n is zero, no computation is performed.
For CAXPY, intermediate results are accumulated in long precision when the
AltiVec or VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Y = (3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0)

Example 2
This example shows vectors x and y having strides of opposite signs. For y,
which has negative stride, processing begins at element Y(5), which is 1.0.

Call Statement and Input:

246 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Y = (15.0, 12.0, 9.0, 6.0, 3.0)

Example 3
This example shows a vector, x, with 0 stride. Vector x is treated like a vector
of length n, all of whose elements are the same as the single element in x.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Y = (7.0, 6.0, 5.0, 4.0, 3.0)

Example 4
This example shows how SAXPY can be used to compute a scalar value. In
this case, vectors x and y contain scalar values and the strides for both vectors
are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SAXPY(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)
Y = (5.0)

Output:
Y = (7.0)

Example 5
This example shows how to use CAXPY, where vectors x and y contain
complex numbers. In this case, vectors x and y have positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CAXPY(3 ,ALPHA, X , 1 , Y , 2)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

Y = ((-3.0, 8.0), . , (4.0, 8.0), . , (-4.0, 23.0))

Chapter 8. Linear Algebra Subprograms 247

SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)
Purpose

These subprograms copy vector x to another vector, y:

y←x

Table 74. Data Types

x, y Subprogram

Short-precision real SCOPY

Long-precision real DCOPY

Short-precision complex CCOPY

Long-precision complex ZCOPY

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, incx, y, incy)

C and C++ scopy | dcopy | ccopy | zcopy (n, x, incx, y, incy);

CBLAS cblas_scopy | cblas_dcopy | cblas_ccopy | cblas_zcopy (n, x, incx, y, incy);

On Entry

n is the number of elements in vectors x and y.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 74.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y See On Return.

incy
is the stride for vector y. Specified as: an integer. It can have any value.

On Return

y is the vector y of length n. Returned as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 74.

Notes
1. If you specify the same vector for x and y, incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 73.

248 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||

Function

The copy is expressed as follows:

See reference [91 on page 1318]. If n is 0, no copy is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

This example shows input vector x and output vector y with positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Example 2
This example shows how to obtain a reverse copy of the input vector x by
specifying strides with the same absolute value, but with opposite signs, for
input vector x and output vector y. For y, which has a negative stride, results
are stored beginning at element Y(5).

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Example 3

This example shows an input vector, x, with 0 stride. Vector x is treated like a
vector of length n, all of whose elements are the same as the single element in
x. This is a technique for replicating an element of a vector.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 249

N X INCX Y INCY
| | | | |

CALL SCOPY(5 , X , 0 , Y , 1)

X = (13.0)

Output:
Y = (13.0, 13.0, 13.0, 13.0, 13.0)

Example 4

This example shows input vector x and output vector y, containing complex
numbers and having positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL CCOPY(4 , X , 1 , Y , 2)

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0))

Output:
Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,

(4.0, 4.0))

250 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of
Two Vectors)

Purpose

SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of vectors x and y:

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y:

Table 75. Data Types

x, y, dotu, dotc, Result Subprogram

Short-precision real SDOT

Long-precision real DDOT

Short-precision complex CDOTU and CDOTC

Long-precision complex ZDOTU and ZDOTC

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (n, x, incx, y, incy)

C and C++ sdot | ddot | cdotu | zdotu | cdotc | zdotc (n, x, incx, y, incy);

CBLAS cblas_sdot | cblas_ddot (n, x, incx, y, incy);

cblas_cdotu_sub | cblas_zdotu_sub (n, x, incx, y, incy, dotu);

cblas_cdotc_sub | cblas_zdotc_sub (n, x, incx, y, incy, dotc);

On Entry

n is the number of elements in vectors x and y.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 75.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 75.

Chapter 8. Linear Algebra Subprograms 251

|

||

|

|

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

On Return

Function value
is the result of the dot product computation. Returned as: a number of the data
type indicated in Table 75 on page 251.

dotu
is the result of the dot product computation.

Returned as: a number of the data type indicated in Table 75 on page 251.

dotc
is the result of the dot product computation.

Returned as: a number of the data type indicated in Table 75 on page 251.

Notes

Declare this function in your program as returning a value of the data type
indicated in Table 75 on page 251.

Function

SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of the vectors x and
y, which is expressed as follows:

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector
x with vector y, which is expressed as follows:

See reference [91 on page 1318]. The result is returned as a function value. If n is 0,
then zero is returned as the value of the function.

For SDOT, CDOTU, and CDOTC, intermediate results are accumulated in long
precision when the AltiVec or VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows how to compute the dot product of two vectors, x and y,
having strides of 1.

Function Reference and Input:

252 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|
|

|

N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 1 , Y , 1)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:
DOTT = (9.0 + 16.0 - 21.0 - 24.0 + 25.0) = 5.0

Example 2
This example shows how to compute the dot product of a vector, x, with a
stride of 1, and a vector, y, with a stride greater than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

Output:
DOTT = (9.0 + 14.0 - 15.0 - 12.0 + 5.0) = 1.0

Example 3
This example shows how to compute the dot product of a vector, x, with a
negative stride, and a vector, y, with a stride greater than 1. For x, processing
begins at element X(5), which is 5.0.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , -1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

Output:
DOTT = (45.0 + 28.0 - 15.0 - 6.0 + 1.0) = 53.0

Example 4
This example shows how to compute the dot product of a vector, x, with a
stride of 0, and a vector, y, with a stride of 1. The result in DOTT is x1(y1+...+yn).

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 0 , Y , 1)

X = (1.0, . , . , . , .)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

Output:
DOTT = (1.0) × (9.0 + 8.0 + 7.0 - 6.0 + 5.0) = 23.0

Example 5
This example shows how to compute the dot product of two vectors, x and y,
with strides of 0. The result in DOTT is nx1y1.

Function Reference and Input:

Chapter 8. Linear Algebra Subprograms 253

N X INCX Y INCY
| | | | |

DOTT = SDOT(5 , X , 0 , Y , 0)

X = (1.0, . , . , . , .)
Y = (9.0, . , . , . , .)

Output:
DOTT = (5) × (1.0) × (9.0) = 45.0

Example 6
This example shows how to compute the dot product of two vectors, x and y,
containing complex numbers, where x has a stride of 1, and y has a stride
greater than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = CDOTU(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

Output:
DOTT = ((10.0 - 18.0 - 10.0) - (18.0 - 20.0 + 6.0),

(9.0 + 15.0 - 5.0) + (20.0 + 24.0 + 12.0))
= (-22.0, 75.0)

Example 7
This example shows how to compute the dot product of the conjugate of a
vector, x, with vector y, both containing complex numbers, where x has a
stride of 1, and y has a stride greater than 1.

Function Reference and Input:
N X INCX Y INCY
| | | | |

DOTT = CDOTC(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

Output:
DOTT = ((10.0 - 18.0 - 10.0) + (18.0 - 20.0 + 6.0),

(9.0 + 15.0 - 5.0) - (20.0 + 24.0 + 12.0))
= (-14.0, -37.0)

254 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)
Purpose

These subprograms compute SAXPY or DAXPY, respectively, n times:

yi ← yi + αixi for i = 1, n

where each αi is a scalar value, contained in the vector a, and each xi and yi are
vectors, contained in vectors (or matrices) x and y, respectively. For an explanation
of the SAXPY and DAXPY computations, see “SAXPY, DAXPY, CAXPY, and
ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector
Y)” on page 245.

Table 76. Data Types

a, x, y Subprogram

Short-precision real SNAXPY

Long-precision real DNAXPY

Syntax

Fortran CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo)

C and C++ snaxpy | dnaxpy (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);

On Entry

n is the number of SAXPY or DAXPY computations to be performed and the
number of elements in vector a.

Specified as: an integer; n ≥ 0.

m is the number of elements in vectors xi and yi for each SAXPY or DAXPY
computation.

Specified as: an integer; m ≥ 0.

a is the vector a of length n, containing the scalar values αi, used in each
computation of yi + αixi.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|inca|,
containing numbers of the data type indicated in Table 76.

inca
is the stride for vector a.

Specified as: an integer. It can have any value.

x is the vector (or matrix) x, containing the xi vectors of length m, used in the n
computations of yi + αixi. Specified as: a one- or two-dimensional array of (at
least) length (1+(n-1)(incxo)) + (m-1)|incxi|, containing numbers of the data
type indicated in Table 76.

incxi
is the stride for x in the inner loop—that is, the stride identifying the elements
in each vector xi.

Specified as: an integer. It can have any value.

Chapter 8. Linear Algebra Subprograms 255

incxo
is the stride for x in the outer loop—that is, the stride identifying each vector xi

in x.

Specified as: an integer; incxo ≥ 0.

y is the vector (or matrix) y, containing the yi vectors of length m, used in the n
computations of yi + αixi. Specified as: a one- or two-dimensional array of (at
least) length (1+(n-1)(incyo)) + (m-1)|incyi|, containing numbers of the data
type indicated in Table 76 on page 255.

incyi
is the stride for y in the inner loop—that is, the stride identifying the elements
in each vector yi in y. Specified as: an integer; incyi > 0 or incyi < 0.

incyo
is the stride for y in the outer loop—that is, the stride identifying each vector
yi in y.

Specified as: an integer; incyo ≥ 0.

On Return

y is the vector (or matrix) y, containing the yi vectors of length m, which contain
the results of the n SAXPY or DAXPY computations, yi + αixi for i = 1, n.
Returned as: a one- or two-dimensional array, containing numbers of the data
type indicated in Table 76 on page 255.

Notes

Vector y must have no common elements with vector a or vector x; otherwise,
results are unpredictable. See “Concepts” on page 73.

Function

The SAXPY or DAXPY computations:

y ← y + αx

are performed n times. This is expressed as follows:

yi ← yi + αixi for i = 1, n

where each αi is a scalar value, contained in the vector a, and each xi and yi are
vectors, contained in vectors (or matrices) x and y, respectively.

Each computation of SAXPY or DAXPY (see “SAXPY, DAXPY, CAXPY, and
ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector
Y)” on page 245) uses the length of the xi and yi vectors, m, for its input argument,
n. It also uses the strides for the inner loop, incxi and incyi, for its parameters incx
and incy, respectively. See “Function” on page 246 for a description of how the
computation is done.

The outer loop of the SNAXPY or DNAXPY computation uses the strides of inca,
incxo, and incyo to locate the elements in a and vectors in x and y for each i-th
computation. These are:

For i = 1, n:

256 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

α((i-1)inca+1) for inca ≥ 0
α((i-n)inca+1) for inca < 0
x((i-1)incxo+1)
y((i-1)incyo+1)

If m or n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
1. n < 0
2. m < 0
3. incxo < 0
4. incyi = 0
5. incyo < 0

Examples

Example 1

This example shows vectors, contained in matrices, with the stride of the inner
loops incxi and incyi equal to 1.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 7.0 9.0 15.0 |
| 9.0 8.0 20.0 |

Y = | 11.0 7.0 10.0 |
| 13.0 6.0 5.0 |
| . . . |
└ ┘

Example 2

Chapter 8. Linear Algebra Subprograms 257

This example shows vectors, contained in matrices, with a stride of the inner
loop incxi greater than 1.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 2 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 2.0 2.0 |
| . . . |
| 4.0 1.0 1.0 |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

Output:

Y =(same as output Y in Example 1)

Example 3

This example shows vectors, contained in matrices, with a negative stride,
incyi, for the inner loop.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , -1 , 5)

A = (3.0, 2.0, 4.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 1.0 4.0 1.0 |
| 2.0 3.0 2.0 |

Y = | 3.0 2.0 4.0 |
| 4.0 1.0 3.0 |
| . . . |
└ ┘

Output:

258 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 13.0 6.0 5.0 |
| 11.0 7.0 10.0 |

Y = | 9.0 8.0 20.0 |
| 7.0 9.0 15.0 |
| . . . |
└ ┘

Example 4

This example shows vectors, contained in matrices, with a negative stride, inca,
for vector a. For vector a, processing begins at element A(5), which is 3.0.

Call Statement and Input:
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |

CALL SNAXPY(3 , 4 , A , -2 , X , 1 , 10 , Y , 1 , 5)

A = (4.0, . , 2.0, . , 3.0)

┌ ┐
| 1.0 4.0 3.0 |
| 2.0 3.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 1.0 1.0 |

X = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 1.0 3.0 |
| 3.0 2.0 4.0 |

Y = | 2.0 3.0 2.0 |
| 1.0 4.0 1.0 |
| . . . |
└ ┘

Output:

Y =(same as output Y in Example 1)

Chapter 8. Linear Algebra Subprograms 259

SNDOT and DNDOT (Compute Special Dot Products N Times)
Purpose

These subprograms compute one of the following special dot products n times:

si ← xi v yi Store positive dot product
si ← -xi v yi Store negative dot product
si ← si+xi v yi Accumulate positive dot product
si ← si-xi v yi Accumulate negative dot product

for i = 1, n

where each si is an element in vector s, and each xi and yi are vectors contained in
vectors (or matrices) x and y, respectively.

Table 77. Data Types

s, x, y Subprogram

Short-precision real SNDOT

Long-precision real DNDOT

Syntax

Fortran CALL SNDOT | DNDOT (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo)

C and C++ sndot | dndot (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo);

On Entry

n is the number of dot product computations to be performed and the number of
elements in the vector s.

Specified as: an integer; n ≥ 0.

m is the number of elements in vectors xi and yi for each dot product
computation.

Specified as: an integer; m ≥ 0.

s is the vector s, containing the n scalar values si, where: If isw = 1 or 2, si is not
used in the computation (no input value specified.)

If isw = 3 or 4, si is used in the computation (input value specified.)

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incs|,
containing numbers of the data type indicated in Table 77.

incs
is the stride for vector s.

Specified as: an integer; incs > 0 or incs < 0.

isw
indicates the type of computation to perform, depending on the value
specified:

If isw = 1, si ← xi v yi

If isw = 2, si ← -xi v yi

If isw = 3, si ← si + xi v yi

260 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If isw = 4, si ← si - xi v yi

where i = 1, n

Specified as: an integer. Its value must be 1, 2, 3, or 4.

x is the vector (or matrix) x, containing the xi vectors of length m, used in the n
dot product computations. Specified as: a one- or two-dimensional array of (at
least) length (1+(n-1)(incxo))+(m-1)|incxi|, containing numbers of the data type
indicated in Table 77 on page 260.

incxi
is the stride for x in the inner loop—that is, the stride identifying the elements
in each vector xi.

Specified as: an integer. It can have any value.

incxo
is the stride for x in the outer loop—that is, the stride identifying each vector xi

in x.

Specified as: an integer; incxo ≥ 0.

y is the vector (or matrix) y, containing the yi vectors of length m, used in the n
dot product computations. Specified as: a one- or two-dimensional array of (at
least) length (1+(n-1)(incyo)) + (m-1)|incyi|, containing numbers of the data
type indicated in Table 77 on page 260.

incyi
is the stride for y in the inner loop—that is, the stride identifying the elements
in each vector yi.

Specified as: an integer. It can have any value.

incyo
is the stride for y in the outer loop—that is, the stride identifying each vector
yi in y.

Specified as: an integer; incyo ≥ 0.

On Return

s is the vector s of length n, containing the results of the n dot product
computations. The type of dot product computation depends of the value
specified for isw.

If isw = 1, si ← xi v yi

If isw = 2, si ← -xi v yi

If isw = 3, si ← si + xi v yi

If isw = 4, si ← si - xi v yi

where i = 1, n

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 77 on page 260.

Function

The four possible computations that can be performed by these subprograms are:

si ← xi v yi Store positive dot product
si ← -xi v yi Store negative dot product

Chapter 8. Linear Algebra Subprograms 261

si ← si+xi v yi Accumulate positive dot
product

si ← si-xi v yi Accumulate negative dot
product

for i = 1, n

where each si is a scalar element in the vector s of length n, and each of the n xi

and yi vectors of length m are contained in vectors (or matrices) x and y,
respectively. Each computation uses the dot product, which is expressed:

xi v yi = u1v1 + u2v2 + ... + umvm

where ui and vi are elements of xi and yi, respectively. To find the elements for the
computation, it uses:
v The strides for the inner loops, incxi and incyi, to locate the elements in vectors

xi and yi, respectively.
v The strides for the outer loops, incs, incxo, and incyo, to locate the element si in

vector s and the vectors xi and yi in vectors (or matrices) x and y, respectively.

If m or n is 0, no computation is performed. For SNDOT, intermediate results are
accumulated in long precision when the AltiVec or VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
1. n < 0
2. m < 0
3. incs = 0
4. isw < 1 or isw > 4
5. incxo < 0
6. incyo < 0

Examples

Example 1
This example shows a store positive dot product computation using vectors
with positive strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , 1 , 1 , X , 1 , 4 , Y , 1 , 4)

┌ ┐
| 1.0 2.0 3.0 |

X = | 2.0 3.0 4.0 |
| 3.0 4.0 5.0 |
| 4.0 5.0 6.0 |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |

262 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y = | 3.0 2.0 1.0 |
| 2.0 1.0 4.0 |
| 1.0 4.0 3.0 |
└ ┘

Output:
S = (20.0, 36.0, 48.0)

Example 2
This example shows a store negative dot product computation using vectors
with positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , -1 , 2 , X , 2 , 10 , Y , -1 , 6)

┌ ┐
| 1.0 2.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 4.0 5.0 |
| . . . |
| 4.0 5.0 6.0 |
| . . . |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |
| 3.0 2.0 1.0 |

Y = | 2.0 1.0 4.0 |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
└ ┘

Output:
S = (-42.0, -34.0, -30.0)

Example 3
This example shows an accumulative positive dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , 1 , 3 , X , -2 , 10 , Y , 2 , 10)

S = (2.0, 5.0, 8.0)

┌ ┐
| 1.0 2.0 3.0 |
| . . . |
| 2.0 3.0 4.0 |
| . . . |

X = | 3.0 4.0 5.0 |
| . . . |
| 4.0 5.0 6.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Chapter 8. Linear Algebra Subprograms 263

┌ ┐
| 4.0 3.0 2.0 |
| . . . |
| 3.0 2.0 1.0 |
| . . . |

Y = | 2.0 1.0 4.0 |
| . . . |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
S = (32.0, 39.0, 50.0)

Example 4
This example shows an accumulative negative dot product using vectors with
positive and negative strides.

Call Statement and Input:
N M S INCS ISW X INCXI INCXO Y INCYI INCYO
| | | | | | | | | | |

CALL SNDOT(3 , 4 , S , -1 , 4 , X , 1 , 6 , Y , 2 , 10)

S = (3.0, 6.0, 9.0)
┌ ┐
| 1.0 2.0 3.0 |
| 2.0 3.0 4.0 |

X = | 3.0 4.0 5.0 |
| 4.0 5.0 6.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| 4.0 3.0 2.0 |
| . . . |
| 3.0 2.0 1.0 |
| . . . |

Y = | 2.0 1.0 4.0 |
| . . . |
| 1.0 4.0 3.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
S = (-45.0, -30.0, -11.0)

264 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector
with Scaling of Input to Avoid Destructive Underflow and Overflow)

Purpose

These subprograms compute the Euclidean length (l2 norm) of vector x, with
scaling of input to avoid destructive underflow and overflow.

Table 78. Data Types

x Result Subprogram

Short-precision real Short-precision real SNRM2

Long-precision real Long-precision real DNRM2

Short-precision complex Short-precision real SCNRM2

Long-precision complex Long-precision real DZNRM2

Note:

1. If there is a possibility that your data will cause the computation to overflow or
underflow, you should use these subroutines instead of SNORM2, DNORM2,
CNORM2, and ZNORM2, because the intermediate computational results may
exceed the maximum or minimum limits of the machine. “Notes ” on page 268
explains how to estimate whether your data will cause an overflow or
underflow.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx)

C and C++ snrm2 | dnrm2 | scnrm2 | dznrm2 (n, x, incx);

CBLAS cblas_snrm2 | cblas_dnrm2 | cblas_scnrm2 | cblas_dznrm2 (n, x, incx);

On Entry
n

is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n, whose Euclidean length is to be computed.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 78.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the Euclidean length (l2 norm) of the vector x. Returned as: a number of the
data type indicated in Table 78.

Chapter 8. Linear Algebra Subprograms 265

||

Notes

Declare this function in your program as returning a value of the data type
indicated in Table 78 on page 265.

Function

The Euclidean length (l2 norm) of vector x is expressed as follows, with scaling of
input to avoid destructive underflow and overflow:

See reference [91 on page 1318]. The result is returned as the function value. If n is
0, then 0.0 is returned as the value of the function.

For SNRM2 and SCNRM2, the sum of the squares of the absolute values of the
elements is accumulated in long precision. The square root of this long-precision
sum is then computed and, if necessary, is unscaled.

Although these subroutines eliminate destructive underflow, nondestructive
underflows may occur if the input elements differ greatly in magnitude. This does
not affect accuracy, but it degrades performance. The system default is to mask
underflow, which improves the performance of these subroutines.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Important Information About the Following Examples: Workstations use
workstation architecture precisions: ANSI/IEEE 32-bit and 64-bit binary
floating-point format. The ranges are:
v For short-precision: 3.37×10-38 to 3.37×1038

v For long-precision: 1.67×10-308 to 1.67×10308

Example 1
This example shows a vector, x, whose elements must be scaled to prevent
overflow.

N X INCX
| | |

DNORM = DNRM2(6 , X , 1)

X = (0.68056D+200, 0.25521D+200, 0.34028D+200,
0.85071D+200, 0.25521D+200, 0.85071D+200)

Output:
DNORM = 0.1469D+201

Example 2
This example shows a vector, x, whose elements must be scaled to prevent
destructive underflow.

Function Reference and Input:

266 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N X INCX
| | |

DNORM = DNRM2(4 , X , 2)

X = (0.10795D-200, . , 0.10795D-200, . , 0.10795D-200,
. , 0.10795D-200)

Output:
DNORM = 0.21590D-200

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

Function Reference and Input:
N X INCX
| | |

SNORM = SNRM2(4 , X , 0)

X = (4.0)

Output:
SNORM = 8.0

Example 4
This example shows a vector, x, containing complex numbers, and whose
elements must be scaled to prevent overflow.

Function Reference and Input:
N X INCX
| | |

DZNORM = DZNRM2(3 , X , 1)

X = ((0.68056D+200, 0.25521D+200), (0.34028D+200, 0.85071D+200),
(0.25521D+200, 0.85071D+200))

Output:
DZNORM = 0.1469D+201

Example 5
This example shows a vector, x, containing complex numbers, and whose
elements must be scaled to prevent destructive underflow.

Function Reference and Input:
N X INCX
| | |

DZNORM = DZNRM2(2 , X , 2)

X = ((0.10795D-200, 0.10795D-200), . ,
(0.10795D-200, 0.10795D-200))

Output:
DZNORM = 0.2159D-200

Chapter 8. Linear Algebra Subprograms 267

SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a
Vector with No Scaling of Input)

Purpose

These subprograms compute the euclidean length (l2 norm) of vector x with no
scaling of input.

Table 79. Data Types

x Result Subprogram

Short-precision real Short-precision real SNORM2

Long-precision real Long-precision real DNORM2

Short-precision complex Short-precision real CNORM2

Long-precision complex Long-precision real ZNORM2

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran SNORM2 | DNORM2 | CNORM2 | ZNORM2 (n, x, incx)

C and C++ snorm2 | dnorm2 | cnorm2 | znorm2 (n, x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

x is the vector x of length n, whose euclidean length is to be computed.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 79.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

Function value
is the euclidean length (l2 norm) of the vector x. Returned as: a number of the
data type indicated in Table 79.

Notes
1. This subroutine does not underflow or overflow if the values of the elements in

vector x conform to the following conditions. If these conditions are violated,
overflow or destructive underflow may occur:
v For short-precision numbers:

Any valid short-precision number.
v For long-precision numbers:

|xi| = 0 or 0.10010E-145 < |xi| < 0.13408E+155 for i = 1, n

268 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. Declare this function in your program as returning a value of the data type
indicated in Table 79 on page 268.

Function

The euclidean length (l2 norm) of vector x is expressed as follows with no scaling
of input:

See reference [91 on page 1318]. The result is returned as the function value. If n is
0, then 0.0 is returned as the value of the function.

For SNORM2 and CNORM2, the sum of the squares of the absolute values of the
elements is accumulated in long-precision. The square root of this long-precision
sum is then computed.

This subroutine should not be used if the values in vector x do not conform to the
restriction given in “Notes ” on page 268.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

Output:
SNORM = 10.0

Example 2
This example shows a vector, x, with a stride greater than 1.

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(6 , X , 2)

X = (3.0, . , 4.0, . , 1.0, . , 8.0, . , 1.0, . , 3.0)

Output:
SNORM = 10.0

Example 3
This example shows a vector, x, with a stride of 0. The result in SNORM is:

Chapter 8. Linear Algebra Subprograms 269

Function Reference and Input:
N X INCX
| | |

SNORM = SNORM2(4 , X , 0)

X = (4.0)

Output:
SNORM = 8.0

Example 4
This example shows a vector, x, containing complex numbers and having a
stride of 1.

Function Reference and Input:
N X INCX
| | |

CNORM = CNORM2(3 , X , 1)

X = ((3.0, 4.0), (1.0, 8.0), (-1.0, 3.0))

Output:
CNORM = 10.0

270 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SROTG, DROTG, CROTG, and ZROTG (Construct a Given Plane
Rotation)

Purpose

SROTG and DROTG construct a real Givens plane rotation, and CROTG and
ZROTG construct a complex Givens plane rotation. The computations use
rotational elimination parameters a and b. Values are returned for r, as well as the
cosine c and the sine s of the angle of rotation. SROTG and DROTG also return a
value for z.

Note: Throughout this description, the symbols r and z are used to represent two
of the output values returned for this computation. It is important to note that the
values for r and z are actually returned in the input-output arguments a and b,
respectively, overwriting the original values passed in a and b.

Table 80. Data Types

a, b, r, s c z Subprogram

Short-precision real Short-precision real Short-precision real SROTG

Long-precision real Long-precision real Long-precision real DROTG

Short-precision complex Short-precision real (No value returned) CROTG

Long-precision complex Long-precision real (No value returned) ZROTG

Syntax

Fortran CALL SROTG | DROTG | CROTG | ZROTG (a, b, c, s)

C and C++ srotg | drotg | crotg | zrotg (a, b, c, s);

CBLAS cblas_srotg | cblas_drotg (a, b, c, s);

On Entry

a is the rotational elimination parameter a.

Specified as: a number of the data type indicated in Table 80.

b is the rotational elimination parameter b.

Specified as: a number of the data type indicated in Table 80.

c See On Return.

s See On Return.

On Return

a is the value computed for r.

For SROTG and DROTG:

where:

σ = SIGN(a) if |a| > |b|
σ = SIGN(b) if |a| ≤ |b|

Chapter 8. Linear Algebra Subprograms 271

||

For CROTG and ZROTG:

where:

ψ = a/|a|

Returned as: a number of the data type indicated in Table 80 on page 271.

b is the value computed for z.

For SROTG and DROTG:

z = s if |a| > |b|
z = 1/c if |a| ≤ |b| and c ≠ 0 and r ≠ 0
z = 1 if |a| ≤ |b| and c = 0 and r ≠ 0
z = 0 if r = 0

For CROTG and ZROTG: no value is returned, and the input value is not
changed.

Returned as: a number of the data type indicated in Table 80 on page 271.

c is the cosine c of the angle of (Givens) rotation. For SROTG and DROTG:

c = a/r if r ≠ 0
c = 1 if r = 0

For CROTG and ZROTG:

Returned as: a number of the data type indicated in Table 80 on page 271.

s is the sine s of the angle of (Givens) rotation.

For SROTG and DROTG:

s = b/r if r ≠ 0
s = 0 if r = 0

For CROTG and ZROTG:

272 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where ψ = a/|a|

Returned as: a number of the data type indicated in Table 80 on page 271.

Notes
1. In your C program, arguments a, b, c, and s must be passed by reference.
2. In your C++ program, for cblas_srotg and cblas_drotg, arguments a, b, c, and s

must be passed by pointer.

Function

SROTG and DROTG
A real Givens plane rotation is constructed for values a and b by computing
values for r, c, s, and z, where:

where:

σ = SIGN(a) if |a| > |b|
σ = SIGN(b) if |a| ≤ |b|

c = a/r if r ≠ 0

c = 1 if r = 0

s = b/r if r ≠ 0

s = 0 if r = 0

z = s if |a| > |b|

z = 1/c if |a| ≤ |b| and c ≠ 0 and r ≠ 0

z = 1 if |a| ≤ |b| and c = 0 and r ≠ 0

z = 0 if r = 0

See reference [91 on page 1318].

Following are some important points about the computation:
1. The numbers for c, s, and r satisfy:

2. Where necessary, scaling is used to avoid overflow and destructive
underflow in the computation of r, which is expressed as follows:

Chapter 8. Linear Algebra Subprograms 273

|
|

3. σ is not essential to the computation of a Givens rotation matrix, but its use
permits later stable reconstruction of c and s from just one stored number,
z. See reference [108 on page 1319]. c and s are reconstructed from z as
follows:

A complex Givens plane rotation is constructed for values a and b by
computing values for r, c, and s, where:

where:

ψ = a/|a|

See reference [91 on page 1318].

Following are some important points about the computation:
1. The numbers for c, s, and r satisfy:

274 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. Where necessary, scaling is used to avoid overflow and destructive
underflow in the computation of r, which is expressed as follows:

Error conditions

Computational Errors
None

Input-Argument Errors
None

Examples

Example 1
This example shows the construction of a real Givens plane rotation, where r is
0.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(0.0 , 0.0 , C , S)

Output:
A = 0.0
B = 0.0
C = 1.0
S = 0.0

Example 2
This example shows the construction of a real Givens plane rotation, where c is
0.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(0.0 , 2.0 , C , S)

Output:
A = 2.0
B = 1.0
C = 0.0
S = 1.0

Example 3
This example shows the construction of a real Givens plane rotation, where
|b| > |a|.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(6.0 , -8.0 , C , S)

Chapter 8. Linear Algebra Subprograms 275

Output:
A = -10.0

_
B = -1.666
C = -0.6
S = 0.8

Example 4
This example shows the construction of a real Givens plane rotation, where
|a| > |b|.

Call Statement and Input:
A B C S
| | | |

CALL SROTG(8.0 , 6.0 , C , S)

Output:
A = 10.0
B = 0.6
C = 0.8
S = 0.6

Example 5
This example shows the construction of a complex Givens plane rotation,
where |a| = 0.

Call Statement and Input:
A B C S
| | | |

CALL CROTG(A , B , C , S)

A = (0.0, 0.0)
B = (1.0, 0.0)

Output:
A = (1.0, 0.0)
C = 0.0
S = (1.0, 0.0)

Example 6
This example shows the construction of a complex Givens plane rotation,
where |a| ≠ 0.

Call Statement and Input:
A B C S
| | | |

CALL CROTG(A , B , C , S)

A = (3.0, 4.0)
B = (4.0, 6.0)

Output:
A = (5.26, 7.02)
C = 0.57
S = (0.82, -0.05)

276 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane
Rotation)

Purpose

SROT and DROT apply a real plane rotation to real vectors; CROT and ZROT
apply a complex plane rotation to complex vectors; and CSROT and ZDROT apply
a real plane rotation to complex vectors. The plane rotation is applied to n points,
where the points to be rotated are contained in vectors x and y, and where the
cosine and sine of the angle of rotation are c and s, respectively.

Table 81. Data Types

x, y c s Subprogram

Short-precision real Short-precision real Short-precision real SROT

Long-precision real Long-precision real Long-precision real DROT

Short-precision complex Short-precision real Short-precision complex CROT

Long-precision complex Long-precision real Long-precision complex ZROT

Short-precision complex Short-precision real Short-precision real CSROT

Long-precision complex Long-precision real Long-precision real ZDROT

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SROT | DROT | CROT | ZROT | CSROT | ZDROT (n, x, incx, y, incy, c, s)

C and C++ srot | drot | crot | zrot | csrot | zdrot (n, x, incx, y, incy, c, s);

CBLAS cblas_srot | cblas_drot (n, x, incx, y, incy, c, s);

On Entry

n is the number of points to be rotated—that is, the number of elements in
vectors x and y.

Specified as: an integer; n ≥ 0.

x is the vector x of length n, containing the xi coordinates of the points to be
rotated.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 81.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n, containing the yi coordinates of the points to be
rotated.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
containing numbers of the data type indicated in Table 81.

incy
is the stride for vector y.

Chapter 8. Linear Algebra Subprograms 277

||

Specified as: an integer. It can have any value.

c the cosine, c, of the angle of rotation.

Specified as: a number of the data type indicated in Table 81 on page 277.

s the sine, s, of the angle of rotation.

Specified as: a number of the data type indicated in Table 81 on page 277.

x is the vector x of length n, containing the rotated xi coordinates, where:

xi ← cxi+syi for i = 1,

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 81 on page 277.

y is the vector y of length n, containing the rotated yi coordinates, where:

For SROT, DROT, CSROT, and ZDROT:

yi ← -sxi+cyi for i = 1, n

For CROT and ZROT:

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 81 on page 277.

Notes

The vectors x and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 73.

Function

Applying a plane rotation to n points, where the points to be rotated are contained
in vectors x and y, is expressed as follows, where c and s are the cosine and sine of
the angle of rotation, respectively. For SROT, DROT, CSROT, and ZDROT:

For CROT and ZROT:

See references [68 on page 1317] and [91 on page 1318]. No computation is
performed if n is 0 or if c is 1.0 and s is zero. For SROT, CROT, and CSROT,
intermediate results are accumulated in long precision when the AltiVec or VSX
unit is not used.

278 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows how to apply a real plane rotation to real vectors x and y
having positive strides.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL SROT(5 , X , 1 , Y , 2 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

Output:
X = (-0.366, -0.732, -1.098, -1.464, -1.830)
Y = (-1.366, -2.732, -4.098, -5.464, -6.830)

Example 2
This example shows how to apply a real plane rotation to real vectors x and y
having strides of opposite sign.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL SROT(5 , X , 1 , Y , -1 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-5.0, -4.0, -3.0, -2.0, -1.0)

Output:

X =(same as output X in Example 1)
Y = (-6.830, -5.464, -4.098, -2.732, -1.366)

Example 3
This example shows how scalar values in vectors x and y can be processed by
specifying 0 strides and the number of elements to be processed, n, equal to 1.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 279

N X INCX Y INCY C S
| | | | | | |

CALL SROT(1 , X , 0 , Y , 0 , 0.5 , S)

X = (1.0)
Y = (-1.0)

Output:
X = (-0.366)
Y = (-1.366)

Example 4
This example shows how to apply a complex plane rotation to complex vectors
x and y having positive strides.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL CROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))
S = (0.75, 0.50)

Output:
X = ((-2.750, 4.250), (-2.500, 3.500), (-2.250, 2.750))
Y = ((-2.250, 1.500), . , (-4.000, 0.750), . ,

(-5.750, 0.000))

Example 5
This example shows how to apply a real plane rotation to complex vectors x
and y having positive strides.

Call Statement and Input:
N X INCX Y INCY C S
| | | | | | |

CALL CSROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))

Output:
X = ((-0.366, 5.330), (-0.732, 4.964), (-1.098, 4.598))
Y = ((-1.366, 0.768), . , (-2.732, -0.598), . ,

(-4.098, -1.964))

280 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a
Vector X by a Scalar and Store in the Vector X)

Purpose

These subprograms perform the following computation, using the scalar α and the
vector x:

x←αx

Table 82. Data Types

α x Subprogram

Short-precision real Short-precision real SSCAL

Long-precision real Long-precision real DSCAL

Short-precision complex Short-precision complex CSCAL

Long-precision complex Long-precision complex ZSCAL

Short-precision real Short-precision complex CSSCAL

Long-precision real Long-precision complex ZDSCAL

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx)

C and C++ sscal | dscal | cscal | zscal | csscal | zdscal (n, alpha, x, incx);

CBLAS cblas_sscal | cblas_dscal | cblas_cscal | cblas_zscal | cblas_csscal | cblas_zdscal (n, alpha,
x, incx);

On Entry

n is the number of elements in vector x. Specified as: an integer; n ≥ 0.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 82.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 82.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

On Return

x is the vector x of length n, containing the result of the computation αx.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 82.

Chapter 8. Linear Algebra Subprograms 281

||
|

Notes

The fastest way in ESSL to zero out contiguous (stride 1) arrays is to call SSCAL or
DSCAL, specifying incx = 1 and α = 0.

Function

The computation is expressed as follows:

See reference [91 on page 1318]. If n is 0, no computation is performed. For
CSCAL, intermediate results are accumulated in long precision when the AltiVec or
VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows a vector, x, with a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
X = (2.0, 4.0, 6.0, 8.0, 10.0)

Example 2
This example shows vector, x, with a stride greater than 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , 2)

X = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Output:
X = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 3
This example illustrates that when the strides for two similar computations
(Example 1 and Example 3) have the same absolute value but have opposite
signs, the output is the same. This example is the same as Example 1, except

282 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the stride for x is negative (-1). For performance reasons, it is better to specify
the positive stride. For x, processing begins at element X(5), which is 5.0, and
results are stored beginning at the same element.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(5 , 2.0 , X , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
X = (2.0, 4.0, 6.0, 8.0, 10.0)

Example 4
This example shows how SSCAL can be used to compute a scalar value. In this
case, input vector x contains a scalar value, and the stride is 0. The number of
elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL SSCAL(1 , 2.0 , X , 0)

X = (1.0)

Output:
X = (2.0)

Example 5
This example shows a scalar, α, and a vector, x, containing complex numbers,
where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL CSCAL(3 ,ALPHA, X , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
X = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

Example 6
This example shows a scalar, α, containing a real number, and a vector, x,
containing complex numbers, where vector x has a stride of 1.

Call Statement and Input:
N ALPHA X INCX
| | | |

CALL CSSCAL(3 , 2.0 , X , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
X = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

Chapter 8. Linear Algebra Subprograms 283

SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of
Two Vectors)

Purpose

These subprograms interchange the elements of vectors x and y:

y ←→ x

Table 83. Data Types

x, y Subprogram

Short-precision real SSWAP

Long-precision real DSWAP

Short-precision complex CSWAP

Long-precision complex ZSWAP

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SSWAP | DSWAP | CSWAP | ZSWAP (n, x, incx, y, incy)

C and C++ sswap | dswap | cswap | zswap (n, x, incx, y, incy);

CBLAS cblas_sswap | cblas_dswap | cblas_cswap | cblas_zswap (n, x, incx, y, incy);

On Entry

n is the number of elements in vectors x and y.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 83.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 83.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

On Return

x is the vector x of length n, containing the elements that were swapped from
vector y. Returned as: a one-dimensional array, containing numbers of the data
type indicated in Table 83.

284 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||

y is the vector y of length n, containing the elements that were swapped from
vector x. Returned as: a one-dimensional array, containing numbers of the data
type indicated in Table 83 on page 284.

Notes
1. If you specify the same vector for x and y, then incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 73.

Function

The elements of vectors x and y are interchanged as follows:

See reference [91 on page 1318]. If n is 0, no elements are interchanged.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SSWAP(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

Output:
X = (-1.0, -2.0, -3.0, -4.0, -5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

Example 2
This example shows how to obtain output vectors x and y that are reverse
copies of the input vectors y and x. You must specify strides with the same
absolute value, but with opposite signs. For y, which has negative stride,
processing begins at element Y(5), which is -5.0, and the results of the swap
are stored beginning at the same element.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SSWAP(5 , X , 1 , Y , -1)

Chapter 8. Linear Algebra Subprograms 285

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)

Output:
X = (-5.0, -4.0, -3.0, -2.0, -1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Example 3
This example shows how SSWAP can be used to interchange scalar values in
vectors x and y by specifying 0 strides and the number of elements to be
processed as 1.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL SSWAP(1 , X , 0 , Y , 0)

X = (1.0)
Y = (-4.0)

Output
X = (-4.0)
Y = (1.0)

Example 4
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY
| | | | |

CALL CSWAP(4 , X , 1 , Y , 2)

X = ((1.0, 6.0), (2.0, 7.0), (3.0, 8.0), (4.0, 9.0))
Y = ((-1.0, -1.0), . , (-2.0, -2.0), . , (-3.0, -3.0), . ,

(-4.0, -4.0))

Output:
X = ((-1.0, -1.0), (-2.0, -2.0), (-3.0, -3.0), (-4.0, -4.0))
Y = ((1.0, 6.0), . , (2.0, 7.0), . , (3.0, 8.0), . ,

(4.0, 9.0))

286 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store
in a Vector Z)

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

z←x+y

Table 84. Data Types

x, y, z Subprogram

Short-precision real SVEA

Long-precision real DVEA

Short-precision complex CVEA

Long-precision complex ZVEA

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SVEA | DVEA | CVEA | ZVEA (n, x, incx, y, incy, z, incz)

C and C++ svea | dvea | cvea | zvea (n, x, incx, y, incy, z, incz);

On Entry

n is the number of elements in vectors x, y, and z.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 84.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 84.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

z See On Return.

incz
is the stride for vector z.

Specified as: an integer. It can have any value.

On Return

z is the vector z of length n, containing the result of the computation. Returned

Chapter 8. Linear Algebra Subprograms 287

as: a one-dimensional array of (at least) length 1+(n-1)|incz|, containing
numbers of the data type indicated in Table 84 on page 287.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 73.

Function

The computation is expressed as follows:

If n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an
output vector z having a positive stride. For y, which has negative stride,
processing begins at element Y(5), which is 1.0.

Call Statement and Input:

288 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 3

This example shows a vector, x, with 0 stride and a vector, z, with negative
stride. x is treated like a vector of length n, all of whose elements are the same
as the single element in x. For vector z, results are stored beginning in element
Z(5).

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (2.0, 3.0, 4.0, 5.0, 6.0)

Example 4

This example shows a vector, y, with 0 stride. y is treated like a vector of
length n, all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (6.0, 7.0, 8.0, 9.0, 10.0)

Example 5

This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (10.0)

Example 6

This example shows the output vector z, with 0 stride, where the vector x has
0 stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Chapter 8. Linear Algebra Subprograms 289

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (6.0)

Example 7

This example shows how SVEA can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and
z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEA(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (6.0)

Example 8

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVEA(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((8.0, 10.0), (12.0, 14.0), (16.0, 18.0))

290 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X
and Store in a Vector Z)

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

z←x-y

Table 85. Data Types

x, y, z Subprogram

Short-precision real SVES

Long-precision real DVES

Short-precision complex CVES

Long-precision complex ZVES

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SVES | DVES | CVES | ZVES (n, x, incx, y, incy, z, incz)

C and C++ sves | dves | cves | zves (n, x, incx, y, incy, z, incz);

On Entry

n is the number of elements in vectors x, y, and z.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 85.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 85.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

z See On Return.

incz
is the stride for vector z.

Specified as: an integer. It can have any value.

On Return

z is the vector z of length n, containing the result of the computation. Returned

Chapter 8. Linear Algebra Subprograms 291

as: a one-dimensional array of (at least) length 1+(n-1)|incz|, containing
numbers of the data type indicated in Table 85 on page 291.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 73.

Function

The computation is expressed as follows:

If n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (0.0, 1.0, 2.0, 3.0, 4.0)

Example 2

This example shows vectors x and y having strides of opposite sign, and an
output vector z having a positive stride. For y, which has negative stride,
processing begins at element Y(5), which is 1.0.

Call Statement and Input:

292 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (0.0, . , 0.0, . , 0.0, . , 0.0, . , 0.0)

Example 3

This example shows a vector, x, with 0 stride, and a vector, z, with negative
stride. x is treated like a vector of length n, all of whose elements are the same
as the single element in x. For vector z, results are stored beginning in element
Z(5).

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (0.0, -1.0, -2.0, -3.0, -4.0)

Example 4

This example shows a vector, y, with 0 stride. y is treated like a vector of
length n, all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (-4.0, -3.0, -2.0, -1.0, 0.0)

Example 5

This example shows the output vector z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (0.0)

Example 6

This example shows the output vector z, with 0 stride, where the vector x has
0 stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Chapter 8. Linear Algebra Subprograms 293

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (-4.0)

Example 7

This example shows how SVES can be used to compute a scalar value. In this
case, vectors x and y contain scalar values. The strides of all vectors, x, y, and
z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVES(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (-4.0)

Example 8

This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVES(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((-6.0, -6.0), (-6.0, -6.0), (-6.0, -6.0))

294 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and
Store in a Vector Z)

Purpose

These subprograms perform the following computation, using vectors x, y, and z:

z←xy

Table 86. Data Types

x, y, z Subprogram

Short-precision real SVEM

Long-precision real DVEM

Short-precision complex CVEM

Long-precision complex ZVEM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SVEM | DVEM | CVEM | ZVEM (n, x, incx, y, incy, z, incz)

C and C++ svem | dvem | cvem | zvem (n, x, incx, y, incy, z, incz);

On Entry

n is the number of elements in vectors x, y, and z.

Specified as: an integer; n ≥ 0.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 86.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 86.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

z See On Return.

incz
is the stride for vector z.

Specified as: an integer. It can have any value.

On Return

z is the vector z of length n, containing the result of the computation. Returned

Chapter 8. Linear Algebra Subprograms 295

as: a one-dimensional array of (at least) length 1+(n-1)|incz|, containing
numbers of the data type indicated in Table 86 on page 295.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 73.

Function

The computation is expressed as follows:

zi ← xiyi for i = 1, n

If n is 0, no computation is performed. For CVEM, intermediate results are
accumulated in long precision when the AltiVec or VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows vectors x, y, and z, with positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (1.0, 2.0, 3.0, 4.0, 5.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an
output vector z having a positive stride. For y, which has negative stride,
processing begins at element Y(5), which is 1.0.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (1.0, . , 4.0, . , 9.0, . , 16.0, . , 25.0)

Example 3
This example shows a vector, x, with 0 stride, and a vector, z, with negative

296 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

stride. x is treated like a vector of length n, all of whose elements are the same
as the single element in x. For vector z, results are stored beginning in element
Z(5).

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (1.0, 2.0, 3.0, 4.0, 5.0)

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of
length n, all of whose elements are the same as the single element in y.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (5.0, 10.0, 15.0, 20.0, 25.0)

Example 5
This example shows the output vector, z, with 0 stride, where the vector x has
positive stride, and the vector y has 0 stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (25.0)

Example 6
This example shows the output vector z, with 0 stride, where the vector x has
0 stride, and the vector y has negative stride. The number of elements to be
processed, n, is greater than 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (5.0)

Example 7
This example shows how SVEM can be used to compute a scalar value. In this

Chapter 8. Linear Algebra Subprograms 297

case, vectors x and y contain scalar values. The strides of all vectors, x, y, and
z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL SVEM(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (5.0)

Example 8
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N X INCX Y INCY Z INCZ
| | | | | | |

CALL CVEM(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

Output:
Z = ((-9.0, 22.0), (-13.0, 66.0), (-17.0, 126.0))

298 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by
a Scalar and Store in a Vector Y)

Purpose

These subprograms perform the following computation, using the scalar α and
vectors x and y:

y←αx

Table 87. Data Types

α x, y Subprogram

Short-precision real Short-precision real SYAX

Long-precision real Long-precision real DYAX

Short-precision complex Short-precision complex CYAX

Long-precision complex Long-precision complex ZYAX

Short-precision real Short-precision complex CSYAX

Long-precision real Long-precision complex ZDYAX

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy)

C and C++ syax | dyax | cyax | zyax | csyax | zdyax (n, alpha, x, incx, y, incy);

On Entry

n is the number of elements in vector x and y.

Specified as: an integer; n ≥ 0.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 87.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 87.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y See On Return.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

On Return

y is the vector y of length n, containing the result of the computation αx.

Chapter 8. Linear Algebra Subprograms 299

Returned as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
containing numbers of the data type indicated in Table 87 on page 299.

Notes
1. If you specify the same vector for x and y, then incx and incy must be equal;

otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 73.

Function

The computation is expressed as follows:

See reference [91 on page 1318]. If n is 0, no computation is performed. For CYAX,
intermediate results are accumulated in long precision when the AltiVec or VSX
unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:
Y = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

Example 2
This example shows vectors x and y that have strides of opposite signs. For y,
which has negative stride, results are stored beginning in element Y(5).

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

Output:

300 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y = (10.0, 8.0, 6.0, 4.0, 2.0)

Example 3
This example shows a vector, x, with 0 stride. x is treated like a vector of
length n, all of whose elements are the same as the single element in x.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)

Output:
Y = (2.0, 2.0, 2.0, 2.0, 2.0)

Example 4
This example shows how SYAX can be used to compute a scalar value. In this
case both vectors x and y contain scalar values, and the strides for both vectors
are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL SYAX(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)

Output:
Y = (2.0)

Example 5
This example shows a scalar, α, and vectors x and y, containing complex
numbers, where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CYAX(3 ,ALPHA, X , 1 , Y , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
Y = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

Example 6
This example shows a scalar, α, containing a real number, and vectors x and y,
containing complex numbers, where both vectors have a stride of 1.

Call Statement and Input:
N ALPHA X INCX Y INCY
| | | | | |

CALL CSYAX(3 , 2.0 , X , 1 , Y , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output:
Y = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

Chapter 8. Linear Algebra Subprograms 301

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a
Scalar, Add to a Vector Y, and Store in a Vector Z)

Purpose

These subprograms perform the following computation, using the scalar α and
vectors x, y, and z:

z←y+αx

Table 88. Data Types

α, x, y, z Subprogram

Short-precision real SZAXPY

Long-precision real DZAXPY

Short-precision complex CZAXPY

Long-precision complex ZZAXPY

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SZAXPY | DZAXPY | CZAXPY | ZZAXPY (n, alpha, x, incx, y, incy, z, incz)

C and C++ szaxpy | dzaxpy | czaxpy | zzaxpy (n, alpha, x, incx, y, incy, z, incz);

On Entry

n is the number of elements in vectors x, y, and z.

Specified as: an integer; n ≥ 0.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 88.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 88.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n. Specified as: a one-dimensional array of (at least)
length 1+(n-1)|incy|, containing numbers of the data type indicated in
Table 88.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

z See On Return.

incz
is the stride for vector z.

302 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer. It can have any value.

On Return

z is the vector z of length n, containing the result of the computation y+αx .
Returned as: a one-dimensional array of (at least) length 1+(n-1)|incz|,
containing numbers of the data type indicated in Table 88 on page 302.

Notes
1. If you specify the same vector for x and z, then incx and incz must be equal;

otherwise, results are unpredictable. The same is true for y and z.
2. If you specify different vectors for x and z, they must have no common

elements; otherwise, results are unpredictable. The same is true for y and z. See
“Concepts” on page 73.

Function

The computation is expressed as follows:

See reference [91 on page 1318]. If n is 0, no computation is performed. For
CZAXPY, intermediate results are accumulated in long precision when the AltiVec
or VSX unit is not used.

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1
This example shows vectors x and y with positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

Output:
Z = (3.0, 5.0, 7.0, 9.0, 11.0)

Example 2
This example shows vectors x and y having strides of opposite sign, and an
output vector z having a positive stride. For y, which has negative stride,
processing begins at element Y(5), which is 1.0.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 303

N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Output:
Z = (3.0, . , 6.0, . , 9.0, . , 12.0, . , 15.0)

Example 3
This example shows a vector, x, with 0 stride, and a vector, z, with negative
stride. x is treated like a vector of length n, all of whose elements are the same
as the single element in x. For vector z, results are stored beginning in element
Z(5).

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

Z = (3.0, 4.0, 5.0, 6.0, 7.0)

Example 4
This example shows a vector, y, with 0 stride. y is treated like a vector of
length n, all of whose elements are the same as the single element in y.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(5 , 2.0 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

Output:
Z = (7.0, 9.0, 11.0, 13.0, 15.0)

Example 5
This example shows how SZAXPY can be used to compute a scalar value. In
this case, vectors x and y contain scalar values. The strides of all vectors, x, y,
and z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL SZAXPY(1 , 2.0 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

Output:
Z = (7.0)

Example 6
This example shows vectors x and y, containing complex numbers and having
positive strides.

Call Statement and Input:
N ALPHA X INCX Y INCY Z INCZ
| | | | | | | |

CALL CZAXPY(3 ,ALPHA, X , 1 , Y , 2 , Z , 1)

304 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

Output:
Z = ((-3.0, 8.0), (4.0, 8.0), (-4.0, 23.0))

Chapter 8. Linear Algebra Subprograms 305

Sparse Vector-Scalar Subprograms

This contains the sparse vector-scalar subprogram descriptions.

306 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse
Vector X in Compressed-Vector Storage Mode into Specified Elements
of a Sparse Vector Y in Full-Vector Storage Mode)

Purpose

These subprograms scatter the elements of sparse vector x, stored in
compressed-vector storage mode, into specified elements of sparse vector y, stored
in full-vector storage mode.

Table 89. Data Types

x, y Subprogram

Short-precision real SSCTR

Long-precision real DSCTR

Short-precision complex CSCTR

Long-precision complex ZSCTR

Syntax

Fortran CALL SSCTR | DSCTR | CSCTR | ZSCTR (nz, x, indx, y)

C and C++ ssctr | dsctr | csctr | zsctr (nz, x, indx, y);

On Entry

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: an integer; nz ≥ 0.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated in
Table 89.

indx
is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y into which the elements are
copied.

Specified as: a one-dimensional array of (at least) length nz, containing
integers.

y See On Return.

On Return

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz, into which nz elements of vector x are copied at
positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length max(INDX(i)) for i = 1,
nz, containing numbers of the data type indicated in Table 89.

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.

Chapter 8. Linear Algebra Subprograms 307

2. Vectors x and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 73.

3. For a description of how sparse vectors are stored, see “Sparse Vector” on page
78.

Function

The copy is expressed as follows:

yINDX(i) ← xi for i = 1, nz

where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [37 on page 1315]. If nz is 0, no copy is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SSCTR to copy a sparse vector x of length 5
into the following vector y, where the elements of array INDX are in ascending
order:

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:
NZ X INDX Y
| | | |

CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)

Output:
Y = (1.0, 2.0, 2.0, 3.0, 6.0, 10.0, 4.0, 8.0, 9.0, 5.0)

Example 2
This example shows how to use SSCTR to copy a sparse vector x of length 5
into the following vector y, where the elements of array INDX are in random
order:

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Call Statement and Input:
NZ X INDX Y
| | | |

CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)

308 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
Y = (3.0, 2.0, 2.0, 1.0, 6.0, 10.0, 5.0, 8.0, 9.0, 4.0)

Example 3
This example shows how to use CSCTR to copy a sparse vector x of length 3
into the following vector y, where the elements of array INDX are in random
order:

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Call Statement and Input:
NZ X INDX Y
| | | |

CALL CSCTR(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)

Output:
Y = ((3.0, 4.0), (-2.0, 3.0), (5.0, 6.0), (1.0, 2.0))

Chapter 8. Linear Algebra Subprograms 309

SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a
Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode)

Purpose

These subprograms gather specified elements of vector y, stored in full-vector
storage mode, into sparse vector x, stored in compressed-vector storage mode.

Table 90. Data Types

x, y Subprogram

Short-precision real SGTHR

Long-precision real DGTHR

Short-precision complex CGTHR

Long-precision complex ZGTHR

Syntax

Fortran CALL SGTHR | DGTHR | CGTHR | ZGTHR (nz, y, x, indx)

C and C++ sgthr | dgthr | cgthr | zgthr (nz, y, x, indx);

On Entry

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: an integer; nz ≥ 0.

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz, from which nz elements are copied from positions
indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length max(INDX(i)) for i = 1,
nz, containing numbers of the data type indicated in Table 90.

x See On Return.

indx
is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y from which elements are
copied.

Specified as: a one-dimensional array of (at least) length nz, containing
integers.

On Return

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X, into which are copied the elements
of vector y from positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length nz, containing
numbers of the data type indicated in Table 90.

Notes
1. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 73.

310 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. For a description of how sparse vectors are stored, see “Sparse Vector” on page
78.

Function

The copy is expressed as follows:

xi ← yINDX(i) for i = 1, nz

where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [37 on page 1315]. If nz is 0, no copy is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SGTHR to copy specified elements of a vector
y into a sparse vector x of length 5, where the elements of array INDX are in
ascending order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

Output:
X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2
This example shows how to use SGTHR to copy specified elements of a vector
y into a sparse vector x of length 5, where the elements of array INDX are in
random order. (Note that the element 0.0 occurs in output vector x. This does
not produce an error.)

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

Output:
X = (7.0, 4.0, 6.0, 0.0, -2.0)

Chapter 8. Linear Algebra Subprograms 311

Example 3
This example shows how to use CGTHR to copy specified elements of a vector,
y, into a sparse vector, x, of length 3, where the elements of array INDX are in
random order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL CGTHR(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

Output:
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

312 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements
of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

Purpose

These subprograms gather specified elements of sparse vector y, stored in
full-vector storage mode, into sparse vector x, stored in compressed-vector storage
mode, and zero the same specified elements of vector y.

Table 91. Data Types

x, y Subprogram

Short-precision real SGTHRZ

Long-precision real DGTHRZ

Short-precision complex CGTHRZ

Long-precision complex ZGTHRZ

Syntax

Fortran CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx)

C and C++ sgthrz | dgthrz | cgthrz | zgthrz (nz, y, x, indx);

On Entry

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: an integer; nz ≥ 0.

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz, from which nz elements are copied from positions
indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length max(INDX(i)) for i = 1,
nz, containing numbers of the data type indicated in Table 91.

x See On Return.

indx
is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions in vector y from which elements are
copied then set to zero.

Specified as: a one-dimensional array of (at least) length nz, containing
integers.

On Return

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz, whose elements are set to zero at positions indicated
by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 91.

x is the sparse vector x, containing nz elements stored in compressed-vector
storage mode in an array, referred to as X, into which are copied the elements
of vector y from positions indicated by the indices array INDX.

Chapter 8. Linear Algebra Subprograms 313

Returned as: a one-dimensional array of (at least) length nz, containing
numbers of the data type indicated in Table 91 on page 313.

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 73.
3. For a description of how sparse vectors are stored, see “Sparse Vector” on page

78.

Function

The copy is expressed as follows:

xi ← yINDX(i)
yINDX(i)←0.0 (for SGTHRZ and DGTHRZ)
yINDX(i)←(0.0,0.0) (for CGTHRZ and ZGTHRZ)
for i = 1,nz

where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [37 on page 1315]. If nz is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SGTHRZ to copy specified elements of a
vector y into a sparse vector x of length 5, where the elements of array INDX
are in ascending order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

Output:
Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 0.0, 0.0)
X = (6.0, 4.0, 7.0, -2.0, 9.0)

Example 2
This example shows how to use SGTHRZ to copy specified elements of a

314 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

vector y into a sparse vector x of length 5, where the elements of array INDX
are in random order. (Note that the element 0.0 occurs in output vector x. This
does not produce an error.)

Call Statement and Input:
NZ Y X INDX
| | | |

CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

Output:
Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 9.0, 0.0)
X = (7.0, 4.0, 6.0, 0.0, -2.0)

Example 3
This example shows how to use CGTHRZ to copy specified elements of a
vector y into a sparse vector x of length 3, where the elements of array INDX
are in random order.

Call Statement and Input:
NZ Y X INDX
| | | |

CALL CGTHRZ(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

Output:
Y = ((0.0, 0.0), (-2.0, 3.0), (0.0, 0.0), (0.0, 0.0))
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

Chapter 8. Linear Algebra Subprograms 315

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in
Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector
Y in Full-Vector Storage Mode, and Store in the Vector Y)

Purpose

These subprograms multiply sparse vector x, stored in compressed-vector storage
mode, by scalar α, add it to sparse vector y, stored in full-vector storage mode, and
store the result in vector y.

Table 92. Data Types

α, x, y Subprogram

Short-precision real SAXPYI

Long-precision real DAXPYI

Short-precision complex CAXPYI

Long-precision complex ZAXPYI

Syntax

Fortran CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y)

C and C++ saxpyi | daxpyi | caxpyi | zaxpyi (nz, alpha, x, indx, y);

On Entry

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: an integer; nz ≥ 0.

alpha
is the scalar α. Specified as: a number of the data type indicated in Table 92.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated in
Table 92.

indx
is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions of the elements in vector y that are used
in the computation.

Specified as: a one-dimensional array of (at least) length nz, containing
integers.

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz. Specified as: a one-dimensional array of (at least)
length max(INDX(i)) for i = 1, nz, containing numbers of the data type indicated
in Table 92.

On Return

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz containing the results of the computation, stored at
positions indicated by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 92.

316 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes
1. Each value specified in array INDX must be unique; otherwise, results are

unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are

unpredictable. See “Concepts” on page 73.
3. For a description of how sparse vectors are stored, see “Sparse Vector” on page

78.

Function

The computation is expressed as follows:

yINDX(i) ← yINDX(i) + αxi for i = 1, nz

where:

x is a sparse vector, stored in compressed-vector storage mode.
INDX is the indices array for sparse vector x.
y is a sparse vector, stored in full-vector storage mode.

See reference [37 on page 1315]. If α or nz is zero, no computation is performed.
For SAXPYI and CAXPYI, intermediate results are accumulated in long-precision.

Error conditions

Computational Errors
None

Input-Argument Errors
nz < 0

Examples

Example 1
This example shows how to use SAXPYI to perform a computation using a
sparse vector x of length 5, where the elements of array INDX are in ascending
order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL SAXPYI(5 , 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
Y = (3.0, 5.0, 8.0, 9.0, 6.0, 10.0, 6.0, 8.0, 9.0, 10.0)

Example 2
This example shows how to use SAXPYI to perform a computation using a
sparse vector x of length 5, where the elements of array INDX are in random
order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL SAXPYI(5 , 2.0 , X , INDX , Y)

Chapter 8. Linear Algebra Subprograms 317

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
Y = (7.0, 5.0, 8.0, 5.0, 6.0, 10.0, 8.0, 8.0, 9.0, 8.0)

Example 3
This example shows how to use CAXPYI to perform a computation using a
sparse vector x of length 3, where the elements of array INDX are in random
order.

Call Statement and Input:
NZ ALPHA X INDX Y
| | | | |

CALL CAXPYI(3 , ALPHA , X , INDX , Y)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
Y = ((0.0, 22.0), (-2.0, 3.0), (7.0, 31.0), (5.0, 7.0))

318 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of
a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse
Vector Y in Full-Vector Storage Mode)

Purpose

SDOTI, DDOTI, CDOTUI, and ZDOTUI compute the dot product of sparse vector
x, stored in compressed-vector storage mode, and full vector y, stored in full-vector
storage mode.

CDOTCI and ZDOTCI compute the dot product of the complex conjugate of sparse
vector x, stored in compressed-vector storage mode, and full vector y, stored in
full-vector storage mode.

Table 93. Data Types

x, y, Result Subprogram

Short-precision real SDOTI

Long-precision real DDOTI

Short-precision complex CDOTUI

Long-precision complex ZDOTUI

Short-precision complex CDOTCI

Long-precision complex ZDOTCI

Syntax

Fortran SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y)

C and C++ sdoti | ddoti | cdotui | zdotui | cdotci | zdotci (nz, x, indx, y);

On Entry

nz is the number of elements in sparse vector x, stored in compressed-vector
storage mode. Specified as: an integer; nz ≥ 0.

x is the sparse vector x, containing nz elements, stored in compressed-vector
storage mode in an array, referred to as X. Specified as: a one-dimensional
array of (at least) length nz, containing numbers of the data type indicated in
Table 93.

indx
is the array, referred to as INDX, containing the nz indices that indicate the
positions of the elements of the sparse vector x when in full-vector storage
mode. They also indicate the positions of elements in vector y that are used in
the computation.

Specified as: a one-dimensional array of (at least) length nz, containing
integers.

y is the sparse vector y, stored in full-vector storage mode, of (at least) length
max(INDX(i)) for i = 1, nz. Specified as: a one-dimensional array of (at least)
length max(INDX(i)) for i = 1, nz, containing numbers of the data type indicated
in Table 93.

On Return

Chapter 8. Linear Algebra Subprograms 319

Function value
is the result of the dot product computation.

Returned as: a number of the data type indicated in Table 93 on page 319.

Notes
1. Declare this function in your program as returning a value of the data type

indicated in Table 93 on page 319.
2. For a description of how sparse vectors are stored, see “Sparse Vector” on page

78.

Function

For SDOTI, DDOTI, CDOTUI, and ZDOTUI, the dot product computation is
expressed as follows:

For CDOTCI and ZDOTCI, the dot product computation is expressed as follows:

where:

x is a sparse vector, stored in compressed-vector storage mode.

INDX is the indices array for sparse vector x.

y is a sparse vector, stored in full-vector storage mode.

See reference [37 on page 1315]. The result is returned as the function value. If nz
is 0, then zero is returned as the value of the function.

For SDOTI, CDOTUI, and CDOTCI, intermediate results are accumulated in
long-precision.

Error conditions

Computational Errors
None

Input-Argument Errors
nz < 0

320 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Examples

Example 1
This example shows how to use SDOTI to compute a dot product using a
sparse vector x of length 5, where the elements of array INDX are in ascending
order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
DOTT = (1.0 + 8.0 + 9.0 -8.0 + 0.0) = 10.0

Example 2
This example shows how to use SDOTI to compute a dot product using a
sparse vector x of length 5, where the elements of array INDX are in random
order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

Output:
DOTT = (3.0 + 8.0 + 3.0 + 0.0 -10.0) = 4.0

Example 3
This example shows how to use CDOTUI to compute a dot product using a
sparse vector x of length 3, where the elements of array INDX are in ascending
order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = CDOTUI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (1, 3, 4)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
DOTT = (70.0, 143.0)

Example 4
This example shows how to use CDOTCI to compute a dot product using the
complex conjugate of a sparse vector x of length 3, where the elements of array
INDX are in random order.

Function Reference and Input:
NZ X INDX Y
| | | |

DOTT = CDOTCI(3 , X , INDX , Y)

Chapter 8. Linear Algebra Subprograms 321

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

Output:
DOTT = (146.0, -97.0)

322 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Matrix-Vector Subprograms

This contains the matrix-vector subprogram descriptions.

Chapter 8. Linear Algebra Subprograms 323

SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and
DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
Its Conjugate Transpose)

Purpose

SGEMV and DGEMV compute the matrix-vector product for either a real general
matrix or its transpose, using the scalars α and β, vectors x and y, and matrix A or
its transpose:

y← β y+α Ax

y ← βy+α ATx

CGEMV and ZGEMV compute the matrix-vector product for either a complex
general matrix, its transpose, or its conjugate transpose, using the scalars α and β,
vectors x and y, and matrix A, its transpose, or its conjugate transpose:

y ← β y+α Ax
y ← β y+α ATx
y ← β y+α AHx

SGEMX and DGEMX compute the matrix-vector product for a real general matrix,
using the scalar α, vectors x and y, and matrix A:

y← y+α Ax

SGEMTX and DGEMTX compute the matrix-vector product for the transpose of a
real general matrix, using the scalar α, vectors x and y, and the transpose of matrix
A:

y ← y+α ATx

Table 94. Data Types

α, β, x, y, A Subprogram

Short-precision real SGEMV, SGEMX, and SGEMTX

Long-precision real DGEMV, DGEMX, and DGEMTX

Short-precision complex CGEMV

Long-precision complex ZGEMV

Note:

1. SGEMV and DGEMV are Level 2 BLAS subroutines. It is suggested that these
subroutines be used instead of SGEMX, DGEMX, SGEMTX, and DGEMTX,
which are provided only for compatibility with earlier releases of ESSL.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

324 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Syntax

Fortran

CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y,
incy)

CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy)

C and C++ sgemv | dgemv | cgemv | zgemv (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

sgemx | dgemx | sgemtx | dgemtx (m, n, alpha, a, lda, x, incx, y, incy);

CBLAS cblas_sgemv | cblas_dgemv | cblas_cgemv | cblas_zgemv (cblas_order, cblas_transa, m, n,
alpha, a, lda, x, incx, beta, y, incy);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation.

If cblas_transa = CblasTrans, AT is used in the computation.

If cblas_transa = CblasConjTrans, AH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

m is the number of rows in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it is the length of vector y.
If transa = 'T' or 'C', it is the length of vector x.

For SGEMX and DGEMX, it is the length of vector y.

For SGEMTX and DGEMTX, it is the length of vector x.

Specified as: an integer; 0 ≤ m ≤ lda.

n is the number of columns in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

Chapter 8. Linear Algebra Subprograms 325

||
|

|
|
|

|

|
|

|
|

|
|

|

|

|

|
|

If transa = 'N', it is the length of vector x.
If transa = 'T' or 'C', it is the length of vector y.

For SGEMX and DGEMX, it is the length of vector x.

For SGEMTX and DGEMTX, it is the length of vector y.

Specified as: an integer; n ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 94 on page 324.

a is the m by n matrix A, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', A is used in the computation.
If transa = 'T', AT is used in the computation.
If transa = 'C', AH is used in the computation.

For SGEMX and DGEMX, A is used in the computation.

For SGEMTX and DGEMTX, AT is used in the computation.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 94 on page 324.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

x is the vector x, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it has length n.
If transa = 'T' or 'C', it has length m.

For SGEMX and DGEMX, it has length n.

For SGEMTX and DGEMTX, it has length m.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 94 on page 324, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it must have at least 1+(n-1)|incx| elements.
If transa = 'T' or 'C', it must have at least 1+(m-1)|incx| elements.

For SGEMX and DGEMX, it must have at least 1+(n-1)|incx| elements.

For SGEMTX and DGEMTX, it must have at least 1+(m-1)|incx| elements.

beta
is the scaling constant β.

Specified as: a number of the data type indicated in Table 94 on page 324.

incx
is the stride for vector x.

326 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; It can have any value.

y is the vector y, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it has length m.
If transa = 'T' or 'C', it has length n.

For SGEMX and DGEMX, it has length m.

For SGEMTX and DGEMTX, it has length n.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 94 on page 324, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it must have at least 1+(m-1)|incy| elements.
If transa = 'T' or 'C', it must have at least 1+(n-1)|incy| elements.

For SGEMX and DGEMX, it must have at least 1+(m-1)|incy| elements.

For SGEMTX and DGEMTX, it must have at least 1+(n-1)|incy| elements.

incy
is the stride for vector y.

Specified as: an integer; incy > 0 or incy < 0.

On Return

y is the vector y, containing the result of the computation, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:

If transa = 'N', it has length m.
If transa = 'T' or 'C', it has length n.

For SGEMX and DGEMX, it has length m.

For SGEMTX and DGEMTX, it has length n.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 94 on page 324.

Notes
1. For SGEMV and DGEMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
2. The SGEMV, DGEMV, CGEMV, and ZGEMV subroutines accept lowercase

letters for the transa argument.
3. In the SGEMV, DGEMV, CGEMV, and ZGEMV subroutines, incx = 0 is valid;

however, the Level 2 BLAS standard considers incx = 0 to be invalid. See
references [42 on page 1315] and [43 on page 1315].

4. Vector y must have no common elements with matrix A or vector x; otherwise,
results are unpredictable. See “Concepts” on page 73.

Function

Varying implementation techniques are used for this computation to improve
performance. As a result, accuracy of the computational result may vary for
different computations.

Chapter 8. Linear Algebra Subprograms 327

For SGEMV, CGEMV, SGEMX, and SGEMTX, intermediate results are accumulated
in long precision when the AltiVec or VSX unit is not used. Occasionally, for
performance reasons, these intermediate results are stored.

See references [42 on page 1315], [43 on page 1315], [46 on page 1316], [54 on page
1316], and [91 on page 1318]. No computation is performed if m or n is 0 or if α is
zero and β is one.

General Matrix

For SGEMV, DGEMV, CGEMV, and ZGEMV, the matrix-vector product for a
general matrix:

y←βy+αAx

is expressed as follows:

For SGEMX and DGEMX, the matrix-vector product for a real general matrix:

y←y+αAx

is expressed as follows:

In these expressions:

y is a vector of length m.
α is a scalar.
β is a scalar.
A is an m by n matrix.
x is a vector of length n.

Transpose of a General Matrix

For SGEMV, DGEMV, CGEMV and ZGEMV, the matrix-vector product for the
transpose of a general matrix:

y ← βy+αATx

is expressed as follows:

328 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For SGEMTX and DGEMTX, the matrix-vector product for the transpose of a
real general matrix:

y ← y+αATx

is expressed as follows:

In these expressions:

y is a vector of length n.
α is a scalar.
β is a scalar.
AT is the transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Conjugate Transpose of a General Matrix

For CGEMV and ZGEMV, the matrix-vector product for the conjugate
transpose of a general matrix:

y ← βy+αAHx

is expressed as follows:

where:

y is a vector of length n.
α is a scalar.
β is a scalar.
AH is the conjugate transpose of matrix A, where A is an m by n matrix.
x is a vector of length m.

Chapter 8. Linear Algebra Subprograms 329

Error conditions

Resource Errors
Unable to allocate internal work area (for SGEMV, DGEMV, CGEMV, and
ZGEMV).

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. transa ≠ 'N', 'T', or 'C'
3. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
4. m < 0
5. m > lda
6. n < 0
7. lda ≤ 0
8. incy = 0

Examples

Example 1
This example shows the computation for TRANSA equal to 'N', where the real
general matrix A is used in the computation. Because lda is 10 and n is 3, array
A must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. In
this example, array A is declared as A(1:10,0:2).

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SGEMV(’N’ , 4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , 1.0 , Y , 2)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

Output:
Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

Example 2
This example shows the computation for TRANSA equal to 'T', where the
transpose of the real general matrix A is used in the computation. Array A
must follow the same rules as given in Example 1. In this example, array A is
declared as A(-1:8,1:3).

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SGEMV(’T’ , 4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , 2.0 , Y , 2)

330 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

A =(same as input A in Example 1)
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0)

Output:
Y = (28.0, . , 24.0, . , 29.0)

Example 3
This example shows the computation for TRANSA equal to 'N', where the
complex general matrix A is used in the computation.

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV(’N’ , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (1.0, 0.0)

┌ ┐
| (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
| (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
| (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
| (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |

A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0), (3.0, 4.0),

(2.0, 0.0))

Output:
Y = ((12.0, 28.0), (24.0, 55.0), (10.0, 39.0), (23.0, 50.0),

(22.0, 44.0))

Example 4
This example shows the computation for TRANSA equal to 'T', where the
transpose of complex general matrix A is used in the computation. Because β is
zero, the result of the computation is αATx

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV(’T’ , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (1.0, 0.0)
A =(same as input A in Example 3)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((42.0, 67.0), (10.0, 87.0), (50.0, 74.0))

Example 5
This example shows the computation for TRANSA equal to 'C', where the
conjugate transpose of the complex general matrix A is used in the
computation.

Chapter 8. Linear Algebra Subprograms 331

Call Statement and Input:
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CGEMV(’C’ , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (-1.0, 0.0)
A =(same as input A in Example 3)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

Output:
Y = ((-73.0, -13.0), (-74.0, 57.0), (-49.0, -11.0))

Example 6
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because lda is 10 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. For this
example, array A is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , Y , 2)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

Output:
Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

Example 7
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride,
processing begins at element Y(7), which is 4.0. Array A must follow the same
rules as given in Example 6. For this example, array A is declared as
A(-1:8,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , Y , -2)

A =(same as input A in Example 6)
X = (3.0, 2.0, 1.0)
Y = (3.0, . , 2.0, . , 5.0, . , 4.0)

Output:
Y = (20.0, . , 17.0, . , 19.0, . , 14.0)

332 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 8
This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow
the same rules as given in Example 6. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(5,1) , 10 , X , 1 , Y , 1)

┌ ┐
| . . . |
| . . . |
| . . . |
| . . . |

A = | 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
| . . . |
| . . . |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

Output:
Y = (14.0, 19.0, 17.0, 20.0)

Example 9
This example shows a matrix, A, and an array, A, having the same number of
rows. For this case, m and lda are equal. Because lda is 4 and n is 3, array A
must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For
this example, array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

Output:
Y = (14.0, 19.0, 17.0, 20.0)

Example 10
This example shows a matrix, A, and an array, A, having the same number of
rows. For this case, m and lda are equal. Because lda is 4 and n is 3, array A
must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For
this example, array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMTX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

Chapter 8. Linear Algebra Subprograms 333

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Output:
Y = (27.0, 22.0, 26.0)

Example 11
This example shows a computation in which alpha is greater than 1. Array A
must follow the same rules as given in Example 10. For this example, array A
is declared as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |

CALL SGEMTX(4 , 3 , 2.0 , A(-1,1) , 4 , X , 1 , Y , 1)

A =(same as input A in Example 10)
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Output:
Y = (53.0, 42.0, 49.0)

334 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update
of a General Matrix)

Purpose

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix, using the scalar α, matrix A, vector x, and the transpose of vector y:

A ← A+αxyT

CGERC and ZGERC compute the rank-one update of a general matrix, using the
scalar α, matrix A, vector x, and the conjugate transpose of vector y:

A ← A+αxyH

Table 95. Data Types

α, A, x, y Subprogram

Short-precision real SGER

Long-precision real DGER

Short-precision complex CGERU and CGERC

Long-precision complex ZGERU and ZGERC

Note:

1. For compatibility with earlier releases of ESSL, you can use the names SGER1
and DGER1 for SGER and DGER, respectively.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SGER | DGER | CGERU | ZGERU | CGERC | ZGERC (m, n, alpha, x, incx, y, incy,
a, lda)

C and C++ sger | dger | cgeru | zgeru | cgerc | zgerc (m, n, alpha, x, incx, y, incy, a, lda);

CBLAS cblas_sger | cblas_dger | cblas_cgeru | cblas_zgeru | cblas_cgerc | cblas_zgerc (cblas_order,
m, n, alpha, x, incx, y, incy, a, lda);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

m is the number of rows in matrix A and the number of elements in vector x.

Specified as: an integer; 0 ≤ m ≤ lda.

n is the number of columns in matrix A and the number of elements in vector y.

Chapter 8. Linear Algebra Subprograms 335

||
|

|
|
|

|

|
|

|
|

Specified as: an integer; n ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 95 on page 335.

x is the vector x of length m.

Specified as: a one-dimensional array of (at least) length 1+(m-1)|incx|,
containing numbers of the data type indicated in Table 95 on page 335.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y is the vector y of length n, whose transpose or conjugate transpose is used in
the computation.

Note: No data should be moved to form yT or yH; that is, the vector y should
always be stored in its untransposed form.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
containing numbers of the data type indicated in Table 95 on page 335.

incy
is the stride for vector y.

Specified as: an integer. It can have any value.

a is the m by n matrix A. Specified as: an lda by (at least) n array, containing
numbers of the data type indicated in Table 95 on page 335.

lda
is the size of the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

On Return

a is the m by n matrix A, containing the result of the computation.

Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 95 on page 335.

Notes
1. In these subroutines, incx = 0 and incy = 0 are valid; however, the Level 2 BLAS

standard considers incx = 0 and incy = 0 to be invalid. See references [42 on
page 1315] and [43 on page 1315].

2. Matrix A can have no common elements with vectors x and y; otherwise,
results are unpredictable. See “Concepts” on page 73.

Function

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general
matrix:

A ← A+αxyT

where:

336 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A is an m by n matrix.
α is a scalar.
x is a vector of length m.
yT is the transpose of vector y of length n.

It is expressed as follows:

It can also be expressed as:

CGERC and ZGERC compute a slightly different rank-one update of a general
matrix:

A ← A+αxyH

where:

A is an m by n matrix.
α is a scalar.
x is a vector of length m.
yH is the conjugate transpose of vector y of length n.

It is expressed as follows:

It can also be expressed as:

Chapter 8. Linear Algebra Subprograms 337

See references [42 on page 1315], [43 on page 1315], and [91 on page 1318]. No
computation is performed if m, n, or α is zero. For CGERU and CGERC,
intermediate results are accumulated in long precision when the AltiVec or VSX
unit is not used. For SGER, intermediate results are accumulated in long precision
on some platforms when the AltiVec or VSX unit is not used.

Error conditions

Resource Errors:
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. m < 0
3. n < 0
4. lda ≤ 0
5. m > lda

Examples

Example 1
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are positive. Because lda is 10 and n is 3, array A must be
declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. For this
example, array A is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 2 , A(1,0) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0)

┌ ┐
| 1.0 2.0 3.0 |
| 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

338 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

┌ ┐
| 4.0 8.0 12.0 |
| 4.0 6.0 10.0 |
| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |

A = | . . . |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Example 2
This example shows a matrix, A, contained in a larger array, A. The strides of
vectors x and y are of opposite sign. For y, which has negative stride,
processing begins at element Y(5), which is 1.0. Array A must follow the same
rules as given in Example 1. For this example, array A is declared as
A(-1:8,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , -2 , A(-1,1) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (3.0, . , 2.0, . , 1.0)
A =(same as input A in Example 1)

Output:

A =(same as input A in Example 1)

Example 3
This example shows a matrix, A, contained in a larger array, A, and the first
element of the matrix is not the first element of the array. Array A must follow
the same rules as given in Example 1. For this example, array A is declared as
A(1:10,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 3 , Y , 1 , A(4,1) , 10)

X = (3.0, . , . , 2.0, . , . , 1.0, . , . , 4.0)
Y = (1.0, 2.0, 3.0)

┌ ┐
| . . . |
| . . . |
| . . . |
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| . . . |
| . . . |
| . . . |

Chapter 8. Linear Algebra Subprograms 339

| 4.0 8.0 12.0 |
A = | 4.0 6.0 10.0 |

| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 4
This example shows a matrix, A, and array, A, having the same number of
rows. For this case, m and lda are equal. Because lda is 4 and n is 3, array A
must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For
this example, array A is declared as A(1:4,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 1 , A(1,0) , 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 2.0 4.0 |
| 3.0 2.0 2.0 |
| 4.0 2.0 1.0 |
└ ┘

Output:
┌ ┐
| 4.0 8.0 12.0 |

A = | 4.0 6.0 10.0 |
| 4.0 4.0 5.0 |
| 8.0 10.0 13.0 |
└ ┘

Example 5
This example shows a computation in which scalar value for alpha is greater
than 1. Array A must follow the same rules as given in Example 4. For this
example, array A is declared as A(-1:2,1:3).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SGER(4 , 3 , 2.0 , X , 1 , Y , 1 , A(-1,1) , 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)
A =(same as input A in Example 4)

Output:
┌ ┐
| 7.0 14.0 21.0 |

A = | 6.0 10.0 16.0 |
| 5.0 6.0 8.0 |
| 12.0 18.0 25.0 |
└ ┘

Example 6
This example shows a rank-one update in which all data items contain
complex numbers, and the transpose yT is used in the computation. Matrix A is
contained in a larger array, A. The strides of vectors x and y are positive. The

340 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Fortran DIMENSION statement for array A must follow the same rules as
given in Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CGERU(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

┌ ┐
| (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
| (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
| (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
| (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |

A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-2.0, 6.0) (7.0, 13.0) (5.0, 1.0) |
| (6.0, 11.0) (23.0, 9.0) (8.0, 4.0) |
| (6.0, 7.0) (5.0, 8.0) (8.0, 0.0) |
| (3.0, 12.0) (14.0, 21.0) (15.0, 1.0) |

A = | (11.0, 5.0) (11.0, 6.0) (3.0, -2.0) |
| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

Example 7
This example shows a rank-one update in which all data items contain
complex numbers, and the conjugate transpose yH is used in the computation.
Matrix A is contained in a larger array, A. The strides of vectors x and y are
positive. The Fortran DIMENSION statement for array A must follow the same
rules as given in Example 1. For this example, array A is declared as
A(1:10,0:2).

Call Statement and Input:
M N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CGERC(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

(2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
A =(same as input A in Example 6)

Output:
┌ ┐
| (6.0, 2.0) (7.0, 13.0) (1.0, 3.0) |
| (6.0, -5.0) (23.0, 9.0) (8.0, 12.0) |
| (10.0, 3.0) (5.0, 8.0) (6.0, 2.0) |

Chapter 8. Linear Algebra Subprograms 341

| (19.0, 0.0) (14.0, 21.0) (7.0, 7.0) |
A = | (11.0, -3.0) (11.0, 6.0) (3.0, 2.0) |

| . . . |
| . . . |
| . . . |
| . . . |
| . . . |
└ ┘

342 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV,
SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or
Complex Hermitian Matrix)

Purpose

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV
compute the matrix-vector product for either a real symmetric matrix or a complex
Hermitian matrix, using the scalars α and β, matrix A, and vectors x and y:

y←βy+αAx

SSLMX and DSLMX compute the matrix-vector product for a real symmetric
matrix, using the scalar α, matrix A, and vectors x and y:

y←y+αAx

The following storage modes are used:
v For SSPMV, DSPMV, CHPMV, and ZHPMV, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYMV, DSYMV, CHEMV, and ZHEMV, matrix A is stored in upper or

lower storage mode.
v For SSLMX and DSLMX, matrix A is stored in lower-packed storage mode.

Table 96. Data Types

α, β, A, x, y Subprogram

Short-precision real SSPMV, SSYMV, and SSLMX

Long-precision real DSPMV, DSYMV, and DSLMX

Short-precision complex CHPMV and CHEMV

Long-precision complex ZHPMV and ZHEMV

Note:

1. SSPMV and DSPMV are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLMX and DSLMX, which are provided only for
compatibility with earlier releases of ESSL.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran

CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)

CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy)

C and C++ sspmv | dspmv | chpmv | zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy);

ssymv | dsymv | chemv | zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy);

sslmx | dslmx (n, alpha, ap, x, incx, y, incy);

Chapter 8. Linear Algebra Subprograms 343

CBLAS cblas_sspmv | cblas_dspmv | cblas_chpmv | cblas_zhpmv (cblas_order, cblas_uplo, n, alpha,
ap, x, incx, beta, y, incy);

cblas_ssymv | cblas_dsymv | cblas_chemv | cblas_zhemv (cblas_order, cblas_uplo, n, alpha,
a, lda, x, incx, beta, y, incy);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper-packed or upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower-packed or lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

n is the number of elements in vectors x and y and the order of matrix A.

Specified as: an integer; n ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 96 on page 343.

ap has the following meaning:

For SSPMV and DSPMV, ap is the real symmetric matrix A of order n, stored in
upper- or lower-packed storage mode.

For CHPMV and ZHPMV, ap is the complex Hermitian matrix A of order n,
stored in upper- or lower-packed storage mode.

For SSLMX and DSLMX, ap is the real symmetric matrix A of order n, stored in
lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 96 on page 343.

a has the following meaning:

For SSYMV and DSYMV, a is the real symmetric matrix A of order n, stored in
upper or lower storage mode.

344 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

For CHEMV and ZHEMV, a is the complex Hermitian matrix A of order n,
stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 96 on page 343.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 96 on page 343.

incx
is the stride for vector x.

Specified as: an integer, where:

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and
ZHEMV, incx < 0 or incx > 0.

For SSLMX and DSLMX, incx can have any value.

beta
is the scaling constant β.

Specified as: a number of the data type indicated in Table 96 on page 343.

y is the vector y of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
containing numbers of the data type indicated in Table 96 on page 343.

incy
is the stride for vector y.

Specified as: an integer; incy > 0 or incy < 0.

On Return

y is the vector y of length n, containing the result of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 96 on page 343.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. The vector y must have no common elements with vector x or matrix A;

otherwise, results are unpredictable. See “Concepts” on page 73.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 83. For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 88.

Chapter 8. Linear Algebra Subprograms 345

Function

These subroutines perform the calculations described. See references [42 on page
1315], [43 on page 1315], and [91 on page 1318].

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV
If n is zero or if α is zero and β is one, no computation is performed.

For SSLMX and DSLMX
If n or α is zero, no computation is performed.

For SSLMX, SSPMV, SSYMV, CHPMV, and CHEMV
Intermediate results are accumulated in long precision when the AltiVec or
VSX unit is not used. However, several intermediate stores may occur for each
element of the vector y.

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV

These subroutines compute the matrix-vector product for either a real
symmetric matrix or a complex Hermitian matrix:

y←βy+αAx

where:

y is a vector of length n.
α is a scalar.
β is a scalar.
A is a real symmetric or complex Hermitian matrix of order n.
x is a vector of length n.

It is expressed as follows:

For SSLMX and DSLMX

These subroutines compute the matrix-vector product for a real symmetric
matrix stored in lower-packed storage mode:

y←y+αAx

where:

y is a vector of length n.
α is a scalar.
A is a real symmetric matrix of order n.
x is a vector of length n.

It is expressed as follows:

346 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
Unable to allocate internal work area for CHEMV and ZHEMV

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. n < 0
5. lda < n
6. lda ≤ 0
7. incx = 0
8. incy = 0

Examples

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL SSPMV(’L’ , 3 , 1.0 , AP , X , 1 , 1.0 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:
Y = (39.0, . , 34.0, . , 25.0)

Example 2
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is 1.0. The
real symmetric matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL SSPMV(’U’ , 3 , 1.0 , AP , X , -2 , 2.0 , Y , 1)

Chapter 8. Linear Algebra Subprograms 347

|
|

|

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

Output:
Y = (36.0, 54.0, 36.0)

Example 3
This example shows vector x and y with positive stride and a complex
Hermitian matrix A of order 3, stored in lower-packed storage mode. Matrix A
is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL CHPMV(’L’ , 3 , ALPHA , AP , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

Output:
Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

Example 4
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is (1.0,
2.0). The complex Hermitian matrix A of order 3 is stored in upper-packed
storage mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | | | |

CALL CHPMV(’U’ , 3 , ALPHA , AP , X , -2 , BETA , Y , 2)

ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

348 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 5
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL SSYMV(’L’ , 3 , 1.0 , A , 3 , X , 1 , 1.0 , Y , 2)

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:
Y = (39.0, . , 34.0, . , 25.0)

Example 6
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is 1.0. The
real symmetric matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL SSYMV(’U’ , 3 , 1.0 , A , 4 , X , -2 , 2.0 , Y , 1)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

Output:
A = (36.0, 54.0, 36.0)

Example 7
This example shows vector x and y with positive stride and a complex
Hermitian matrix A of order 3, stored in lower storage mode. It uses the same
input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:

UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL CHEMV(’L’ , 3 , ALPHA , A , 3 , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

Chapter 8. Linear Algebra Subprograms 349

Output:
Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

Example 8
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is (1.0,
2.0). The complex Hermitian matrix A of order 3 is stored in upper storage
mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

Call Statement and Input:
UPLO N ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | |

CALL CHEMV(’U’ , 3 , ALPHA , A , 3 , X , -2 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
BETA = (0.0, 0.0)
Y =(not relevant)

Output:
Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

Example 9
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
N ALPHA AP X INCX Y INCY
| | | | | | |

CALL SSLMX(3 , 1.0 , AP , X , 1 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

Output:

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |
└ ┘

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

350 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y = (39.0, . , 34.0, . , 25.0)

Chapter 8. Linear Algebra Subprograms 351

SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and
DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
Matrix)

Purpose

SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1 compute the rank-one update of a
real symmetric matrix, using the scalar α, matrix A, vector x, and its transpose xT:

A←A+αxxT

CHPR, ZHPR, CHER, and ZHER compute the rank-one update of a complex
Hermitian matrix, using the scalar α, matrix A, vector x, and its conjugate
transpose xH:

A←A+αxxH

The following storage modes are used:
v For SSPR, DSPR, CHPR, and ZHPR, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYR, DSYR, CHER, and ZHER, matrix A is stored in upper or lower

storage mode.
v For SSLR1 and DSLR1, matrix A is stored in lower-packed storage mode.

Table 97. Data Types

A, x α Subprogram

Short-precision real Short-precision real SSPR, SSYR, and SSLR1

Long-precision real Long-precision real DSPR, DSYR, and DSLR1

Short-precision complex Short-precision real CHPR and CHER

Long-precision complex Long-precision real ZHPR and ZHER

Note:

1. SSPR and DSPR are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR1 and DSLR1, which are only provided for
compatibility with earlier releases of ESSL.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran

CALL SSPR | DSPR | CHPR | ZHPR (uplo, n, alpha, x, incx, ap)

CALL SSYR | DSYR | CHER | ZHER (uplo, n, alpha, x, incx, a, lda)

CALL SSLR1 | DSLR1 (n, alpha, x, incx, ap)

C and C++ sspr | dspr | chpr | zhpr (uplo, n, alpha, x, incx, ap);

ssyr | dsyr | cher | zher (uplo, n, alpha, x, incx, a, lda);

sslr1 | dslr1 (n, alpha, x, incx, ap);

352 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

CBLAS cblas_sspr | cblas_dspr | cblas_chpr | cblas_zhpr (cblas_order, cblas_uplo, n, alpha, x, incx,
ap);

cblas_ssyr | cblas_dsyr | cblas_cher | cblas_zher (cblas_order, cblas_uplo, n, alpha, x, incx, a,
lda);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper-packed or upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower-packed or lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

n is the number of elements in vector x and the order of matrix A.

Specified as: an integer; n ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 97 on page 352.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 97 on page 352.

incx
is the stride for vector x.

Specified as: an integer, where:

For SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, and ZHER, incx < 0 or
incx > 0.

For SSLR1 and DSLR1, incx can have any value.

ap has the following meaning:

For SSPR and DSPR, ap is the real symmetric matrix A of order n, stored in
upper- or lower-packed storage mode.

Chapter 8. Linear Algebra Subprograms 353

||
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

For CHPR and ZHPR, ap is the complex Hermitian matrix A of order n, stored
in upper- or lower-packed storage mode.

For SSLR1 and DSLR1, ap is the real symmetric matrix A of order n, stored in
lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 97 on page 352.

a has the following meaning:

For SSYR and DSYR, a is the real symmetric matrix A of order n, stored in
upper or lower storage mode.

For CHER and ZHER, a is the complex Hermitian matrix A of order n, stored
in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 97 on page 352.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

On Return

ap is the matrix A of order n, containing the results of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 97 on page 352.

a is the matrix A of order n, containing the results of the computation. Returned
as: a two-dimensional array, containing numbers of the data type indicated in
Table 97 on page 352.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. The vector x must have no common elements with matrix A; otherwise, results

are unpredictable. See “Concepts” on page 73.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 83. For a description of how complex Hermitian matrices are
stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 88.

Function

These subroutines perform the computations described. See references [42 on page
1315], [43 on page 1315], and [91 on page 1318].

Note: If n or α is 0, no computation is performed.

For CHPR and CHER
Intermediate results are accumulated in long precision when the AltiVec or
VSX unit is not used.

354 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For SSPR, SSYR, and SSLR1
Intermediate results are accumulated in long precision on some platforms
when the AltiVec or VSX unit is not used.

For SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1

These subroutines compute the rank-one update of a real symmetric matrix:

A←A+αxxT

where:

A is a real symmetric matrix of order n.
α is a scalar.
x is a vector of length n.
xT is the transpose of vector x.

It is expressed as follows:

For CHPR, ZHPR, CHER, and ZHER

These subroutines compute the rank-one update of a complex Hermitian
matrix:

A←A+αxxH

where:

A is a complex Hermitian matrix of order n.
α is a scalar.
x is a vector of length n.
xH is the conjugate transpose of vector x.

It is expressed as follows:

Error conditions

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. n < 0

Chapter 8. Linear Algebra Subprograms 355

|

5. incx = 0
6. lda ≤ 0
7. lda < n

Examples

Example 1
This example shows a vector x with a positive stride, and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA X INCX AP

| | | | | |
CALL SSPR(’L’ , 3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

Example 2
This example shows a vector x with a negative stride, and a real symmetric
matrix A of order 3, stored in upper-packed storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX AP

| | | | | |
CALL SSPR(’U’ , 3 , 1.0 , X , -2 , AP)

X = (1.0, . , 2.0, . , 3.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 10.0, 5.0, 9.0, 4.0)

Example 3
This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL CHPR(’L’ , 3 , 1.0 , X , 1 , AP)

356 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))

Output:
AP = ((6.0, 0.0), (7.0, -13.0), (13.0, 1.0), (23.0, 0.0),

(16.0, 24.0), (31.0, 0.0))

Example 4
This example shows a vector x with a negative stride, and a complex
Hermitian matrix A of order 3, stored in upper-packed storage mode. It uses
the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX AP
| | | | | |

CALL CHPR(’U’ , 3 , 1.0 , X , -2 , AP)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))

Output:
AP = ((6.0, 0.0), (7.0, 13.0), (23.0, 0.0), (13.0, -1.0),

(16.0, -24.0), (31.0, 0.0))

Example 5
This example shows a vector x with a positive stride, and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL SSYR(’L’ , 3 , 1.0 , X , 1 , A , 3)

X = (3.0, 2.0, 1.0)

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

Output:
┌ ┐
| 17.0 . . |

A = | 10.0 10.0 . |
| 5.0 9.0 4.0 |
└ ┘

Example 6
This example shows a vector x with a negative stride, and a real symmetric
matrix A of order 3, stored in upper storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 357

UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL SSYR(’U’ , 3 , 1.0 , X , -2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 17.0 10.0 5.0 |

A = | . 10.0 9.0 |
| . . 4.0 |
| . . . |
└ ┘

Example 7
This example shows a vector x with a positive stride, and a complex Hermitian
matrix A of order 3, stored in lower storage mode. It uses the same input
matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL CHER(’L’ , 3 , 1.0 , X , 1 , A , 3)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |
└ ┘

Output:
┌ ┐
| (6.0, 0.0) . . |

A = | (7.0, -13.0) (23.0, 0.0) . |
| (13.0, 1.0) (16.0, 24.0) (31.0, 0.0) |
└ ┘

This example shows a vector x with a negative stride, and a complex
Hermitian matrix A of order 3, stored in upper storage mode. It uses the same
input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ 0.0, they are set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX A LDA
| | | | | | |

CALL CHER(’U’ , 3 , 1.0 , X , -2 , A , 3)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

358 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

Output:
┌ ┐
| (6.0, 0.0) (7.0, 13.0) (13.0, -1.0) |

A = | . (23.0, 0.0) (16.0, -24.0) |
| . . (31.0, 0.0) |
└ ┘

Example 9
This example shows a vector x with a positive stride, and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
N ALPHA X INCX AP
| | | | |

CALL SSLR1(3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

Chapter 8. Linear Algebra Subprograms 359

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2,
SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex
Hermitian Matrix)

Purpose

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2 compute the rank-two update of
a real symmetric matrix, using the scalar α, matrix A, vectors x and y, and their
transposes xT and yT:

A ← A+αxyT + αyxT

CHPR2, ZHPR2, CHER2, and ZHER2, compute the rank-two update of a complex
Hermitian matrix, using the scalar α, matrix A, vectors x and y, and their conjugate
transposes xH and yH:

The following storage modes are used:
v For SSPR2, DSPR2, CHPR2, and ZHPR2, matrix A is stored in upper- or

lower-packed storage mode.
v For SSYR2, DSYR2, CHER2, and ZHER2, matrix A is stored in upper or lower

storage mode.
v For SSLR2 and DSLR2, matrix A is stored in lower-packed storage mode.

Table 98. Data Types

α, A, x, y Subprogram

Short-precision real SSPR2, SSYR2, and SSLR2

Long-precision real DSPR2, DSYR2, and DSLR2

Short-precision complex CHPR2 and CHER2

Long-precision complex ZHPR2 and ZHER2

Note:

1. SSPR2 and DSPR2 are Level 2 BLAS subroutines. You should use these
subroutines instead of SSLR2 and DSLR2, which are only provided for
compatibility with earlier releases of ESSL.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran

CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap)

CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a, lda)

CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap)

360 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C and C++ sspr2 | dspr2 | chpr2 | zhpr2 (uplo, n, alpha, x, incx, y, incy, ap);

ssyr2 | dsyr2 | cher2 | zher2 (uplo, n, alpha, x, incx, y, incy, a, lda);

sslr2 | dslr2 (n, alpha, x, incx, y, incy, ap);

CBLAS sspr2 | dspr2 | chpr2 | zhpr2 (cblas_order, cblas_uplo, n, alpha, x, incx, y, incy, ap);

ssyr2 | dsyr2 | cher2 | zher2 (cblas_order, cblas_uplo, n, alpha, x, incx, y, incy, a, lda);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper-packed or upper storage mode.

If uplo = 'L', A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper-packed or upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower-packed or lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

n is the number of elements in vectors x and y and the order of matrix A.

Specified as: an integer; n ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 98 on page 360.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 98 on page 360.

incx
is the stride for vector x.

Specified as: an integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2, incx
< 0 or incx > 0.

For SSLR2 and DSLR2, incx can have any value.

y is the vector y of length n.

Chapter 8. Linear Algebra Subprograms 361

||

|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
containing numbers of the data type indicated in Table 98 on page 360.

incy
is the stride for vector y.

Specified as: an integer, where:

For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2, incy
< 0 or incy > 0.

For SSLR2 and DSLR2, incy can have any value.

ap has the following meaning:

For SSPR2 and DSPR2, ap is the real symmetric matrix A of order n, stored in
upper- or lower-packed storage mode.

For CHPR2 and ZHPR2, ap is the complex Hermitian matrix A of order n,
stored in upper- or lower-packed storage mode.

For SSLR2 and DSLR2, ap is the real symmetric matrix A of order n, stored in
lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 98 on page 360.

a has the following meaning:

For SSYR2 and DSYR2, a is the real symmetric matrix A of order n, stored in
upper or lower storage mode.

For CHER2 and ZHER2, a is the complex Hermitian matrix A of order n,
stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 98 on page 360.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

On Return

ap is the matrix A of order n, containing the results of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 98 on page 360.

a is the matrix A of order n, containing the results of the computation. Returned
as: a two-dimensional array, containing numbers of the data type indicated in
Table 98 on page 360.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. The vectors x and y must have no common elements with matrix A; otherwise,

results are unpredictable. See “Concepts” on page 73.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements are
set to zero.

4. For a description of how symmetric matrices are stored in upper- or
lower-packed storage mode and upper or lower storage mode, see “Symmetric
Matrix” on page 83. For a description of how complex Hermitian matrices are

362 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

stored in upper- or lower-packed storage mode and upper or lower storage
mode, see “Complex Hermitian Matrix” on page 88.

Function

These subroutines perform the computation described. See references [42 on page
1315], [43 on page 1315], and [91 on page 1318]. If n or α is zero, no computation is
performed.

For SSPR2, SSYR2, SSLR2, CHPR2, and CHER2, intermediate results are
accumulated in long precision when the AltiVec or VSX unit is not used.

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2

These subroutines compute the rank-two update of a real symmetric matrix:

A ← A + αxyT + αyxT

where:

A is a real symmetric matrix of order n.
α is a scalar.
x is a vector of length n.
xT is the transpose of vector x.
y is a vector of length n.
yT is the transpose of vector y.

It is expressed as follows:

CHPR2, ZHPR2, CHER2, and ZHER2

These subroutines compute the rank-two update of a complex Hermitian
matrix:

where:

A is a complex Hermitian matrix of order n.
α is a scalar.
x is a vector of length n.
xH is the conjugate transpose of vector x.

Chapter 8. Linear Algebra Subprograms 363

y is a vector of length n.
yH is the conjugate transpose of vector y.

It is expressed as follows:

Error conditions

Resource Errors
Unable to allocate internal work area for CHER2 and ZHER2

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. n < 0
5. incx = 0
6. incy = 0
7. lda ≤ 0
8. lda < n

Examples

Example 1
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. Matrix A is:

┌ ┐
| 8.0 4.0 2.0 |
| 4.0 6.0 7.0 |
| 2.0 7.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL SSPR2(’L’ , 3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

364 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

Example 2
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is 3.0. The
real symmetric matrix A of order 3 is stored in upper-packed storage mode. It
uses the same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL SSPR2(’U’ , 3 , 1.0 , X , -2 , Y , 2 , AP)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 18.0, 13.0, 14.0, 7.0)

Example 3
This example shows vector x and y with positive stride and a complex
Hermitian matrix A of order 3, stored in lower-packed storage mode. Matrix A
is:

┌ ┐
| (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
| (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
| (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements are
set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL CHPR2(’L’ , 3 , ALPHA , X , 1 , Y , 2 , AP)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),

(4.0, 8.0), (6.0, .))

Output:
AP = ((3.0, 0.0), (7.0, -10.0), (9.0, 4.0), (23.0, 0.0),

(14.0, 23.0), (26.0, 0.0))

Example 4
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is (1.0,2.0).
The complex Hermitian matrix A of order 3 is stored in upper-packed storage
mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements are
set to zero.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 365

UPLO N ALPHA X INCX Y INCY AP
| | | | | | | |

CALL CHPR2(’U’ , 3 , ALPHA , X , -2 , Y , 2 , AP)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

(4.0, -8.0), (6.0, .))

Output:
AP = ((3.0, 0.0), (7.0, 10.0), (23.0, 0.0), (9.0, -4.0),

(14.0, -23.0), (26.0, 0.0))

Example 5
This example shows vectors x and y with positive strides, and a real symmetric
matrix A of order 3, stored in lower storage mode. It uses the same input
matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SSYR2(’L’ , 3 , 1.0 , X , 1 , Y , 2 , A , 3)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

┌ ┐
| 8.0 . . |

A = | 4.0 6.0 . |
| 2.0 7.0 3.0 |
└ ┘

Output:
┌ ┐
| 38.0 . . |

A = | 23.0 18.0 . |
| 13.0 14.0 7.0 |
└ ┘

Example 6
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is 3.0. The
real symmetric matrix A of order 3 is stored in upper storage mode. It uses the
same input matrix A as in Example 1.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL SSYR2(’U’ , 3 , 1.0 , X , -2 , Y , 2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)

┌ ┐
| 8.0 4.0 2.0 |

A = | . 6.0 7.0 |
| . . 3.0 |
| . . . |
└ ┘

Output:

366 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 38.0 23.0 13.0 |

A = | . 18.0 14.0 |
| . . 7.0 |
| . . . |
└ ┘

Example 7
This example shows vector x and y with positive stride, and a complex
Hermitian matrix A of order 3, stored in lower storage mode. It uses the same
input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements are
set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CHER2(’L’ , 3 , ALPHA , X , 1 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

┌ ┐
| (1.0, .) . . |

A = | (3.0, -5.0) (7.0, .) . |
| (2.0, 3.0) (4.0, 8.0) (6.0, .) |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) . . |

A = | (7.0, -10.0) (23.0, 0.0) . |
| (9.0, 4.0) (14.0, 23.0) (26.0, 0.0) |
└ ┘

Example 8
This example shows vector x and y having strides of opposite signs. For x,
which has negative stride, processing begins at element X(5), which is (1.0,
2.0). The complex Hermitian matrix A of order 3 is stored in upper storage
mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, if α ≠ zero, the imaginary parts of the diagonal elements are
set to zero.

Call Statement and Input:
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | | |

CALL CHER2(’U’ , 3 , ALPHA , X , -2 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

┌ ┐
| (1.0, .) (3.0, 5.0) (2.0, -3.0) |

A = | . (7.0, .) (4.0, -8.0) |
| . . (6.0, .) |
└ ┘

Chapter 8. Linear Algebra Subprograms 367

Output:
┌ ┐
| (3.0, 0.0) (7.0, 10.0) (9.0, -4.0) |

A = | . (23.0, 0.0) (14.0, -23.0) |
| . . (26.0, 0.0) |
└ ┘

Example 9
This example shows vectors x and y with positive strides and a real symmetric
matrix A of order 3, stored in lower-packed storage mode. It uses the same
input matrix A as in Example 1.

Call Statement and Input:
N ALPHA X INCX Y INCY AP
| | | | | | |

CALL SSLR2(3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

Output:
AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

368 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a
General Band Matrix, Its Transpose, or Its Conjugate Transpose)

Purpose

SGBMV and DGBMV compute the matrix-vector product for either a real general
band matrix or its transpose, where the general band matrix is stored in
BLAS-general-band storage mode. It uses the scalars α and β, vectors x and y, and
general band matrix A or its transpose:

y←βy+αAx

y ← βy+αATx

CGBMV and ZGBMV compute the matrix-vector product for either a complex
general band matrix, its transpose, or its conjugate transpose, where the general
band matrix is stored in BLAS-general-band storage mode. It uses the scalars α and
β, vectors x and y, and general band matrix A, its transpose, or its conjugate
transpose:

y ← βy+αAx
y ← βy+αATx
y ← βy+αAHx

Table 99. Data Types

α, β, x, y, A Subprogram

Short-precision real SGBMV

Long-precision real DGBMV

Short-precision complex CGBMV

Long-precision complex ZGBMV

Syntax

Fortran
CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx,
beta, y, incy)

C and C++ sgbmv | dgbmv | cgbmv | zgbmv (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);

CBLAS cblas_sgbmv | cblas_dgbmv |cblas_cgbmv | cblas_zgbmv (cblas_order, cblas_transa, m, n,
ml, mu, alpha, a, lda, x, incx, beta, y, incy);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

transa
indicates the form of matrix A to use in the computation, where:

Chapter 8. Linear Algebra Subprograms 369

||
|

|
|
|

|

|
|

|
|

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation.

If cblas_transa = CblasTrans, AT is used in the computation.

If cblas_transa = CblasConjTrans, AH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

m is the number of rows in matrix A, and:

If transa = 'N', it is the length of vector y.

If transa = 'T' or 'C', it is the length of vector x.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A, and:

If transa = 'N', it is the length of vector x.

If transa = 'T' or 'C', it is the length of vector y.

Specified as: an integer; n ≥ 0.

ml is the lower band width ml of the matrix A.

Specified as: an integer; ml ≥ 0.

mu is the upper band width mu of the matrix A.

Specified as: an integer; mu ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 99 on page 369.

a is the m by n general band matrix A, stored in BLAS-general-band storage
mode. It has an upper band width mu and a lower band width ml. Also:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form in BLAS-general-band storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 99 on page 369, where lda ≥ ml+mu+1.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ ml+mu+1.

x is the vector x, where:

370 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|

|
|

If transa = 'N', it has length n.

If transa = 'T' or 'C', it has length m.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 99 on page 369, where:

If transa = 'N', it must have at least 1+(n-1)|incx| elements.

If transa = 'T' or 'C', it must have at least 1+(m-1)|incx| elements.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

beta
is the scaling constant β.

Specified as: a number of the data type indicated in Table 99 on page 369.

y is the vector y, where:

If transa = 'N', it has length m.

If transa = 'T' or 'C', it has length n.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 99 on page 369, where:

If transa = 'N', it must have at least 1+(m-1)|incy| elements.

If transa = 'T' or 'C', it must have at least 1+(n-1)|incy| elements.

incy
is the stride for vector y.

Specified as: an integer; incy > 0 or incy < 0.

On Return

y is the vector y, containing the result of the computation, where:

If transa = 'N', it has length m.

If transa = 'T' or 'C', it has length n.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 99 on page 369.

Notes
1. For SGBMV and DGBMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
2. All subroutines accept lowercase letters for the transa argument.
3. Vector y must have no common elements with matrix A or vector x; otherwise,

results are unpredictable. See “Concepts” on page 73.
4. To achieve optimal performance, use lda = mu+ml+1.
5. For general band matrices, if you specify ml ≥ m or mu ≥ n, ESSL assumes, only

for purposes of the computation, that the lower band width is m-1 or the
upper band width is n-1, respectively. However, ESSL uses the original values
for ml and mu for the purposes of finding the locations of element a11 and all
other elements in the array specified for A, as described in “General Band
Matrix” on page 98. For an illustration of this technique, see Example 4.

6. For a description of how a general band matrix is stored in BLAS-general-band
storage mode in an array, see “General Band Matrix” on page 98.

Chapter 8. Linear Algebra Subprograms 371

Function

The possible computations that can be performed by these subroutines are
described. Varying implementation techniques are used for this computation to
improve performance. As a result, accuracy of the computational result may vary
for different computations.

In all the computations, general band matrix A is stored in its untransposed form
in an array, using BLAS-general-band storage mode.

For SGBMV and CGBMV, intermediate results are accumulated in long precision.
Occasionally, for performance reasons, these intermediate results are truncated to
short precision and stored.

See references [42 on page 1315], [43 on page 1315], [46 on page 1316], [54 on page
1316], and [91 on page 1318]. No computation is performed if m or n is 0 or if α is
zero and β is one.

General Band Matrix
For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product for a
general band matrix is expressed as follows:

y←βy+αAx

where:

x is a vector of length n.

y is a vector of length m.

α is a scalar.

β is a scalar.

A is an m by n general band matrix, having a lower band width of ml and an
upper band width of mu.

Transpose of a General Band Matrix

For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product for the
transpose of a general band matrix is expressed as:

y ← βy+αATx

where:

x is a vector of length m.

y is a vector of length n.

α is a scalar.

β is a scalar.

AT is the transpose of an m by n general band matrix A, having a lower band
width of ml and an upper band width of mu.

Conjugate Transpose of a General Band Matrix

For CGBMV and ZGBMV, the matrix-vector product for the conjugate
transpose of a general band matrix is expressed as follows:

y ← βy+αAHx

372 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

x is a vector of length m.

y is a vector of length n.

α is a scalar.

β is a scalar.

AH is the conjugate transpose of an m by n general band matrix A of order n,
having a lower band width of ml and an upper band width of mu.

Error conditions

Resource Errors
Unable to allocate internal work area

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. transa ≠ 'N', 'T', or 'C'
3. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
4. m < 0
5. n < 0
6. ml < 0
7. mu < 0
8. lda ≤ 0
9. lda < ml+mu+1

10. incx = 0
11. incy = 0

Examples

Example 1
This example shows how to use SGBMV to perform the computation
y←βy+αAx, where TRANSA is equal to 'N', and the following real general band
matrix A is used in the computation. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 |
| 2.0 2.0 2.0 2.0 |
| 3.0 3.0 3.0 3.0 |
| 4.0 4.0 4.0 4.0 |
| 0.0 5.0 5.0 5.0 |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV(’N’ , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

┌ ┐
| . . 1.0 2.0 |
| . 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

A = | 2.0 3.0 4.0 5.0 |
| 3.0 4.0 5.0 . |
| 4.0 5.0 . . |
| |
| |
└ ┘

Chapter 8. Linear Algebra Subprograms 373

|
|

|

|

X = (1.0, 2.0, 3.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

Output:
Y = (22.0, . , 60.0, . , 90.0, . , 120.0, . , 140.0, .)

Example 2
This example shows how to use SGBMV to perform the computation y ←
βy+αATx, where TRANSA is equal to 'T', and the transpose of a real general band
matrix A is used in the computation. It uses the same input as Example 1.

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV(’T’ , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

Output:
Y = (70.0, . , 130.0, . , 140.0, . , 148.0, .)

Example 3
This example shows how to use CGBMV to perform the computation
y←βy+αAHx, where TRANSA is equal to 'C', and the complex conjugate of the
following general band matrix A is used in the computation. Matrix A is:

┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) |
| (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) |
| (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) |
| (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (0.0, 0.0) |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL CGBMV(’C’ , 5 , 4 , 3 , 2 , ALPHA , A , 8 , X , 1 , BETA , Y , 2)

┌ ┐
| . . (1.0, 1.0) (2.0, 2.0) |
| . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |

A = | (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |
| (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . |
| (4.0, 4.0) (5.0, 5.0) . . |
| |
| |
└ ┘

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0), (4.0, 5.0),
(5.0, 6.0))

ALPHA = (1.0, 1.0)
BETA = (10.0, 0.0)
Y = ((1.0, 2.0), . , (2.0, 3.0), . , (3.0, 4.0), . ,

(4.0, 5.0), .)

Output:
Y = ((70.0, 100.0), . , (130.0, 170.0), . ,

(140.0, 180.0), . , (148.0, 186.0), .)

Example 4
This example shows how to use SGBMV to perform the computation
y←βy+αAx, where ml ≥ m and mu ≥ n, TRANSA is equal to 'N', and the following
real general band matrix A is used in the computation. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 |
| 2.0 2.0 2.0 2.0 2.0 |

374 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 3.0 3.0 3.0 3.0 3.0 |
| 4.0 4.0 4.0 4.0 4.0 |
└ ┘

Call Statement and Input:
TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | | | |

CALL SGBMV(’N’ , 4 , 5 , 6 , 5 , 2.0 , A , 12 , X , 1 , 10.0 , Y , 2)

┌ ┐
| |
| 1.0 |
| . . . 1.0 2.0 |
| . . 1.0 2.0 3.0 |
| . 1.0 2.0 3.0 4.0 |

A = | 1.0 2.0 3.0 4.0 . |
| 2.0 3.0 4.0 . . |
| 3.0 4.0 . . . |
| 4.0 |
| |
| |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, .)

Output:
Y = (40.0, . , 80.0, . , 120.0, . , 160.0, .)

Chapter 8. Linear Algebra Subprograms 375

SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real
Symmetric or Complex Hermitian Band Matrix)

Purpose

SSBMV and DSBMV compute the matrix-vector product for a real symmetric band
matrix. CHBMV and ZHBMV compute the matrix-vector product for a complex
Hermitian band matrix. The band matrix A is stored in either upper- or
lower-band-packed storage mode. It uses the scalars α and β, vectors x and y, and
band matrix A:

y←βy+αAx
y←βy+αAx

Table 100. Data Types

α, β, x, y, A Subprogram

Short-precision real SSBMV

Long-precision real DSBMV

Short-precision complex CHBMV

Long-precision complex ZHBMV

Syntax

Fortran CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

C and C++ ssbmv | dsbmv | chbmv | zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);

CBLAS cblas_ssbmv | cblas_dsbmv | cblas_chbmv | cblas_zhbmv (cblas_order, cblas_uplo, n, k,
alpha, a, lda, x, incx, beta, y, incy);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix A, where either the upper or lower
triangle can be stored:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper-band-packed storage mode.

If cblas_uplo = CblasLower, A is stored in lower-band-packed storage mode.

376 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

|
|
|

|

|
|

|
|

|
|

|

|

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

n is the order of matrix A and the number of elements in vectors x and y.

Specified as: an integer; n ≥ 0.

k is the half band width k of the matrix A.

Specified as: an integer; k ≥ 0.

alpha
is the scaling constant α.

Specified as: a number of the data type indicated in Table 100 on page 376.

a is the real symmetric or complex Hermitian band matrix A of order n, having a
half band width of k, where:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 100 on page 376, where lda ≥ k+1.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ k+1.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 100 on page 376.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

beta
is the scaling constant β.

Specified as: a number of the data type indicated in Table 100 on page 376.

y is the vector y of length n.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 100 on page 376.

incy
is the stride for vector y.

Specified as: an integer; incy > 0 or incy < 0.

On Return

y is the vector y of length n, containing the result of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 100 on page 376.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. Vector y must have no common elements with matrix A or vector x; otherwise,

results are unpredictable. See “Concepts” on page 73.
3. To achieve optimal performance in these subroutines, use lda = k+1.

Chapter 8. Linear Algebra Subprograms 377

|
|

4. The imaginary parts of the diagonal elements of the complex Hermitian matrix
A are assumed to be zero, so you do not have to set these values.

5. For real symmetric and complex Hermitian band matrices, if you specify k ≥ n,
ESSL assumes, only for purposes of the computation, that the half band width
of matrix A is n-1; that is, it processes matrix A, of order n, as though it is a
(nonbanded) real symmetric or complex Hermitian matrix. However, ESSL uses
the original value for k for the purposes of finding the locations of element a11
and all other elements in the array specified for A, as described in the storage
modes referenced in the next note. For an illustration of this technique, see
Example 3.

6. For a description of how a real symmetric band matrix is stored, see
“Upper-Band-Packed Storage Mode” on page 104 or “Lower-Band-Packed
Storage Mode” on page 105. For a description of how a complex Hermitian
band matrix is stored, see “Complex Hermitian Matrix” on page 88.

Function

These subroutines perform the following matrix-vector product, using a real
symmetric or complex Hermitian band matrix A, stored in either upper- or
lower-band-packed storage mode:

y←βy+αAx

where:

x and y are vectors of length n.

α and β are scalars.

A is an real symmetric or complex Hermitian band matrix of order n, having a half
bandwidth of k.

For SSBMV and CHBMV, intermediate results are accumulated in long precision
when the AltiVec or VSX unit is not used. Occasionally, for performance reasons,
these intermediate results are truncated to short precision and stored.

See references [42 on page 1315], [46 on page 1316], [54 on page 1316], and [91 on
page 1318]. No computation is performed if n is 0 or if α is zero and β is one.

Error conditions

Resource Errors
Unable to allocate internal work area for CHBMV and ZHBMV

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'U' or 'L'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. n < 0
5. k < 0
6. lda ≤ 0
7. lda < k+1
8. incx = 0
9. incy = 0

378 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

Examples

Example 1

This example shows how to use SSBMV to perform the matrix-vector product,
where the real symmetric band matrix A of order 7 and half band width of 3 is
stored in upper-band-packed storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 2.0 0.0 0.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 0.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 |
| 0.0 2.0 3.0 4.0 5.0 5.0 5.0 |
| 0.0 0.0 3.0 4.0 5.0 6.0 6.0 |
| 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
└ ┘

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SSBMV(’U’ , 7 , 3 , 2.0 , A , 5 , X , 1 , 10.0 , Y , 2)

┌ ┐
| . . . 1.0 2.0 3.0 4.0 |
| . . 1.0 2.0 3.0 4.0 5.0 |

A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, . , 6.0, . , 7.0)

Output:
Y = (30.0, . , 78.0, . , 148.0, . , 244.0, . , 288.0, . ,

316.0, . , 322.0)

Example 2

This example shows how to use CHBMV to perform the matrix-vector product,
where the complex Hermitian band matrix A of order 7 and half band width of
3 is stored in lower-band-packed storage mode. Matrix A is:

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not need to set these values.

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL CHBMV(’L’ , 7 , 3 , ALPHA , A , 5 , X , 1 , BETA , Y , 2)

ALPHA = (2.0, 0.0)
BETA = (10.0, 0.0)

┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, -2.0) (3.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
| (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, 0.0) (5.0, 5.0) (5.0, 5.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) (6.0, 0.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, -4.0) (5.0, -5.0) (6.0, -6.0) (7.0, 0.0) |
└ ┘

Chapter 8. Linear Algebra Subprograms 379

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0),
(5.0, 5.0), (6.0, 6.0), (7.0, 7.0))

Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,
(4.0, 4.0), . , (5.0, 5.0), . , (6.0, 6.0), . ,
(7.0, 7.0))

Output:
Y = ((48.0, 12.0), . , (124.0, 32.0), . , (228.0, 68.0), . ,

(360.0, 128.0), . , (360.0, 216.0), . ,
(300.0, 332.0), . , (168.0, 476.0))

Example 3

This example shows how to use SSBMV to perform the matrix-vector product,
where n ≥ k. Matrix A is a real 5 by 5 symmetric band matrix with a half band
width of 5, stored in upper-band-packed storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 |
└ ┘

Call Statement and Input:
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | | | | | |

CALL SSBMV(’U’ , 5 , 5 , 2.0 , A , 7 , X , 1 , 10.0 , Y , 2)

┌ ┐
| |
| 1.0 |
| . . . 1.0 2.0 |

A = | . . 1.0 2.0 3.0 |
| . 1.0 2.0 3.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

Output:
Y = (40.0, . , 78.0, . , 112.0, . , 140.0, . , 160.0, .)

┌ ┐
| (1.0, .) (2.0, .) (3.0, .) (4.0, .) (5.0, .) (6.0, .) (7.0, .) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) . |

A = | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . . |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) . . . |
| |
└ ┘

380 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV
(Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose)

Purpose

STRMV, DTRMV, STPMV, and DTPMV compute one of the following matrix-vector
products, using the vector x and triangular matrix A or its transpose:

x←Ax
x←ATx

CTRMV, ZTRMV, CTPMV, and ZTPMV compute one of the following
matrix-vector products, using the vector x and triangular matrix A, its transpose, or
its conjugate transpose:

x←Ax
x←ATx
x←AHx

Matrix A can be either upper or lower triangular, where:
v For the _TRMV subroutines, it is stored in upper- or lower-triangular storage

mode, respectively.
v For the _TPMV subroutines, it is stored in upper- or lower-triangular-packed

storage mode, respectively.

Table 101. Data Types

A, x Subprogram

Short-precision real STRMV and STPMV

Long-precision real DTRMV and DTPMV

Short-precision complex CTRMV and CTPMV

Long-precision complex ZTRMV and ZTPMV

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx)

CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx)

C and C++ strmv | dtrmv | ctrmv | ztrmv (uplo, transa, diag, n, a, lda, x, incx);

stpmv | dtpmv | ctpmv | ztpmv (uplo, transa, diag, n, ap, x, incx);

CBLAS cblas_strmv | cblas_dtrmv | cblas_ctrmv | cblas_ztrmv (cblas_order, cblas_uplo, cblas_transa,
cblas_diag, n, a, lda, x, incx);

cblas_stpmv | cblas_dtpmv | cblas_ctpmv | cblas_ztpmv (cblas_order, cblas_uplo,
cblas_transa, cblas_diag, n, ap, x, incx);

On Entry

Chapter 8. Linear Algebra Subprograms 381

||
|

|
|

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation.

If cblas_transa = CblasTrans, AT is used in the computation.

If cblas_transa = CblasConjTrans, AH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

382 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

n is the order of triangular matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

a is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular storage mode, respectively.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 101 on page 381.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 101 on page 381.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 101 on page 381.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

On Return

x is the vector x of length n, containing the results of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 101 on page 381.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STRMV, DTRMV, STPMV, and DTPMV if you specify 'C' for the transa

argument, it is interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a

result, you do not have to set these values. For unit triangular matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and
lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 91.

Chapter 8. Linear Algebra Subprograms 383

|
|

Function

These subroutines can perform the following matrix-vector product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper or lower triangular:

x←Ax
x←ATx
x←AHx (for CTRMV, ZTRMV, CTPMV, and ZTPMV only)

where:

x is a vector of length n.

A is an upper or lower triangular matrix of order n. For _TRMV, it is stored in
upper- or lower-triangular storage mode, respectively. For _TPMV, it is stored in
upper- or lower-triangular-packed storage mode, respectively.

See references [40 on page 1315] and [46 on page 1316]. If n is 0, no computation is
performed.

Error conditions

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. transa ≠ 'T', 'N', or 'C'
5. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
6. diag ≠ 'N' or 'U'
7. cblas_diag ≠ CblasNonUnit or CblasUnit
8. n < 0
9. lda ≤ 0

10. lda < n
11. incx = 0

Examples

Example 1

This example shows the computation x←Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular storage
mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:

384 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|

UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRMV(’L’ , ’N’ , ’U’ , 4 , A , 4 , X , 1)

┌ ┐
| |

A = | 1.0 . . . |
| 2.0 3.0 . . |
| 3.0 4.0 3.0 . |
└ ┘

X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 3.0, 11.0, 24.0)

Example 2

This example shows the computation x←ATx. Matrix A is a real 4 by 4 upper
triangular matrix that is unit triangular, stored in upper-triangular storage
mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 1.0 2.0 5.0 |
| . . 1.0 3.0 |
| . . . 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRMV(’U’ , ’T’ , ’U’ , 4 , A , 4 , X , 1)

┌ ┐
| . 2.0 3.0 2.0 |

A = | . . 2.0 5.0 |
| . . . 3.0 |
| |
└ ┘

X = (5.0, 4.0, 3.0, 2.0)

Output:
X = (5.0, 14.0, 26.0, 41.0)

Example 3

This example shows the computation x←AHx. Matrix A is a complex 4 by 4
upper triangular matrix that is unit triangular, stored in upper-triangular
storage mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:

Chapter 8. Linear Algebra Subprograms 385

UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL CTRMV(’U’ , ’C’ , ’U’ , 4 , A , 4 , X , 1)

┌ ┐
| . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |

A = | . . (2.0, 2.0) (5.0, 5.0) |
| . . . (3.0, 3.0) |
| |
└ ┘

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Example 4

This example shows the computation x←Ax. Matrix A is a real 4 by 4 lower
triangular matrix that is unit triangular, stored in lower-triangular-packed
storage mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPMV(’L’ , ’N’ , ’U’ , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 3.0, 11.0, 24.0)

Example 5

This example shows the computation x←ATx. Matrix A is a real 4 by 4 upper
triangular matrix that is not unit triangular, stored in upper-triangular-packed
storage mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPMV(’U’ , ’T’ , ’N’ , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 4.0, 3.0, 2.0)

Output:
X = (5.0, 18.0, 32.0, 41.0)

386 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 6

This example shows the computation x←AHx. Matrix A is a complex 4 by 4
upper triangular matrix that is unit triangular, stored in upper-triangular-
packed storage mode. Vector x is a vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL CTPMV(’U’ , ’C’ , ’U’ , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
(2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

Output:
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Chapter 8. Linear Algebra Subprograms 387

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV
(Solution of a Triangular System of Equations with a Single Right-Hand
Side)

Purpose

STRSV, DTRSV, STPSV, and DTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector x
and triangular matrix A or its transpose:

Solution Equation
1. x←A-1x Ax = b
2. x←A-Tx ATx = b

CTRSV, ZTRSV, CTPSV, and ZTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector x
and and triangular matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. x←A-1x Ax = b
2. x←A-Tx ATx = b
3. x←A-Hx AHx = b

Matrix A can be either upper or lower triangular, where:
v For the _TRSV subroutines, it is stored in upper- or lower-triangular storage

mode, respectively.
v For the _TPSV subroutines, it is stored in upper- or lower-triangular-packed

storage mode, respectively.

Note: The term b used in the systems of equations listed above represents the
right-hand side of the system. It is important to note that in these subroutines the
right-hand side of the equation is actually provided in the input-output argument
x.

Table 102. Data Types

A, x Subroutine

Short-precision real STRSV and STPSV

Long-precision real DTRSV and DTPSV

Short-precision complex CTRSV and CTPSV

Long-precision complex ZTRSV and ZTPSV

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx)

CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx)

388 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C and C++ strsv | dtrsv | ctrsv | ztrsv (uplo, transa, diag, n, a, lda, x, incx);

stpsv | dtpsv | ctpsv | ztpsv (uplo, transa, diag, n, ap, x, incx);

CBLAS cblas_strsv | cblas_dtrsv | cblas_ctrsv | cblas_ztrsv (cblas_order, cblas_uplo, cblas_transa,
cblas_diag, n, a, lda, x, incx);

cblas_stpsv | cblas_dtpsv | cblas_ctpsv | cblas_ztpsv (cblas_order, cblas_uplo, cblas_transa,
cblas_diag, n, ap, x, incx);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

transa
indicates the form of matrix A used in the system of equations, where:

If transa = 'N', A is used, resulting in solution 1.

If transa = 'T', AT is used, resulting in solution 2.

If transa = 'C', AH is used, resulting in solution 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used, resulting in solution 1.

If cblas_transa = CblasTrans, AT is used, resulting in solution 2.

If cblas_transa = CblasConjTrans, AH is used, resulting in solution 3.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

diag
indicates the characteristics of the diagonal of matrix A, where:

Chapter 8. Linear Algebra Subprograms 389

||
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|
|

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

n is the order of triangular matrix A.

Specified as: an integer; n ≥ 0 and n ≤ lda.

a is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular storage mode, respectively. Specified as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 102 on page 388.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 102 on page 388.

x is the vector x of length n, containing the right-hand side of the triangular
system to be solved.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 102 on page 388.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

On Return

x is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 102 on page 388.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STRSV, DTRSV, STPSV, and DTPSV, if you specify 'C' for the transa

argument, it is interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a

result, you do not have to set these values. For unit diagonal matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)

390 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|
|

for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and
lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 91.

Function

These subroutines solve a triangular system of equations with a single right-hand
side. The solution x may be any of the following, where triangular matrix A, its
transpose, or its conjugate transpose is used, and where A can be either upper- or
lower-triangular:

x←A-1x
x←A-Tx
x←A-Hx (only for CTRSV, ZTRSV, CTPSV, and ZTPSV)

where:

x is a vector of length n.

A is an upper or lower triangular matrix of order n. For _TRSV, it is stored in
upper- or lower-triangular storage mode, respectively. For _TPSV, it is stored in
upper- or lower-triangular-packed storage mode, respectively.

If n is 0, no computation is performed. See references [40 on page 1315], [44 on
page 1316], and [46 on page 1316].

Error conditions

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. transa ≠ 'T', 'N', or 'C'
5. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
6. diag ≠ 'N' or 'U'
7. cblas_diag ≠ CblasNonUnit or CblasUnit
8. n < 0
9. lda ≤ 0

10. lda < n
11. incx = 0

Examples

Example 1

This example shows the solution x←A-1x. Matrix A is a real 4 by 4 lower unit
triangular matrix, stored in lower-triangular storage mode. Vector x is a vector
of length 4.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Chapter 8. Linear Algebra Subprograms 391

|

|

|

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRSV(’L’ , ’N’ , ’U’ , 4 , A , 4 , X , 1)

┌ ┐
| |
| 1.0 . . . |

A = | 2.0 3.0 . . |
| 3.0 4.0 3.0 . |
└ ┘

X = (1.0, 3.0, 11.0, 24.0)

Output:
X = (1.0, 2.0, 3.0, 4.0)

Example 2

This example shows the solution x←A-Tx. Matrix A is a real 4 by 4 upper
nonunit triangular matrix, stored in upper-triangular storage mode. Vector x is
a vector of length 4.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL STRSV(’U’ , ’T’ , ’N’ , 4 , A , 4 , X , 1)

┌ ┐
| 1.0 2.0 3.0 2.0 |

A = | . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

X = (5.0, 18.0, 32.0, 41.0)

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 3

This example shows the solution x←A-Hx. Matrix A is a complex 4 by 4 upper
unit triangular matrix, stored in upper-triangular storage mode. Vector x is a
vector of length 4.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N A LDA X INCX
| | | | | | | |

CALL CTRSV(’U’ , ’C’ , ’U’ , 4 , A , 4 , X , 1)

┌ ┐
| . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |

A = | . . (2.0, 2.0) (5.0, 5.0) |
| . . . (3.0, 3.0) |
| |
└ ┘

X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Output:
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

392 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 4

This example shows the solution x←A-1x. Matrix A is a real 4 by 4 lower unit
triangular matrix, stored in lower-triangular-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

┌ ┐
| 1.0 . . . |
| 1.0 1.0 . . |
| 2.0 3.0 1.0 . |
| 3.0 4.0 3.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPSV(’L’ , ’N’ , ’U’ , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 3.0, 11.0, 24.0)

Output:
X = (1.0, 2.0, 3.0, 4.0)

Example 5

This example shows the solution x←A-Tx. Matrix A is a real 4 by 4 upper
nonunit triangular matrix, stored in upper-triangular-packed storage mode.
Vector x is a vector of length 4. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| . 2.0 2.0 5.0 |
| . . 3.0 3.0 |
| . . . 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL STPSV(’U’ , ’T’ , ’N’ , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 18.0, 32.0, 41.0)

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 6

This example shows the solution x←A-Hx. Matrix A is a complex 4 by 4 upper
unit triangular matrix, stored in upper-triangular-packed storage mode. Vector
x is a vector of length 4. Matrix A is:

┌ ┐
| (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
| . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
| . . (1.0, 0.0) (3.0, 3.0) |
| . . . (1.0, 0.0) |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Chapter 8. Linear Algebra Subprograms 393

Call Statement and Input:
UPLO TRANSA DIAG N AP X INCX
| | | | | | |

CALL CTPSV(’U’ , ’C’ , ’U’ , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
(2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)

X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

Output:
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

394 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a
Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

Purpose

STBMV and DTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A or its transpose:

x←Ax
x←ATx

CTBMV and ZTBMV compute one of the following matrix-vector products, using
the vector x and triangular band matrix A, its transpose, or its conjugate transpose:

x←Ax
x←ATx
x←AHx

Matrix A can be either upper or lower triangular and is stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Table 103. Data Types

A, x Subprogram

Short-precision real STBMV

Long-precision real DTBMV

Short-precision complex CTBMV

Long-precision complex ZTBMV

Syntax

Fortran CALL STBMV | DTBMV | CTBMV | ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx)

C and C++ stbmv | dtbmv | ctbmv | ztbmv (uplo, transa, diag, n, k, a, lda, x, incx);

CBLAS cblas_stbmv | cblas_dtbmv | cblas_ctbmv | cblas_ztbmv (cblas_order, cblas_uplo,
cblas_transa, cblas_diag, n, k, a, lda, x, incx);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates whether matrix A is an upper or lower triangular band matrix,
where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Chapter 8. Linear Algebra Subprograms 395

||
|

|
|
|

|

|
|

|
|

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation.

If cblas_transa = CblasTrans, AT is used in the computation.

If cblas_transa = CblasConjTrans, AH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

n is the order of triangular band matrix A. Specified as: an integer; n ≥ 0.

k is the upper or lower band width k of the matrix A.

Specified as: an integer; k ≥ 0.

a is the upper or lower triangular band matrix A of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 103 on page 395.

396 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|
|

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ k+1.

x is the vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 103 on page 395.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

On Return

x is the vector x of length n, containing the results of the computation. Returned
as: a one-dimensional array, containing numbers of the data type indicated in
Table 103 on page 395.

Notes
1. These subroutines accept lowercase letters for the uplo, transa, and diag

arguments.
2. For STBMV and DTBMV, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. To achieve optimal performance in these subroutines, use lda = k+1.
5. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0

for real matrices and (1.0, 0.0) for complex matrices. As a result, you do not
have to set these values.

6. For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL
assumes, only for purposes of the computation, that the upper or lower band
width of matrix A is n-1; that is, it processes matrix A, of order n, as though it
is a (nonbanded) triangular matrix. However, ESSL uses the original value for k
for the purposes of finding the locations of element a11 and all other elements
in the array specified for A, as described in “Triangular Band Matrix” on page
107. For an illustration of this technique, see Example 4.

7. For a description of triangular band matrices and how they are stored in upper-
and lower-triangular-band-packed storage mode, see “Triangular Band Matrix”
on page 107.

8. If you are using a lower triangular band matrix, you may want to use this
alternate approach instead of using lower-triangular-band-packed storage
mode. Leave matrix A in full-matrix storage mode when you pass it to ESSL
and specify the lda argument to be lda+1, which is the leading dimension of
matrix A plus 1. ESSL then processes the matrix elements in the same way as
though you had set them up in lower-triangular-band-packed storage mode.

Function

These subroutines can perform the following matrix-vector product computations,
using the triangular band matrix A, its transpose, or its conjugate transpose, where
A can be either upper or lower triangular:

Chapter 8. Linear Algebra Subprograms 397

x←Ax
x←ATx
x←AHx (for CTBMV and ZTBMV only)

where:

x is a vector of length n.

A is an upper or lower triangular band matrix of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

See references [42 on page 1315], [54 on page 1316], and [46 on page 1316]. If n is
0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. uplo ≠ 'L' or 'U'
3. cblas_uplo ≠ CblasLower or CblasUpper
4. transa ≠ 'T', 'N', or 'C'
5. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
6. diag ≠ 'N' or 'U'
7. cblas_diag ≠ CblasNonUnit or CblasUnit
8. n < 0
9. k < 0

10. lda ≤ 0
11. lda < k+1
12. incx = 0

Examples

Example 1

This example shows the computation x←Ax. Matrix A is a real 7 by 7 upper
triangular band matrix with a half band width of 3 that is not unit triangular,
stored in upper-triangular-band-packed storage mode. Vector x is a vector of
length 7. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 2.0 2.0 2.0 2.0 0.0 0.0 |
| 0.0 0.0 3.0 3.0 3.0 3.0 0.0 |
| 0.0 0.0 0.0 4.0 4.0 4.0 4.0 |
| 0.0 0.0 0.0 0.0 5.0 5.0 5.0 |
| 0.0 0.0 0.0 0.0 0.0 6.0 6.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 7.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV(’U’ , ’N’ , ’N’ , 7 , 3 , A , 5 , X , 1)

┌ ┐
| . . . 1.0 2.0 3.0 4.0 |
| . . 1.0 2.0 3.0 4.0 5.0 |

A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |

398 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

Output:
X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

Example 2

This example shows the computation x←ATx. Matrix A is a real 7 by 7 lower
triangular band matrix with a half band width of 3 that is not unit triangular,
stored in lower-triangular-band-packed storage mode. Vector x is a vector of
length 7. Matrix A is:

┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 4.0 0.0 0.0 0.0 |
| 0.0 2.0 3.0 4.0 5.0 0.0 0.0 |
| 0.0 0.0 3.0 4.0 5.0 6.0 0.0 |
| 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV(’L’ , ’T’ , ’N’ , 7 , 3 , A , 5 , X , 1)

┌ ┐
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . |

A = | 1.0 2.0 3.0 4.0 5.0 . . |
| 1.0 2.0 3.0 4.0 . . . |
| |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

Output:
X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

Example 3

This example shows the computation x←AHx. Matrix A is a complex 7 by 7
upper triangular band matrix with a half band width of 3 that is not unit
triangular, stored in upper-triangular-band-packed storage mode. Vector x is a
vector of length 7. Matrix A is:

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL CTBMV(’U’ , ’C’ , ’N’ , 7 , 3 , A , 5 , X , 1)

┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (5.0, 5.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (6.0, 6.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (7.0, 7.0) |
└ ┘

Chapter 8. Linear Algebra Subprograms 399

X = ((1.0, 2.0), (2.0, 4.0), (3.0, 6.0), (4.0, 8.0),
(5.0, 10.0), (6.0, 12.0), (7.0, 14.0))

Output:
X = ((1.0, 2.0), (7.0, 9.0), (24.0, 23.0), (58.0, 46.0),

(112.0, 79.0), (186.0, 122.0), (280.0, 175.0))

Example 4

This example shows the computation x←ATx, where k > n. Matrix A is a real 4
by 4 upper triangular band matrix with a half band width of 5 that is not unit
triangular, stored in upper-triangular-band-packed storage mode. Vector x is a
vector of length 4. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 |
| . . 3.0 3.0 |
| . . . 4.0 |
└ ┘

Call Statement and Input:
UPLO TRANSA DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBMV(’U’ , ’T’ , ’N’ , 4 , 5 , A , 6 , X , 1)

┌ ┐
| |

A = | |
| . . . 1.0 |
| . . 1.0 2.0 |
| . 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |
└ ┘

X = (1.0, 2.0, 3.0, 4.0)

Output:
X = (1.0, 5.0, 14.0, 30.0)

┌ ┐
| . . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |
| . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |

A = | . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) |
| (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) (7.0, 7.0) |
| |
└ ┘

400 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)
Purpose

STBSV and DTBSV solve one of the following triangular banded systems of
equations with a single right-hand side, using the vector x and triangular band
matrix A or its transpose:

Solution Equation
1. x←A-1x Ax = b
2. x←A-Tx ATx = b

CTBSV and ZTBSV solve one of the following triangular banded systems of
equations with a single right-hand side, using the vector x and triangular band
matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. x←A-1x Ax = b
2. x←A-Tx ATx = b
3. x←A-Hx AHx = b

Matrix A can be either upper or lower triangular and is stored in upper- or
lower-triangular-band-packed storage mode, respectively.

Table 104. Data Types

A, x Subprogram

Short-precision real STBSV

Long-precision real DTBSV

Short-precision complex CTBSV

Long-precision complex ZTBSV

Syntax

Fortran CALL STBSV | DTBSV | CTBSV | ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx)

C and C++ stbsv | dtbsv | ctbsv | ztbsv (uplo, trans, diag, n, k, a, lda, x, incx);

CBLAS cblas_stbsv | cblas_dtbsv | cblas_ctbsv | cblas_ ztbsv (cblas_order, cblas_uplo, cblas_trans,
cblas_diag, n, k, a, lda, x, incx);

On Entry

cblas_order
indicates whether the input matrices are stored in row major order or column
major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates whether matrix A is an upper or lower triangular band matrix,
where:

Chapter 8. Linear Algebra Subprograms 401

||
|

|
|
|

|

|
|

|
|

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

trans
indicates the form of matrix A used in the system of equations, where:

If trans = 'N', A is used, resulting in solution 1.

If trans = 'T', AT is used, resulting in solution 2.

If trans = 'C', AH is used, resulting in solution 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used, resulting in solution 1.

If cblas_transa = CblasTrans, AT is used, resulting in solution 2.

If cblas_transa = CblasConjTrans, AHis used, resulting in solution 3.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

n is the order of triangular band matrix A. Specified as: an integer; n ≥ 0.

k is the upper or lower band width k of the matrix A. Specified as: an integer; k
≥ 0.

a is the upper or lower triangular band matrix A of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively. Specified as: an lda
by (at least) n array, containing numbers of the data type indicated in Table 104
on page 401.

402 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|
|

lda
is the leading dimension of the array specified for a. Specified as: an integer;
lda > 0 and lda ≥ k+1.

x is the vector x of length n, containing the right-hand side of the triangular
system to be solved. Specified as: a one-dimensional array of (at least) length
1+(n-1)|incx|, containing numbers of the data type indicated in Table 104 on
page 401.

incx
is the stride for vector x. Specified as: an integer; incx > 0 or incx < 0.

On Return

x is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 104 on page 401.

Notes
1. These subroutines accept lowercase letters for the uplo, trans, and diag

arguments.
2. For STBSV and DTBSV, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are

unpredictable.
4. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0

for real matrices and (1.0, 0.0) for complex matrices, and you do not need to set
these values in the array.

5. For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL
assumes, for purposes of the computation only, that the upper or lower band
width of matrix A is n-1; that is, it processes matrix A of order n, as though it is
a (nonbanded) triangular matrix. However, ESSL uses the original value for k
for the purposes of finding the locations of element a11 and all other elements
in the array specified for A, as described in “Triangular Band Matrix” on page
107. For an illustration of this technique, see Example 3.

6. For a description of triangular band matrices and how they are stored in upper-
and lower-triangular-band-packed storage mode, see “Triangular Band Matrix”
on page 107.

7. If you are using a lower triangular band matrix, it may save your program
some time if you use this alternate approach instead of using
lower-triangular-band-packed storage mode. Leave matrix A in full-matrix
storage mode when you pass it to ESSL and specify the lda argument to be
lda+1, which is the leading dimension of matrix A plus 1. ESSL then processes
the matrix elements in the same way as though you had set them up in
lower-triangular-band-packed storage mode.

Function

These subroutines solve a triangular banded system of equations with a single
right-hand side. The solution, x, may be any of the following, where triangular
band matrix A, its transpose, or its conjugate transpose is used, and where A can
be either upper- or lower-triangular:
1. x←A-1x

2. x←A-Tx

3. x←A-Hx (for CTBSV and ZTBSV only)

Chapter 8. Linear Algebra Subprograms 403

where:

x is a vector of length n.

A is an upper or lower triangular band matrix of order n, stored in upper- or
lower-triangular-band-packed storage mode, respectively.

See references [42 on page 1315], [54 on page 1316], and [46 on page 1316]. If n is
0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. n < 0
3. k < 0
4. lda ≤ 0
5. lda < k+1
6. incx = 0
7. uplo ≠ 'L' or 'U'
8. cblas_uplo ≠ CblasLower or CblasUpper
9. trans ≠ 'T', 'N', or 'C'

10. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
11. diag ≠ 'N' or 'U'
12. cblas_diag ≠ CblasNonUnit or CblasUnit

Examples

Example 1

This example shows the solution x←A-1x. Matrix A is a real 9 by 9 upper
triangular band matrix with an upper band width of 2 that is not unit
triangular, stored in upper-triangular-band-packed storage mode. Vector x is a
vector of length 9, where matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 4.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 4.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 4.0 2.0 2.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 3.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 3.0 2.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV(’U’ , ’N’ , ’N’ , 9 , 2 , A , 3 , X , 1)

┌ ┐
| . . 1.0 3.0 1.0 2.0 1.0 2.0 0.0 |

A = | . 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 |
| 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |
└ ┘

X = (2.0, 7.0, 1.0, 8.0, 2.0, 8.0, 1.0, 8.0, 3.0)

404 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|

Output:
X = (1.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.0, 1.0, 3.0)

Example 2

This example shows the solution x←A-Tx, solving the same system as in
Example 1. Matrix A is a real 9 by 9 lower triangular band matrix with a lower
band width of 2 that is not unit triangular, stored in lower-triangular-band-
packed storage mode. Vector x is a vector of length 9 where matrix A is:

┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 2.0 1.0 3.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 2.0 1.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV(’L’ , ’T’ , ’N’ , 9 , 2 , A , 3 , X , 1)

┌ ┐
| 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |

A = | 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 . |
| 1.0 3.0 1.0 2.0 1.0 2.0 0.0 . . |
└ ┘

X = (same as input X in Example 1)

Output:

X = (same as output X in Example 1)

Example 3

This example shows the solution x←A-Tx, where k > n. Matrix A is a real 4 by 4
upper triangular band matrix with an upper band width of 3, even though k is
specified as 5. It is not unit triangular and is stored in upper-triangular-band-
packed storage mode. Vector x is a vector of length 4 where matrix A is:

┌ ┐
| 1.0 2.0 3.0 2.0 |
| 0.0 2.0 2.0 5.0 |
| 0.0 0.0 3.0 3.0 |
| 0.0 0.0 0.0 1.0 |
└ ┘

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL STBSV(’U’ , ’T’ , ’N’ , 4 , 5 , A , 6 , X , 1)

┌ ┐
| |
| |

A = | . . . 2.0 |
| . . 3.0 5.0 |
| . 2.0 2.0 3.0 |
| 1.0 2.0 3.0 1.0 |
└ ┘

X = (5.0, 18.0, 32.0, 41.0)

Chapter 8. Linear Algebra Subprograms 405

Output:
X = (5.0, 4.0, 3.0, 2.0)

Example 4

This example shows the solution x←A-Tx. Matrix A is a complex 7 by 7 lower
triangular band matrix with a lower band width of 3 that is not unit triangular,
stored in lower-triangular-band-packed storage mode. Vector x is a vector of
length 7. Matrix A is:

Call Statement and Input:
UPLO TRANS DIAG N K A LDA X INCX
| | | | | | | | |

CALL CTBSV(’L’ , ’T’ , ’N’ , 7 , 3 , A , 4 , X , 1)

X = ((2.0, 2.0), (7.0, 1.0), (1.0, 1.0), (8.0, 1.0),
(2.0, 0.0), (8.0, 1.0), (1.0, 2.0))

Output:
X = ((-12.048, -13.136), (6.304, -1.472), (-1.880, 1.040),

(2.600, -1.800), (-2.160, 1.880), (0.800, -1.400),
(0.800, 0.600))

┌ ┐
| (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 3.0) (2.0, 2.0) (3.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (1.0, 4.0) (2.0, 3.0) (3.0, 3.0) (4.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
| (0.0, 0.0) (2.0, 4.0) (3.0, 3.0) (4.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) │
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (4.0, 3.0) (5.0, 1.0) (3.0, 1.0) (0.0, 0.0) │
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (5.0, 2.0) (6.0, 1.0) (2.0, 1.0) │
└ ┘

┌ ┐
| (1.0, 0.0) (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) (2.0, 1.0) (3.0, 1.0) (2.0, 1.0) │

A = | (1.0, 2.0) (2.0, 2.0) (3.0, 3.0) (4.0, 2.0) (5.0, 1.0) (6.0, 1.0) . |
| (1.0, 3.0) (2.0, 3.0) (3.0, 3.0) (4.0, 3.0) (5.0, 2.0) . . |
| (1.0, 4.0) (2.0, 4.0) (3.0, 3.0) (4.0, 4.0) . . . |
└ ┘

406 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Sparse Matrix-Vector Subprograms

This contains the sparse matrix-vector subprogram descriptions.

Chapter 8. Linear Algebra Subprograms 407

DSMMX (Matrix-Vector Product for a Sparse Matrix in
Compressed-Matrix Storage Mode)

Purpose

This subprogram computes the matrix-vector product for sparse matrix A, stored
in compressed-matrix storage mode, using the matrix and vectors x and y:

y←Ax

where A, x, and y contain long-precision real numbers. You can use DSMTM to
transpose matrix A before calling this subroutine. The resulting computation
performed by this subroutine is then y←ATx.

Syntax

Fortran CALL DSMMX (m, nz, ac, ka, lda, x, y)

C and C++ dsmmx (m, nz, ac, ka, lda, x, y);

On Entry

m is the number of rows in sparse matrix A and the number of elements in vector
y. Specified as: an integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix A.
Specified as: an integer; nz ≥ 0.

ac is the m by n sparse matrix A, stored in compressed-matrix storage mode in an
array, referred to as AC. Specified as: an lda by (at least) nz array, containing
long-precision real numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix A
elements stored in the corresponding positions in array AC. Specified as: an lda
by (at least) nz array, containing integers, where 1 ≤ (elements of KA) ≤ n.

lda
is the size of the leading dimension of the arrays specified for ac and ka.
Specified as: an integer; lda > 0 and lda ≥ m.

x is the vector x of length n. Specified as: a one-dimensional array of (at least)
length n, containing long-precision real numbers.

y See On Return.

On Return

y is the vector y of length m, containing the result of the computation. Returned
as: a one-dimensional array of (at least) length m, containing long-precision
real numbers.

Notes
1. Matrix A must have no common elements with vectors x and y; otherwise,

results are unpredictable.
2. For the KA array, where there are no corresponding nonzero elements in AC, you

must still fill in a number between 1 and n. See the Example.
3. For a description of how sparse matrices are stored in compressed-matrix

storage mode, see “Compressed-Matrix Storage Mode” on page 115.

408 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 120, you should first use the DSRSM utility subroutine, described in
“DSRSM (Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode)” on page 1279, to convert your sparse
matrix to compressed-matrix storage mode.

Function

The matrix-vector product is computed for a sparse matrix, stored in compressed
matrix mode:

y←Ax

where:

A is an m by n sparse matrix, stored in compressed-matrix storage mode in arrays
AC and KA.

x is a vector of length n.

y is a vector of length m.

It is expressed as follows:

See reference [85 on page 1318]. If m is 0, no computation is performed; if nz is 0,
output vector y is set to zero, because matrix A contains all zeros.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in “DSRSM
(Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage
Mode)” on page 1279.

Error conditions

Computational Errors
None

Input-Argument Errors
1. m < 0
2. lda ≤ 0
3. m > lda
4. nz < 0

Examples

Example

Chapter 8. Linear Algebra Subprograms 409

This example shows the matrix-vector product computed for the following
sparse matrix A, which is stored in compressed-matrix storage mode in arrays
AC and KA. Matrix A is:

┌ ┐
| 4.0 0.0 7.0 0.0 0.0 0.0 |
| 3.0 4.0 0.0 2.0 0.0 0.0 |
| 0.0 2.0 4.0 0.0 4.0 0.0 |
| 0.0 0.0 7.0 4.0 0.0 1.0 |
| 1.0 0.0 0.0 3.0 4.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 4.0 |
└ ┘

Call Statement and Input:
M NZ AC KA LDA X Y
| | | | | | |

CALL DSMMX(6 , 4 , AC , KA , 6 , X , Y)

┌ ┐
| 4.0 7.0 0.0 0.0 |
| 4.0 3.0 2.0 0.0 |

AC = | 4.0 2.0 4.0 0.0 |
| 4.0 7.0 1.0 0.0 |
| 4.0 1.0 3.0 0.0 |
| 4.0 1.0 1.0 3.0 |
└ ┘

┌ ┐
| 1 3 1 1 |
| 2 1 4 1 |

KA = | 3 2 5 1 |
| 4 3 6 1 |
| 5 1 4 1 |
| 6 1 2 5 |
└ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

410 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage
Mode)

Purpose

This subprogram transposes sparse matrix A, stored in compressed-matrix storage
mode, where A contains long-precision real numbers.

Syntax

Fortran CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux)

C and C++ dsmtm (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);

On Entry

m is the number of rows in sparse matrix A. Specified as: an integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix A.
Specified as: an integer; nz ≥ 0.

ac is the m by n sparse matrix A, stored in compressed-matrix storage mode in an
array, referred to as AC. Specified as: an lda by (at least) nz array, containing
long-precision real numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix A
elements stored in the corresponding positions in array AC. Specified as: an lda
by (at least) nz array, containing integers, where 1 ≤ (elements of KA) ≤ n.

lda
is the size of the leading dimension of the arrays specified for ac and ka.
Specified as: an integer; lda > 0 and lda ≥ m.

n is the number of columns in sparse matrix A. Specified as: an integer; 0 ≤ n ≤
ldt and n ≥ (maximum column index in KA).

nt is the number of columns in output arrays AT and KT that are available for use.
Specified as: an integer; nt > 0.

at See On Return.

kt See On Return.

ldt
is the size of the leading dimension of the arrays specified for at and kt.
Specified as: an integer; ldt > 0 and ldt ≥ n.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers. They
can have any value.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux. Specified as: an integer, where:

Chapter 8. Linear Algebra Subprograms 411

If naux = 0 and error 2015 is unrecoverable, DSMTM dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise, naux ≥ n.

On Return

n is the number of rows in the transposed matrix AT. Returned as: an integer; n =
(maximum column index in KA).

nt is the maximum number of nonzero elements, nt, in each row of the
transposed matrix AT. Returned as: an integer; nt ≤ m.

at is the n by (at least) m sparse matrix transpose AT, stored in compressed-matrix
storage mode in an array, referred to as AT. Returned as: an ldt by (at least) nt
array, containing long-precision real numbers.

kt is the array, referred to as KT, containing the column numbers of the transposed
matrix AT elements, stored in the corresponding positions in array AT. Returned
as: an ldt by (at least) nt array, containing integers, where 1 ≤ (elements of KT) ≤
m.

Notes
1. In your C program, arguments n and nt must be passed by reference.
2. The value specified for input argument nt should be greater than or equal to

the number of nonzero elements you estimate to be in each row of the
transposed sparse matrix AT. The output value is less than or equal to the input
value you specify.

3. For the KA array, where there are no corresponding nonzero elements in AC, you
must still fill in a number between 1 and n. See the Example.

4. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 115.

5. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 120, you should first use the DSRSM utility subroutine, described in
“DSRSM (Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode)” on page 1279, to convert your sparse
matrix to compressed-matrix storage mode.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

A sparse matrix A, stored in arrays AC and KA in compressed-matrix storage mode,
is transposed, forming AT, and is stored in arrays AT and KT in compressed-matrix
storage mode. See reference [85 on page 1318]. This subroutine is provided for
when you want to do a matrix-vector product using a transposed matrix, AT. First,
you transpose a matrix, A, using this subroutine, then you call DSMMX with the
transposed matrix AT. This results in the following computation being performed:
y←ATx.

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, you should first convert your sparse matrix to compressed-matrix
storage mode by using the DSRSM utility subroutine described in “DSRSM
(Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage
Mode)” on page 1279.

412 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors
1. m, n < 0
2. lda, ldt < 1
3. lda < m
4. ldt < n
5. nz < 0
6. n is less than the maximum column index in KA.
7. nt or ldt are too small.
8. When the following two errors occur, arrays AT, KT, and AUX are

overwritten:

naux < n
nt ≤ 0

9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than
the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example

This example shows how to transpose the following 5 by 4 sparse matrix A,
which is stored in compressed-matrix storage mode in arrays AC and KA. Matrix
A is:

┌ ┐
| 11.0 0.0 0.0 0.0 |
| 21.0 0.0 23.0 0.0 |
| 0.0 0.0 33.0 34.0 |
| 0.0 42.0 0.0 44.0 |
| 51.0 0.0 53.0 0.0 |
└ ┘

The resulting 4 by 5 matrix transpose AT, stored in compressed-matrix storage
mode in arrays AT and KT, is as follows. Matrix AT is:

┌ ┐
| 11.0 21.0 0.0 0.0 51.0 |
| 0.0 0.0 0.0 42.0 0.0 |
| 0.0 23.0 33.0 0.0 53.0 |
| 0.0 0.0 34.0 44.0 0.0 |
└ ┘

As shown here, the value of N is larger than the actual number of columns in
the matrix A. On output, the exact number of rows in the transposed matrix is
returned in the output argument N.

On output, row 6 of AT and KT is is not accessed or modified by the subroutine.
Column 4 and row 5 are accessed and modified. They are of no use in further
computations and will not be used, because NT = 3 and M = 4.

Call Statement and Input:
M NZ AC KA LDA N NT AT KT LDT AUX NAUX
| | | | | | | | | | | |

CALL DSMTM(5 , 2 , AC , KA , 5 , 5 , 4 , AT , KT , 6 , AUX , 5)

Chapter 8. Linear Algebra Subprograms 413

┌ ┐
| 11.0 0.0 |
| 21.0 23.0 |

AC = | 33.0 34.0 |
| 42.0 44.0 |
| 51.0 53.0 |
└ ┘

┌ ┐
| 1 1 |
| 1 3 |

KA = | 3 4 |
| 2 4 |
| 1 3 |
└ ┘

Output:
N = 4
NT = 3

┌ ┐
| 11.0 21.0 51.0 0.0 |
| 42.0 0.0 0.0 0.0 |

AT = | 33.0 23.0 53.0 0.0 |
| 34.0 44.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 |
| |
└ ┘

┌ ┐
| 1 2 5 1 |
| 4 1 1 1 |

KT = | 3 2 5 1 |
| 3 4 1 1 |
| 1 1 1 1 |
| |
└ ┘

414 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in
Compressed-Diagonal Storage Mode)

Purpose

This subprogram computes the matrix-vector product for square sparse matrix A,
stored in compressed-diagonal storage mode, using either the matrix or its
transpose, and vectors x and y:

y←Ax
y←ATx

where A, x, and y contain long-precision real numbers.

Syntax

Fortran CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y)

C and C++ dsdmx (iopt, n, nd, ad, lda, trans, la, x, y);

On Entry

iopt
indicates the storage variation used for sparse matrix A, stored in
compressed-diagonal storage mode, where:

If iopt = 0, matrix A is a general sparse matrix, where all the nonzero diagonals
in matrix A are used to set up the storage arrays.

If iopt = 1, matrix A is a symmetric sparse matrix, where only the nonzero
main diagonal and one of each of the unique nonzero diagonals are used to set
up the storage arrays.

Specified as: an integer; iopt = 0 or 1.

n is the order of sparse matrix A and the number of elements in vectors x and y.
Specified as: an integer; n ≥ 0.

nd is the number of diagonals stored in the columns of array AD, as well as the
number of columns in AD and the number of elements in array LA. Specified as:
an integer; nd ≥ 0.

ad is the sparse matrix A of order n, stored in compressed diagonal storage in an
array, referred to as AD. The iopt argument indicates the storage variation used
for storing matrix A. The trans argument indicates the following:

If trans = 'N', A is used in the computation.

If trans = 'T', AT is used in the computation.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an lda by (at least) nd array, containing long-precision real
numbers; lda ≥ n.

lda
is the size of the leading dimension of the array specified for ad. Specified as:
an integer; lda > 0 and lda ≥ n.

trans
indicates the form of matrix A to use in the computation, where:

Chapter 8. Linear Algebra Subprograms 415

If trans = 'N', A is used in the computation.

If trans = 'T', AT is used in the computation.

Specified as: a single character; trans = 'N' or 'T'.

la is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. (For an explanation
of how diagonal numbers are assigned, see “Compressed-Diagonal Storage
Mode” on page 116.)

Specified as: a one-dimensional array of (at least) length nd, containing
integers; 1-n ≤ LA(i) ≤ n-1.

x is the vector x of length n. Specified as: a one-dimensional array, containing
long-precision real numbers.

y See On Return.

On Return

y is the vector y of length n, containing the result of the computation. Returned
as: a one-dimensional array, containing long-precision real numbers.

Notes
1. All subroutines accept lowercase letters for the trans argument.
2. Matrix A must have no common elements with vectors x and y; otherwise,

results are unpredictable.
3. For a description of how sparse matrices are stored in compressed-diagonal

storage mode, see “Compressed-Diagonal Storage Mode” on page 116.

Function

The matrix-vector product of a square sparse matrix or its transpose, is computed
for a matrix stored in compressed-diagonal storage mode:

y←Ax
y←ATx

where:

A is a sparse matrix of order n, stored in compressed-diagonal storage mode in AD
and LA, using the storage variation for either general or symmetric sparse matrices,
as indicated by the iopt argument.

x and y are vectors of length n.

It is expressed as follows for y←Ax:

It is expressed as follows for y←ATx:

416 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If n is 0, no computation is performed; if nd is 0, output vector y is set to zero,
because matrix A contains all zeros.

Error conditions

Computational Errors
None

Input-Argument Errors
1. iopt ≠ 0 or 1
2. n < 0
3. lda ≤ 0
4. n > lda
5. trans ≠ 'N' or 'T'
6. nd < 0
7. LA(j) ≤ -n or LA(j) ≥ n, for any j = 1, n

Examples

Example 1

This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in
compressed-matrix storage mode in arrays AD and LA using the storage
variation for general sparse matrices, storing all nonzero diagonals. Matrix A
is:

┌ ┐
| 4.0 0.0 7.0 0.0 0.0 0.0 |
| 3.0 4.0 0.0 2.0 0.0 0.0 |
| 0.0 2.0 4.0 0.0 4.0 0.0 |
| 0.0 0.0 7.0 4.0 0.0 1.0 |
| 1.0 0.0 0.0 3.0 4.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 4.0 |
└ ┘

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(0 , 6 , 5 , AD , 6 , ’N’ , LA , X , Y)

┌ ┐
| 4.0 0.0 0.0 0.0 7.0 |
| 4.0 0.0 0.0 3.0 2.0 |

AD = | 4.0 0.0 0.0 2.0 4.0 |
| 4.0 0.0 0.0 7.0 1.0 |
| 4.0 0.0 1.0 3.0 0.0 |
| 4.0 1.0 1.0 3.0 0.0 |
└ ┘

LA = (0, -5, -4, -1, 2)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

Example 2

Chapter 8. Linear Algebra Subprograms 417

This example shows the matrix-vector product using trans = 'N', which is
computed for the following sparse matrix A of order 6. The matrix is stored in
compressed-matrix storage mode in arrays AD and LA using the storage
variation for symmetric sparse matrices, storing the nonzero main diagonal
and one of each of the unique nonzero diagonals. Matrix A is:

┌ ┐
| 11.0 0.0 13.0 0.0 15.0 0.0 |
| 0.0 22.0 0.0 24.0 0.0 26.0 |
| 13.0 0.0 33.0 0.0 35.0 0.0 |
| 0.0 24.0 0.0 44.0 0.0 46.0 |
| 15.0 0.0 35.0 0.0 55.0 0.0 |
| 0.0 26.0 0.0 46.0 0.0 66.0 |
└ ┘

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(1 , 6 , 3 , AD , 6 , ’N’ , LA , X , Y)

┌ ┐
| 11.0 13.0 0.0 |
| 22.0 24.0 0.0 |

AD = | 33.0 35.0 0.0 |
| 44.0 46.0 0.0 |
| 55.0 0.0 15.0 |
| 66.0 0.0 26.0 |
└ ┘

LA = (0, 2, -4)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output:
Y = (125.0, 296.0, 287.0, 500.0, 395.0, 632.0)

Example 3

This example is the same as Example 1 except that it shows the matrix-vector
product for the transpose of a matrix, using trans = 'T'. It is computed using
the transpose of the following sparse matrix A of order 6, which is stored in
compressed-matrix storage mode in arrays AD and LA, using the storage
variation for general sparse matrices, storing all nonzero diagonals. It uses the
same matrix A as in Example 1.

Call Statement and Input:
IOPT N ND AD LDA TRANS LA X Y
| | | | | | | | |

CALL DSDMX(0 , 6 , 5 , AD , 6 , ’T’ , LA , X , Y)

AD =(same as input AD in Example 1)
LA =(same as input LA in Example 1)
X =(same as input X in Example 1)

Output:
Y = (21.0, 20.0, 47.0, 35.0, 50.0, 28.0)

418 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 9. Matrix Operations

The matrix operation subroutines are described here.

Overview of the Matrix Operation Subroutines
Some of the matrix operation subroutines were designed in accordance with the
Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling
application program. For details on the Level 3 BLAS, see reference [40 on page
1315]. The matrix operation subroutines also include the commonly used matrix
operations: addition, subtraction, multiplication, and transposition.

Table 105. List of Matrix Operation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEADD
CGEADD

DGEADD
ZGEADD

“SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for
General Matrices or Their Transposes)” on page 424

SGESUB
CGESUB

DGESUB
ZGESUB

“SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General
Matrices or Their Transposes)” on page 430

SGEMUL
CGEMUL

DGEMUL
ZGEMUL
DGEMLP§

“SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes)” on page 436

SGEMMS
CGEMMS

DGEMMS
ZGEMMS

“SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes Using
Winograd's Variation of Strassen's Algorithm)” on page 445

SGEMM♦

CGEMM♦

cblas_sgemm♦

cblas_cgemm♦

DGEMM♦

ZGEMM♦

cblas_dgemm♦

cblas_zgemm♦

“SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix
Multiplication and Addition for General Matrices, Their Transposes, or
Conjugate Transposes)” on page 451

SSYMM♦

CSYMM♦

CHEMM♦

cblas_ssymm♦

cblas_csymm♦

cblas_chemm♦

DSYMM♦

ZSYMM♦

ZHEMM♦

cblas_dsymm♦

cblas_zsymm♦

cblas_zhemm♦

“SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM
(Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or
Complex Hermitian)” on page 460

STRMM♦

CTRMM♦

cblas_strmm♦

cblas_ctrmm♦

DTRMM♦

ZTRMM♦

cblas_dtrmm♦

cblas_ztrmm♦

“STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix
Product)” on page 468

STRSM♦

CTRSM♦

cblas_strsm♦

cblas_ctrsm♦

DTRSM♦

ZTRSM♦

cblas_dtrsm♦

cblas_ztrsm♦

“STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of
Equations with Multiple Right-Hand Sides)” on page 476

SSYRK♦

CSYRK♦

CHERK♦

cblas_ssyrk♦

cblas_csyrk♦

cblas_cherk♦

DSYRK♦

ZSYRK♦

ZHERK♦

cblas_dsyrk♦

cblas_zsyrk♦

cblas_zherk♦

“SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of
a Real or Complex Symmetric or a Complex Hermitian Matrix)” on page 484

© Copyright IBM Corp. 1986, 2015 419

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

Table 105. List of Matrix Operation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SSYR2K♦

CSYR2K♦

CHER2K♦

cblas_ssyr2k♦

cblas_csyr2k♦

cblas_cher2k♦

DSYR2K♦

ZSYR2K♦

ZHER2K♦

cblas_dsyr2k♦

cblas_zsyr2k♦

cblas_zher2k♦

“SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K
Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)”
on page 491

SGETMI
CGETMI
CGECMI

DGETMI
ZGETMI
ZGECMI

“SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General
Matrix Transpose or Conjugate Transpose [In-Place])” on page 499

SGETMO
CGETMO
CGECMO

DGETMO
ZGETMO
ZGECMO

“SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO
(General Matrix Transpose or Conjugate Transpose [Out-of-Place])” on page
502

♦ Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new
programs.

Use Considerations
This describes some key points about using the matrix operations subroutines.

Specifying Normal, Transposed, or Conjugate Transposed
Input Matrices

On each invocation, the matrix operation subroutines can perform one of several
possible computations, using different forms of the input matrices A and B. For the
real and complex versions of the subroutines, there are four and nine
combinations, respectively, depending on the characters specified for the transa and
transb arguments:

'N'
Normal form

'T'
Transposed form

'C'
Conjugate transposed form

The four and nine possible combinations are defined as follows:

Real Combinations Complex Combinations

AB AB

ATB ATB

AHB

ABT ABT

ATBT ATBT

AHBT

ABH

ATBH

420 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Real Combinations Complex Combinations

AHBH

Transposing or Conjugate Transposing:
This describes some key points about using transposed and conjugate transposed
matrices.

On Input
In every case, the input arrays for the matrix, its transpose, or its conjugate
transpose should be stored in the original untransposed form. You then specify the
desired form of the matrix to be used in the computation in the transa or transb
arguments. For a description of matrix transpose and matrix conjugate transpose,
see “Matrices” on page 79.

On Output
If you want to compute the transpose or the conjugate transpose of a matrix
operation—that is, the output stored in matrix C—you should use the matrix
identities described in “Special Usage” on page 426 for each subroutine
description. Examples are provided in the subroutine descriptions to show the use
of these matrix identities. This accomplishes the transpose or conjugate transpose
as part of the multiply operation.

Performance and Accuracy Considerations
This describes some key points about performance and accuracy in the matrix
operations subroutines.

In General
1. The matrix operation subroutines use algorithms that are tuned specifically to

the workstation processors they run on. The techniques involve using any one
of several computational methods, based on certain operation counts and sizes
of data.

2. The short-precision multiplication subroutines provide increased accuracy by
partially accumulating results in long precision when the AltiVec or VSX unit is
not used.

3. Strassen's method is not stable for certain row or column scalings of the input
matrices A and B. Therefore, for matrices A and B with divergent exponent
values, Strassen's method may give inaccurate results. For these cases, you
should use the _GEMUL or _GEMM subroutines.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 62.

For Large Matrices
If you are using large square matrices in your matrix multiplication operations,
you may get better performance by using SGEMMS, DGEMMS, CGEMMS, and
ZGEMMS. These subroutines use Winograd's variation of Strassen's algorithm for
both real and complex matrices.

Chapter 9. Matrix Operations 421

For Combined Operations
If you want to perform a combined matrix multiplication and addition with
scaling, SGEMM, DGEMM, CGEMM, and ZGEMM provide better performance
than if you perform the parts of the computation separately in your program. See
references [40 on page 1315] and [43 on page 1315].

422 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Matrix Operation Subroutines

This contains the matrix operation subroutine descriptions.

Chapter 9. Matrix Operations 423

SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for
General Matrices or Their Transposes)

Purpose

These subroutines can perform any one of the following matrix additions, using
matrices A and B or their transposes, and matrix C:

C←A+B
C←AT+B
C←A+BT

C←AT+BT

Table 106. Data Types

A, B, C Subroutine

Short-precision real SGEADD

Long-precision real DGEADD

Short-precision complex CGEADD

Long-precision complex ZGEADD

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m,
n)

C and C++ sgeadd | dgeadd | cgeadd | zgeadd (a, lda, transa, b, ldb, transb, c, ldc, m, n);

On Entry

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has m rows and n columns.

If transa = 'T', AT is used in the computation, and A has n rows and m
columns.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 106, where:

If transa = 'N', its size must be lda by (at least) n.

If transa = 'T', its size must be lda by (at least) m.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If transa = 'N', lda ≥ m.

If transa = 'T', lda ≥ n.

424 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

Specified as: a single character; transa = 'N' or 'T'.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n columns.

If transb = 'T', BT is used in the computation, and B has n rows and m columns.

Note: No data should be moved to form BT; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 106 on page 424, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T', its size must be ldb by (at least) m.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T', ldb ≥ n.

transb
indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

Specified as: a single character; transb = 'N' or 'T'.

c See On Return.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ m.

m is the number of rows in matrix C.

Specified as: an integer; 0 ≤ m ≤ ldc.

n is the number of columns in matrix C.

Specified as: an integer; 0 ≤ n.

On Return

c is the m by n matrix C, containing the results of the computation. Returned as:
an ldc by (at least) n array, containing numbers of the data type indicated in
Table 106 on page 424.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.

Chapter 9. Matrix Operations 425

2. Matrix C must have no common elements with matrices A or B. However, C
may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide with
B if transb = 'N'. Otherwise, results are unpredictable. See “Concepts” on page
73.

Function

The matrix sum is expressed as follows, where aij, bij, and cij are elements of
matrices A, B, and C, respectively:

cij = aij+bij for C←A+B
cij = aij+bji for C←A+BT

cij = aji+bij for C←AT+B
cij = aji+bji for C←AT+BT

for i = 1, m and j = 1, n

If m or n is 0, no computation is performed.

Special Usage

You can compute the transpose CT of each of the four computations listed under
“Function” by using the following matrix identities:

(A+B)T = AT+BT

(A+BT)T = AT+B
(AT+B)T = A+BT

(AT+BT)T = A+B

Be careful that your output array receiving CT has dimensions large enough to
hold the transposed matrix. See Example 4.

Error conditions

Input-Argument Errors

1. lda, ldb, ldc ≤ 0
2. m, n < 0
3. m > ldc

4. transa, transb ≠ 'N' or 'T'
5. transa = 'N' and m > lda

6. transa = 'T' and n > lda

7. transb = 'N' and m > ldb

8. transb = 'T' and n > ldb

Examples

Example 1

This example shows the computation C←A+B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which
it is contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 6 , ’N’ , B , 4 , ’N’ , C , 5 , 4 , 3)

426 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 |

B = | 21.0 22.0 23.0 |
| 31.0 32.0 33.0 |
| 41.0 42.0 43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 |
| 210021.0 220022.0 230023.0 |

C = | 310031.0 320032.0 330033.0 |
| 410041.0 420042.0 430043.0 |
| . . . |
└ ┘

Example 2

This example shows the computation C←AT+B, where A, B, and C are the same
size as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 3 , ’T’ , B , 4 , ’N’ , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| 11.0 12.0 13.0 |

B = | 21.0 22.0 23.0 |
| 31.0 32.0 33.0 |
| 41.0 42.0 43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 |

C = | 120021.0 220022.0 320023.0 |
| 130031.0 230032.0 330033.0 |
| 140041.0 240042.0 340043.0 |
└ ┘

Example 3

This example shows computation C←A+BT, where A is contained in a larger
array A, and B and C are the same size as arrays B and C, in which they are
contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 5 , ’N’ , B , 3 , ’T’ , C , 4 , 4 , 3)

Chapter 9. Matrix Operations 427

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120021.0 130031.0 |

C = | 210012.0 220022.0 230032.0 |
| 310013.0 320023.0 330033.0 |
| 410014.0 420024.0 430034.0 |
└ ┘

Example 4

This example shows how to produce the transpose of the result of the
computation performed in Example 3, C←A+BT, which uses the calling
sequence:

CALL SGEADD(A , 5 , ’N’ , B , 3 , ’T’ , C , 4 , 4 , 3)

You instead code a calling sequence for CT←AT+B, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 3. Note that the array CT has dimensions large
enough to receive the transposed matrix. For a description of all the matrix
identities, see “Special Usage” on page 426.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 5 , ’T’ , B , 3 , ’N’ , CT , 4 , 3 , 4)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 410014.0 |

CT = | 120021.0 220022.0 320023.0 420024.0 |
| 130031.0 230032.0 330033.0 430034.0 |
| |
└ ┘

Example 5

This example shows the computation C←AT+BT, where A, B, and C are the
same size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:

428 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGEADD(A , 3 , ’T’ , B , 3 , ’T’ , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| 11.0 12.0 13.0 14.0 |

B = | 21.0 22.0 23.0 24.0 |
| 31.0 32.0 33.0 34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210021.0 310031.0 |

C = | 120012.0 220022.0 320032.0 |
| 130013.0 230023.0 330033.0 |
| 140014.0 240024.0 340034.0 |
└ ┘

Example 6

This example shows the computation C←A+B, where A, B, and C are contained
in larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL CGEADD(A , 6 , ’N’ , B , 5 , ’N’ , C , 5 , 4 , 3)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |

A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
| (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |

B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
| (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (2.0, 13.0) (11.0, 9.0) (4.0, 11.0) |
| (6.0, 8.0) (14.0, 11.0) (7.0, 11.0) |

C = | (9.0, 5.0) (11.0, 10.0) (5.0, 12.0) |
| (13.0, 8.0) (9.0, 10.0) (2.0, 10.0) |
| . . . |
└ ┘

Chapter 9. Matrix Operations 429

SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for
General Matrices or Their Transposes)

Purpose

These subroutines can perform any one of the following matrix subtractions, using
matrices A and B or their transposes, and matrix C:

C←A-B
C←AT-B
C←A-BT

C←AT-BT

Table 107. Data Types

A, B, C Subroutine

Short-precision real SGESUB

Long-precision real DGESUB

Short-precision complex CGESUB

Long-precision complex ZGESUB

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n)

C and C++ sgesub | dgesub | cgesub | zgesub (a, lda, transa, b, ldb, transb, c, ldc, m, n);

On Entry

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has m rows and n columns.

If transa = 'T', AT is used in the computation, and A has n rows and m
columns.

Note: No data should be moved to form AT; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 107, where:

If transa = 'N', its size must be lda by (at least) n.

If transa = 'T', its size must be lda by (at least) m.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If transa = 'N', lda ≥ m.

If transa = 'T', lda ≥ n.

430 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

Specified as: a single character; transa = 'N' or 'T'.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n columns.

If transb = 'T', BT is used in the computation, and B has n rows and m columns.

Note: No data should be moved to form BT; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 106 on page 424, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T', its size must be ldb by (at least) m.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T', ldb ≥ n.

transb
indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

Specified as: a single character; transb = 'N' or 'T'.

c See On Return.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ m.

m is the number of rows in matrix C.

Specified as: an integer; 0 ≤ m ≤ ldc.

n is the number of columns in matrix C.

Specified as: an integer; 0 ≤ n.

On Return

c is the m by n matrix C, containing the results of the computation. Returned as:
an ldc by (at least) n array, containing numbers of the data type indicated in
Table 107 on page 430.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.

Chapter 9. Matrix Operations 431

2. Matrix C must have no common elements with matrices A or B. However, C
may (exactly) coincide with A if transa = 'N', and C may (exactly) coincide with
B if transb = 'N'. Otherwise, results are unpredictable. See “Concepts” on page
73.

Function

The matrix subtraction is expressed as follows, where aij, bij, and cij are elements of
matrices A, B, and C, respectively:

cij = aij-bij for C←A-B
cij = aij-bji for C←A-BT

cij = aji-bij for C←AT-B
cij = aji-bji for C←AT-BT

for i = 1, m and j = 1, n

If m or n is 0, no computation is performed.

Special Usage

You can compute the transpose CT of each of the four computations listed under
“Function” by using the following matrix identities:

(A-B)T = AT-BT

(A-BT)T = AT-B
(AT-B)T = A-BT

(AT-BT)T = A-B

Be careful that your output array receiving CT has dimensions large enough to
hold the transposed matrix. See Example 5.

Error conditions

Computational Errors
None

Input-Argument Errors

1. lda, ldb, ldc ≤ 0
2. m, n < 0
3. m > ldc

4. transa, transb ≠ 'N' or 'T'
5. transa = 'N' and m > lda

6. transa = 'T' and n > lda

7. transb = 'N' and m > ldb

8. transb = 'T' and n > ldb

Examples

Example 1

This example shows the computation C←A-B, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as array B, in which
it is contained.

Call Statement and Input:

432 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 6 , ’N’ , B , 4 , ’N’ , C , 5 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
| . . . |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 |

B = | -21.0 -22.0 -23.0 |
| -31.0 -32.0 -33.0 |
| -41.0 -42.0 -43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 |
| 210021.0 220022.0 230023.0 |

C = | 310031.0 320032.0 330033.0 |
| 410041.0 420042.0 430043.0 |
| . . . |
└ ┘

Example 2

This example shows the computation C←AT-B, where A, B, and C are the same
size as arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , ’T’ , B , 4 , ’N’ , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 |

B = | -21.0 -22.0 -23.0 |
| -31.0 -32.0 -33.0 |
| -41.0 -42.0 -43.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210012.0 310013.0 |

C = | 120021.0 220022.0 320023.0 |
| 130031.0 230032.0 330033.0 |
| 140041.0 240042.0 340043.0 |
└ ┘

Example 3

This example shows computation C←A-BT, where A is contained in a larger
array A, and B and C are the same size as arrays B and C, in which they are
contained.

Call Statement and Input:

Chapter 9. Matrix Operations 433

A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 5 , ’N’ , B , 3 , ’T’ , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 |
| 210000.0 220000.0 230000.0 |

A = | 310000.0 320000.0 330000.0 |
| 410000.0 420000.0 430000.0 |
| . . . |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120021.0 130031.0 |

C = | 210012.0 220022.0 230032.0 |
| 310013.0 320023.0 330033.0 |
| 410014.0 420024.0 430034.0 |
└ ┘

Example 4

This example shows the computation C←AT-BT, where A, B, and C are the same
size as the arrays A, B, and C, in which they are contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , ’T’ , B , 3 , ’T’ , C , 4 , 4 , 3)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 210021.0 310031.0 |

C = | 120012.0 220022.0 320032.0 |
| 130013.0 230023.0 330033.0 |
| 140014.0 240024.0 340034.0 |
└ ┘

Example 5

This example shows how to produce the transpose of the result of the
computation performed in Example 4, C←AT-BT, which uses the calling
sequence:

CALL SGESUB(A , 3 , ’T’ , B , 3 , ’T’ , C , 4 , 4 , 3)

You instead code a calling sequence for CT←A-B, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 4. Note that the array CT has dimensions large
enough to receive the transposed matrix. For a description of all the matrix
identities, see “Special Usage” on page 432.

434 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL SGESUB(A , 3 , ’N’ , B , 3 , ’N’ , CT , 3 , 3 , 4)

┌ ┐
| 110000.0 120000.0 130000.0 140000.0 |

A = | 210000.0 220000.0 230000.0 240000.0 |
| 310000.0 320000.0 330000.0 340000.0 |
└ ┘

┌ ┐
| -11.0 -12.0 -13.0 -14.0 |

B = | -21.0 -22.0 -23.0 -24.0 |
| -31.0 -32.0 -33.0 -34.0 |
└ ┘

Output:
┌ ┐
| 110011.0 120012.0 130013.0 140014.0 |

CT = | 210021.0 220022.0 230023.0 240024.0 |
| 310031.0 320032.0 330033.0 340034.0 |
└ ┘

Example 6

This example shows the computation C←A-B, where A, B, and C are contained
in larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC M N
| | | | | | | | | |

CALL CGESUB(A , 6 , ’N’ , B , 5 , ’N’ , C , 5 , 4 , 3)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |

A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
| (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |

B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
| (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (0.0, -3.0) (7.0, -5.0) (-2.0, 7.0) |
| (-2.0, 0.0) (2.0, -5.0) (-5.0, 5.0) |

C = | (-3.0, 1.0) (3.0, 0.0) (-3.0, 2.0) |
| (-1.0, 4.0) (-3.0, 2.0) (0.0, -2.0) |
| . . . |
└ ┘

Chapter 9. Matrix Operations 435

SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes)

Purpose

SGEMUL and DGEMUL can perform any one of the following matrix
multiplications, using matrices A and B or their transposes, and matrix C:

C←AB C←ABT

C←ATB C←ATBT

CGEMUL and ZGEMUL can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C←AB C←ABT C←ABH

C←ATB C←ATBT C←ATBH

C←AHB C←AHBT C←AHBH

Table 108. Data Types

A, B, C Subroutine

Short-precision real SGEMUL

Long-precision real DGEMUL

Short-precision complex CGEMUL

Long-precision complex ZGEMUL

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m,
n)

C and C++ sgemul | dgemul | cgemul | zgemul (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

On Entry

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m columns.

If transa = 'T', AT is used in the computation, and A has m rows and l columns.

If transa = 'C', AH is used in the computation, and A has m rows and l columns.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 108, where:

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

436 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMUL and DGEMUL;
transa = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n columns.

If transb = 'T', BT is used in the computation, and B has n rows and m columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 108 on page 436, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

transb
indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMUL and DGEMUL;
transb = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.

c See On Return.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ l.

l is the number of rows in matrix C.

Chapter 9. Matrix Operations 437

Specified as: an integer; 0 ≤ l ≤ ldc.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix C.

Specified as: an integer; n ≥ 0.

On Return

c is the l by n matrix C, containing the results of the computation. Returned as:
an ldc by (at least) n numbers of the data type indicated in Table 108 on page
436.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 73.

Function

The matrix multiplication is expressed as follows, where aik, bkj, and cij are elements
of matrices A, B, and C, respectively:

438 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

See reference [46 on page 1316]. If l or n is 0, no computation is performed. If l and
n are greater than 0, and m is 0, an l by n matrix of zeros is returned.

Special Usage

Equivalence Rules
By using the following equivalence rules, you can compute the transpose CT or
the conjugate transpose CH of some of the computations performed by these
subroutines:

Transpose Conjugate Transpose
(AB)T = BTAT (AB)H = BHAH

(ATB)T = BTA (AHB)H = BHA
(ABT)T = BAT (ABH)H = BAH

(ATBT)T = BA (AHBH)H = BA

When coding the calling sequences for these cases, be careful to code your
matrix arguments and dimension arguments in the order indicated by the rule.
Also, be careful that your output array, receiving CT or CH, has dimensions
large enough to hold the resulting transposed or conjugate transposed matrix.
See Example 2 and Example 4.

Chapter 9. Matrix Operations 439

Error conditions

Resource Errors
Unable to allocate internal work area (CGEMUL and ZGEMUL only).

Computational Errors
None

Input-Argument Errors

1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc

4. transa, transb ≠ 'N' or 'T' for SGEMUL and DGEMUL
5. transa, transb ≠ 'N', 'T', or 'C' for CGEMUL and ZGEMUL
6. transa = 'N' and l > lda

7. transa = 'T' or 'C' and m > lda

8. transb = 'N' and m > ldb

9. transb = 'T' or 'C' and n > ldb

Examples

Example 1

This example shows the computation C←AB, where A, B, and C are contained
in larger arrays A, B, and C, respectively.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 8 , ’N’ , B , 6 , ’N’ , C , 7 , 6 , 5 , 4)

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

Output:
┌ ┐
| 23.0 12.0 -6.0 2.0 |
| -4.0 -5.0 1.0 3.0 |
| 3.0 0.0 1.0 4.0 |

C = | -3.0 5.0 -2.0 -10.0 |
| -5.0 -7.0 4.0 4.0 |
| 15.0 6.0 -5.0 6.0 |
| |
└ ┘

Example 2

440 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how to produce the transpose of the result of the
computation performed in Example 1, C←AB, which uses the calling sequence:

CALL SGEMUL (A,8,’N’,B,6,’N’,C,7,6,5,4)

You instead code a calling sequence for CT←BTAT, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 1. Note that the array CT has dimensions large
enough to receive the transposed matrix. For a description of all the matrix
identities, see “Special Usage” on page 439.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(B , 6 , ’T’ , A , 8 , ’T’ , CT , 5 , 4 , 5 , 6)

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 23.0 -4.0 3.0 -3.0 -5.0 15.0 |
| 12.0 -5.0 0.0 5.0 -7.0 6.0 |

CT = | -6.0 1.0 1.0 -2.0 4.0 -5.0 |
| 2.0 3.0 4.0 -10.0 4.0 6.0 |
| |
└ ┘

Example 3

This example shows the computation C←ATB, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 4 , ’T’ , B , 3 , ’N’ , C , 5 , 3 , 3 , 6)

┌ ┐
| 1.0 -3.0 2.0 |

A = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

Output:

Chapter 9. Matrix Operations 441

┌ ┐
| 6.0 4.0 1.0 1.0 0.0 -1.0 |
| 4.0 26.0 -5.0 -5.0 8.0 -15.0 |

C = | 1.0 -5.0 5.0 5.0 -1.0 3.0 |
| |
| |
└ ┘

Example 4

This example shows how to produce the transpose of the result of the
computation performed in Example 3, C←ATB, which uses the calling sequence:

CALL SGEMUL (A,4,’T’,B,3,’N’,C,5,3,3,6)

You instead code the calling sequence for CT←BTA, as shown below, where the
resulting matrix CT in the output array CT is the transpose of the matrix in the
output array C in Example 3. Note that the array CT has dimensions large
enough to receive the transposed matrix. For a description of all the matrix
identities, see “Special Usage” on page 439.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(B , 3 , ’T’ , A , 4 , ’N’ , CT , 8 , 6 , 3 , 3)

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

A = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

Output:
┌ ┐
| 6.0 4.0 1.0 |
| 4.0 26.0 -5.0 |
| 1.0 -5.0 5.0 |

CT = | 1.0 -5.0 5.0 |
| 0.0 8.0 -1.0 |
| -1.0 -15.0 3.0 |
| . . . |
| . . . |
└ ┘

Example 5

This example shows the computation C←ABT, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in
which it is contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 4 , ’N’ , B , 3 , ’T’ , C , 5 , 3 , 2 , 3)

┌ ┐
| 1.0 -3.0 |

A = | 2.0 4.0 |
| 1.0 -1.0 |
| . . |
└ ┘

442 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 1.0 -3.0 |

B = | 2.0 4.0 |
| 1.0 -1.0 |
└ ┘

Output:
┌ ┐
| 10.0 -10.0 4.0 |
| -10.0 20.0 -2.0 |

C = | 4.0 -2.0 2.0 |
| . . . |
| . . . |
└ ┘

Example 6

This example shows the computation C←ATBT, where A, B, and C are the same
size as the arrays A, B, and C in which they are contained. (Based on the
dimensions of the matrices, A is actually a column vector, and C is actually a
row vector.)

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL SGEMUL(A , 3 , ’T’ , B , 3 , ’T’ , C , 1 , 1 , 3 , 3)

┌ ┐
| 1.0 |

A = | 2.0 |
| 1.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

B = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
└ ┘

Output:
┌ ┐

B = | -3.0 10.0 -2.0 |
└ ┘

Example 7

This example shows the computation C←ATB using complex data, where A, B,
and C are contained in larger arrays A, B, and C, respectively.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL CGEMUL(A , 6 , ’T’ , B , 7 , ’N’ , C , 3 , 2 , 3 , 3)

┌ ┐
| (1.0, 2.0) (3.0, 4.0) |
| (4.0, 6.0) (7.0, 1.0) |

A = | (6.0, 3.0) (2.0, 5.0) |
| . . |
| . . |
| . . |
└ ┘

┌ ┐
| (1.0, 9.0) (2.0, 6.0) (5.0, 6.0) |
| (2.0, 5.0) (6.0, 2.0) (6.0, 4.0) |
| (2.0, 6.0) (5.0, 4.0) (2.0, 6.0) |

B = | . . . |
| . . . |

Chapter 9. Matrix Operations 443

| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-45.0, 85.0) (20.0, 93.0) (-13.0, 110.0) |

C = | (-50.0, 90.0) (12.0, 79.0) (3.0, 94.0) |
| . . . |
└ ┘

Example 8

This example shows the computation C←ABH using complex data, where A and
C are contained in larger arrays A and C, respectively, and B is the same size as
the array B in which it is contained.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N
| | | | | | | | | | |

CALL CGEMUL(A , 4 , ’N’ , B , 3 , ’C’ , C , 4 , 3 , 2 , 3)

┌ ┐
| (1.0, 2.0) (-3.0, 2.0) |

A = | (2.0, 6.0) (4.0, 5.0) |
| (1.0, 2.0) (-1.0, 8.0) |
| . . |
└ ┘

┌ ┐
| (1.0, 3.0) (-3.0, 2.0) |

B = | (2.0, 5.0) (4.0, 6.0) |
| (1.0, 1.0) (-1.0, 9.0) |
└ ┘

Output:
┌ ┐
| (20.0, -1.0) (12.0, 25.0) (24.0, 26.0) |

C = | (18.0, -23.0) (80.0, -2.0) (49.0, -37.0) |
| (26.0, -23.0) (56.0, 37.0) (76.0, 2.0) |
| . . . |
└ ┘

444 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for
General Matrices, Their Transposes, or Conjugate Transposes Using
Winograd's Variation of Strassen's Algorithm)

Purpose

These subroutines use Winograd's variation of the Strassen's algorithm to perform
the matrix multiplication for both real and complex matrices. SGEMMS and
DGEMMS can perform any one of the following matrix multiplications, using
matrices A and B or their transposes, and matrix C:

C←AB C←ABT

C←ATB C←ATBT

CGEMMS and ZGEMMS can perform any one of the following matrix
multiplications, using matrices A and B, their transposes or their conjugate
transposes, and matrix C:

C←AB C←ABT C←ABH

C←ATB C←ATBT C←ATBH

C←AHB C←AHBT C←AHBH

Table 109. Data Types

A, B, C aux Subroutine

Short-precision real Short-precision real SGEMMS

Long-precision real Long-precision real DGEMMS

Short-precision complex Short-precision real CGEMMS

Long-precision complex Long-precision real ZGEMMS

Syntax

Fortran
CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l,
m, n, aux, naux)

C and C++ sgemms | dgemms | cgemms | zgemms (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux,
naux);

On Entry

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m columns.

If transa = 'T', AT is used in the computation, and A has m rows and l columns.

If transa = 'C', AH is used in the computation, and A has m rows and l columns.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 109, where:

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

Chapter 9. Matrix Operations 445

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N' or 'T' for SGEMMS and DGEMMS;
transa = 'N', 'T', or 'C' for CGEMMS and ZGEMMS.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n columns.

If transb = 'T', BT is used in the computation, and B has n rows and m columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 109 on page 445, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

transb
indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N' or 'T' for SGEMMS and DGEMMS;
transb = 'N', 'T', or 'C' for CGEMMS and ZGEMMS.

c See On Return.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ l.

l is the number of rows in matrix C.

446 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; 0 ≤ l ≤ ldc.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix C.

Specified as: an integer; n ≥ 0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage containing numbers of the data type indicated
in Table 109 on page 445.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEMMS, DGEMMS, CGEMMS,
and ZGEMMS dynamically allocate the work area used by the subroutine. The
work area is deallocated before control is returned to the calling program.

Otherwise,

When this subroutine uses Strassen's algorithm:
v For SGEMMS and DGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)].
v For CGEMMS and ZGEMMS:

Use naux = max[(n)(l), 0.7m(l+n)]+nb1+nb2, where:
If l ≥ n, then nb1 ≥ (l)(n+20) and nb2 ≥ max[(n)(l), (m)(n+20)].
If l < n, then nb1 ≥ (m)(n+20) and nb2 ≥ max[(n)(l), (l)(m+20)].

When this subroutine uses the direct method (_GEMUL), use naux ≥ 0.

Note:

1. In most cases, these formulas provide an overestimate.
2. For an explanation of when this subroutine uses the direct method versus

Strassen's algorithm, see “Notes ” on page 448.

On Return

c is the l by n matrix C, containing the results of the computation. Returned as:
an ldc by (at least) n array, containing numbers of the data type indicated in
Table 109 on page 445.

Chapter 9. Matrix Operations 447

Notes
1. There are two instances when these subroutines use the direct method

(_GEMUL), rather than using Strassen's algorithm:
v When either or both of the input matrices are small
v For CGEMMS and ZGEMMS, when input matrices A and B overlap
In these instances when the direct method is used, the subroutine does not use
auxiliary storage, and you can specify naux = 0.

2. For CGEMMS and ZGEMMS, one of the input matrices, A or B, is rearranged
during the computation and restored to its original form on return. Keep this in
mind when diagnosing an abnormal termination.

3. All subroutines accept lowercase letters for the transa and transb arguments.
4. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 73.
5. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The matrix multiplications performed by these subroutines are functionally
equivalent to those performed by SGEMUL, DGEMUL, CGEMUL, and ZGEMUL.
For details on the computations performed, see “Function” on page 438.

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS use Winograd's variation of the
Strassen's algorithm with minor changes for tuning purposes. (See pages 45 and 46
in reference [17 on page 1314].) The subroutines compute matrix multiplication for
both real and complex matrices of large sizes. Complex matrix multiplication uses
a special technique, using three real matrix multiplications and five real matrix
additions. Each of these three resulting matrix multiplications then uses Strassen's
algorithm.

Strassen's Algorithm
The steps of Strassen's algorithm can be repeated up to four times by these
subroutines, with each step reducing the dimensions of the matrix by a factor
of two. The number of steps used by this subroutine depends on the size of
the input matrices. Each step reduces the number of operations by about 10%
from the normal matrix multiplication. On the other hand, if the matrix is
small, a normal matrix multiplication is performed without using the Strassen's
algorithm, and no improvement is gained. For details about small matrices, see
“Notes .”

Complex Matrix Multiplication
The complex multiplication is performed by forming the real and imaginary
parts of the input matrices. These subroutines uses three real matrix
multiplications and five real matrix additions, instead of the normal four real
matrix multiplications and two real matrix additions. Using only three real
matrix multiplications allows the subroutine to achieve up to a 25% reduction
in matrix operations, which can result in a significant savings in computing
time for large matrices.

Accuracy Considerations
Strassen's method is not stable for certain row or column scalings of the input
matrices A and B. Therefore, for matrices A and B with divergent exponent
values Strassen's method may give inaccurate results. For these cases, you
should use the _GEMUL or _GEMM subroutines.

448 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Special Usage

The equivalence rules, defined for matrix multiplication of A and B in “Special
Usage” on page 439, also apply to these subroutines. You should use the
equivalence rules when you want to transpose or conjugate transpose the result of
the multiplication computation. When coding the calling sequences for these cases,
be careful to code your matrix arguments and dimension arguments in the order
indicated by the rule. Also, be careful that your output array, receiving CT or CH,
has dimensions large enough to hold the resulting transposed or conjugate
transposed matrix. See Example 2 and Example 4.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc

4. transa, transb ≠ 'N' or 'T' for SGEMMS and DGEMMS
5. transa, transb ≠ 'N', 'T', or 'C' for CGEMMS and ZGEMMS
6. transa = 'N' and l > lda

7. transa = 'T' or 'C' and m > lda

8. transb = 'N' and m > ldb

9. transb = 'T' or 'C' and n > ldb

10. Error 2015 is recoverable or naux not equal to 0, and naux is too
small—that is, less than the minimum required value. Return code 1 is
returned if error 2015 is recoverable.

Examples

Example 1

This example shows the computation C←AB, where A, B, and C are contained
in larger arrays A, B, and C, respectively. It shows how to code the calling
sequence for SGEMMS, but does not use the Strassen algorithm for doing the
computation. The calling sequence is shown below. The input and output,
other than auxiliary storage, is the same as in Example 1 for SGEMUL.

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
| | | | | | | | | | | | |

CALL SGEMMS(A , 8 , ’N’ , B , 6 , ’N’ , C , 7 , 6 , 5 , 4 , AUX , 0)

Example 2

This example shows the computation C←ABH, where A and C are contained in
larger arrays A and C, respectively, and B is the same size as the array B in
which it is contained. The arrays contain complex data. This example shows
how to code the calling sequence for CGEMMS, but does not use the Strassen
algorithm for doing the computation. The calling sequence is shown below.
The input and output, other than auxiliary storage, is the same as in Example 8
for CGEMUL.

Chapter 9. Matrix Operations 449

Call Statement and Input:
A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
| | | | | | | | | | | | |

CALL CGEMMS(A , 4 , ’N’ , B , 3 , ’C’ , C , 4 , 3 , 2 , 3 , AUX , 0)

450 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix
Multiplication and Addition for General Matrices, Their Transposes, or
Conjugate Transposes)

Purpose

SGEMM and DGEMM can perform any one of the following combined matrix
computations, using scalars α and β, matrices A and B or their transposes, and
matrix C:

C ← αAB+βC C ← αABT+βC
C ← αATB+βC C ← αATBT+βC

CGEMM and ZGEMM can perform any one of the following combined matrix
computations, using scalars α and β, matrices A and B, their transposes or their
conjugate transposes, and matrix C:

C ← αAB+βC C ← αABT+βC C ← αABH+βC
C ← αATB+βC C ← αATBT+βC C ← αATBH+βC
C ← αAHB+βC C ← αAHBT+βC C ← αAHBH+βC

Table 110. Data Types

A, B, C, α, β Subroutine

Short-precision real SGEMM

Long-precision real DGEMM

Short-precision complex CGEMM

Long-precision complex ZGEMM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb,
beta, c, ldc)

C and C++ sgemm | dgemm | cgemm | zgemm (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);

CBLAS cblas_sgemm | cblas_sdgemm | cblas_scgemm | cblas_szgemm (cblas_order, cblas_transa,
cblas_transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

Chapter 9. Matrix Operations 451

||
|

|
|
|

|

|
|

|
|

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.

If transa = 'T', AT is used in the computation.

If transa = 'C', AH is used in the computation.

Specified as: a single character; transa = 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation.

If cblas_transa = CblasTrans, AT is used in the computation.

If cblas_transa = CblasConjTrans, AH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

transb
indicates the form of matrix B to use in the computation, where:

If transb = 'N', B is used in the computation.

If transb = 'T', BT is used in the computation.

If transb = 'C', BH is used in the computation.

Specified as: a single character; transb = 'N', 'T', or 'C'.

cblas_transb
indicates the form of matrix B to use in the computation, where:

If cblas_transb = CblasNoTrans, B is used in the computation.

If cblas_transb = CblasTrans, BT is used in the computation.

If cblas_transb = CblasConjTrans, BH is used in the computation.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

l is the number of rows in matrix C.

Specified as: an integer; 0 ≤ l ≤ ldc.

n is the number of columns in matrix C.

Specified as: an integer; n ≥ 0.

m has the following meaning, where:

If transa = 'N', it is the number of columns in matrix A.

If transa = 'T' or 'C', it is the number of rows in matrix A.

In addition:

If transb = 'N', it is the number of rows in matrix B.

If transb = 'T' or 'C', it is the number of columns in matrix B.

Specified as: an integer; m ≥ 0.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 110 on page 451.

452 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|

|
|

|
|

|

|

|

|
|

a is the matrix A, where:

If transa = 'N', A is used in the computation, and A has l rows and m columns.

If transa = 'T', AT is used in the computation, and A has m rows and l columns.

If transa = 'C', AH is used in the computation, and A has m rows and l columns.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 110 on page 451, where:

If transa = 'N', its size must be lda by (at least) m.

If transa = 'T' or 'C', its size must be lda by (at least) l.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If transa = 'N', lda ≥ l.

If transa = 'T' or 'C', lda ≥ m.

b is the matrix B, where:

If transb = 'N', B is used in the computation, and B has m rows and n columns.

If transb = 'T', BT is used in the computation, and B has n rows and m columns.

If transb = 'C', BH is used in the computation, and B has n rows and m
columns.

Note: No data should be moved to form BT or BH; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 110 on page 451, where:

If transb = 'N', its size must be ldb by (at least) n.

If transb = 'T' or 'C', its size must be ldb by (at least) m.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If transb = 'N', ldb ≥ m.

If transb = 'T' or 'C', ldb ≥ n.

beta
is the scalar β.

Specified as: a number of the data type indicated in Table 110 on page 451.

c is the l by n matrix C.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 110 on page 451.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ l.

Chapter 9. Matrix Operations 453

On Return

c is the l by n matrix C, containing the results of the computation. Returned as:
an ldc by (at least) n array, containing numbers of the data type indicated in
Table 110 on page 451.

Notes
1. All subroutines accept lowercase letters for the transa and transb arguments.
2. For SGEMM and DGEMM, if you specify 'C' for the transa or transb argument,

it is interpreted as though you specified 'T'.
3. Matrix C must have no common elements with matrices A or B; otherwise,

results are unpredictable. See “Concepts” on page 73.

Function

The combined matrix addition and multiplication is expressed as follows, where
aik, bkj, and cij are elements of matrices A, B, and C, respectively:

See references [40 on page 1315] and [46 on page 1316]. In the following three
cases, no computation is performed:
v l is 0.

454 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v n is 0.
v β is 1 and α is 0.

Assuming the above conditions do not exist, if β ≠ 1 and m is 0, then βC is
returned.

Special Usage

Equivalence Rules
The equivalence rules, defined for matrix multiplication of A and B in “Special
Usage” on page 439, also apply to the matrix multiplication part of the
computation performed by this subroutine. You should use the equivalent rules
when you want to transpose or conjugate transpose the multiplication part of
the computation. When coding the calling sequences for these cases, be careful
to code your matrix arguments and dimension arguments in the order
indicated by the rule. Also, be careful that your input and output array C has
dimensions large enough to hold the resulting matrix. See Example 4.

Error conditions

Resource Errors
Unable to allocate internal work area (CGEMM and ZGEMM only).

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. lda, ldb, ldc ≤ 0
3. l, m, n < 0
4. l > ldc

5. transa, transb ≠ 'N', 'T', or 'C'
6. transa = 'N' and l > lda

7. transa = 'T' or 'C' and m > lda

8. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
9. cblas_transa = CblasNoTrans and l > lda

10. cblas_transa = CblasTrans, or CblasConjTrans and m > lda

11. transb = 'N' and m > ldb

12. transb = 'T' or 'C' and n > ldb

13. cblas_transb ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
14. cblas_transb = CblasNoTrans and m > ldb

15. cblas_transb = CblasTrans, or CblasConjTrans and n > ldb

Examples

Example 1

This example shows the computation C←αAB+βC, where A, B, and C are
contained in larger arrays A, B, and C, respectively.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL SGEMM(’N’ , ’N’ , 6 , 4 , 5 , 1.0 , A , 8 , B , 6 , 2.0 , C , 7)

Chapter 9. Matrix Operations 455

|

|

|

|

|

|

|

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| 2.0 0.0 1.0 1.0 -1.0 |
| 1.0 -1.0 -1.0 1.0 2.0 |

A = | -3.0 2.0 2.0 2.0 0.0 |
| 4.0 0.0 -2.0 1.0 -1.0 |
| -1.0 -1.0 1.0 -3.0 2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |

C = | 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| 0.5 0.5 0.5 0.5 |
| |
└ ┘

Output:
┌ ┐
| 24.0 13.0 -5.0 3.0 |
| -3.0 -4.0 2.0 4.0 |
| 4.0 1.0 2.0 5.0 |

C = | -2.0 6.0 -1.0 -9.0 |
| -4.0 -6.0 5.0 5.0 |
| 16.0 7.0 -4.0 7.0 |
| |
└ ┘

Example 2

This example shows the computation C←αABT+βC, where A and C are
contained in larger arrays A and C, respectively, and B is the same size as array
B in which it is contained.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL SGEMM(’N’ , ’T’ , 3 , 3 , 2 , 1.0 , A , 4 , B , 3 , 2.0 , C , 5)

┌ ┐
| 1.0 -3.0 |

A = | 2.0 4.0 |
| 1.0 -1.0 |
| . . |
└ ┘

┌ ┐
| 1.0 -3.0 |

B = | 2.0 4.0 |
| 1.0 -1.0 |
└ ┘

┌ ┐
| 0.5 0.5 0.5 |
| 0.5 0.5 0.5 |

456 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C = | 0.5 0.5 0.5 |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| 11.0 -9.0 5.0 |
| -9.0 21.0 -1.0 |

C = | 5.0 -1.0 3.0 |
| . . . |
| . . . |
└ ┘

Example 3

This example shows the computation C←αAB+βC using complex data, where A,
B, and C are contained in larger arrays, A, B, and C, respectively.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM(’N’ , ’N’ , 6 , 2 , 3 , ALPHA , A , 8 , B , 4 , BETA , C , 8)

ALPHA = (1.0, 0.0)
BETA = (2.0, 0.0)

┌ ┐
| (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
| (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |
| (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |

A = | (4.0, 2.0) (4.0, 7.0) (1.0, 5.0) |
| (5.0, 1.0) (5.0, 1.0) (1.0, 6.0) |
| (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
| . . . |
| . . . |
└ ┘

┌ ┐
| (1.0, 8.0) (2.0, 7.0) |

B = | (4.0, 4.0) (6.0, 8.0) |
| (6.0, 2.0) (4.0, 5.0) |
| . . |
└ ┘

┌ ┐
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |

C = | (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| (0.5, 0.0) (0.5, 0.0) |
| . . |
| . . |
└ ┘

Output:
┌ ┐
| (-22.0, 113.0) (-35.0, 142.0) |
| (-19.0, 114.0) (-35.0, 141.0) |
| (-20.0, 119.0) (-43.0, 146.0) |

C = | (-27.0, 110.0) (-58.0, 131.0) |
| (8.0, 103.0) (0.0, 112.0) |
| (-55.0, 116.0) (-75.0, 135.0) |
| . . |
| . . |
└ ┘

Example 4

Chapter 9. Matrix Operations 457

This example shows how to obtain the conjugate transpose of ABH.

This shows the conjugate transpose of the computation performed in Example
8 for CGEMUL, which uses the following calling sequence:
CALL CGEMUL(A , 4 , ’N’ , B , 3 , ’C’ , C , 4 , 3 , 2 , 3)

You instead code the calling sequence for C←βC+αBAH, where β = 0, α = 1, and
the array C has the correct dimensions to receive the transposed matrix.
Because β is zero, βC = 0. For a description of all the matrix identities, see
“Special Usage” on page 439.

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM(’N’ , ’C’ , 3 , 3 , 2 , ALPHA , B , 3 , A , 3 , BETA , C , 4)

ALPHA = (1.0, 0.0)
BETA = (0.0, 0.0)

┌ ┐
| (1.0, 3.0) (-3.0, 2.0) |

B = | (2.0, 5.0) (4.0, 6.0) |
| (1.0, 1.0) (-1.0, 9.0) |
└ ┘

┌ ┐
| (1.0, 2.0) (-3.0, 2.0) |

A = | (2.0, 6.0) (4.0, 5.0) |
| (1.0, 2.0) (-1.0, 8.0) |
| . . |
└ ┘

C =(not relevant)

Output:
┌ ┐
| (20.0, 1.0) (18.0, 23.0) (26.0, 23.0) |

C = | (12.0, -25.0) (80.0, 2.0) (56.0, -37.0) |
| (24.0, -26.0) (49.0, 37.0) (76.0, -2.0) |
| . . . |
└ ┘

Example 5

This example shows the computation C←αATBH+βC using complex data, where
A, B, and C are the same size as the arrays A, B, and C, in which they are
contained. Because β is zero, βC = 0. (Based on the dimensions of the matrices,
A is actually a column vector, and C is actually a row vector.)

Call Statement and Input:
TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | | |

CALL CGEMM(’T’ , ’C’ , 1 , 3 , 3 , ALPHA , A , 3 , B , 3 , BETA , C , 1)

ALPHA = (1.0, 1.0)
BETA = (0.0, 0.0)

┌ ┐

458 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| (1.0, 2.0) |
A = | (2.0, 5.0) |

| (1.0, 6.0) |
└ ┘

┌ ┐
| (1.0, 6.0) (-3.0, 4.0) (2.0, 6.0) |

B = | (2.0, 3.0) (4.0, 6.0) (0.0, 3.0) |
| (1.0, 3.0) (-1.0, 6.0) (-1.0, 9.0) |
└ ┘

C =(not relevant)

Output:
┌ ┐

C = | (86.0, 44.0) (58.0, 70.0) (121.0, 55.0) |
└ ┘

Chapter 9. Matrix Operations 459

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix
Product Where One Matrix is Real or Complex Symmetric or Complex
Hermitian)

Purpose

These subroutines compute one of the following matrix-matrix products, using the
scalars α and β and matrices A, B, and C:
1. C←αAB+βC

2. C←αBA+βC

where matrix A is stored in either upper or lower storage mode, and:
v For SSYMM and DSYMM, matrix A is real symmetric.
v For CSYMM and ZSYMM, matrix A is complex symmetric.
v For CHEMM and ZHEMM, matrix A is complex Hermitian.

Table 111. Data Types

α, A, B, β, C Subprogram

Short-precision real SSYMM

Long-precision real DSYMM

Short-precision complex CSYMM and CHEMM

Long-precision complex ZSYMM and ZHEMM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SSYMM | DSYMM | CSYMM | ZSYMM | CHEMM | ZHEMM (side, uplo, m, n,
alpha, a, lda, b, ldb, beta, c, ldc)

C and C++ ssymm | dsymm | csymm | zsymm | chemm | zhemm (side, uplo, m, n, alpha, a, lda, b,
ldb, beta, c, ldc);

CBLAS cblas_ssymm | cblas_dsymm | cblas_csymm | cblas_zsymm | cblas_chemm |
cblas_zhemm (cblas_order, cblas_side, cblas_uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

side
indicates whether matrix A is located to the left or right of rectangular matrix
B in the equation used for this computation, where:

If side = 'L', A is to the left of B, resulting in equation 1.

460 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

|
|
|

|

|
|

|
|

If side = 'R', A is to the right of B, resulting in equation 2.

Specified as: a single character. It must be 'L' or 'R'.

cblas_side
indicates whether matrix A is located to the left or right of rectangular matrix
B in the equation used for this computation, where:

If cblas_side = CblasLeft, A is to the left of B, resulting in equation 1.

If cblas_side = CblasRight, A is to the right of B, resulting in equation 2.

Specified as: an object of enumerated type CBLAS_SIDE. It must be CblasLeft
or CblasRight.

uplo
indicates the storage mode used for matrix A, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

m is the number of rows in rectangular matrices B and C, and:

If side = 'L', m is the order of matrix A.

Specified as: an integer; 0 ≤ m ≤ ldb, m ≤ ldc, and:

If side = 'L', m ≤ lda.

n is the number of columns in rectangular matrices B and C, and:

If side = 'R', n is the order of matrix A.

Specified as: an integer; n ≥ 0 and:

If side = 'R', n ≤ lda.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 111 on page 460.

a is the real symmetric, complex symmetric, or complex Hermitian matrix A,
where:

If side = 'L', A is order m.

If side = 'R', A is order n.

and where it is stored as follows:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 111 on page 460, where:

Chapter 9. Matrix Operations 461

|
|
|

|

|

|
|

|
|

|

|

|
|

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B.

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 111 on page 460.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ m.

beta
is the scalar β.

Specified as: a number of the data type indicated in Table 111 on page 460.

c is the m by n rectangular matrix C.

Specified as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 111 on page 460.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ m.

On Return

c is the m by n matrix C, containing the results of the computation.

Returned as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 111 on page 460.

Notes
1. These subroutines accept lowercase letters for the side and uplo arguments.
2. Matrices A, B, and C must have no common elements; otherwise, results are

unpredictable.
3. If matrix A is upper triangular (uplo = 'U'), these subroutines use only the data

in the upper triangular portion of the array. If matrix A is lower triangular,
(uplo = 'L'), these subroutines use only the data in the lower triangular portion
of the array. In each case, the other portion of the array is altered during the
computation, but restored before exit.

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A
are assumed to be zero, so you do not have to set these values.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 83. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 88.

462 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

These subroutines can perform the following matrix-matrix product computations
using matrix A, which is real symmetric for SSYMM and DSYMM, complex
symmetric for CSYMM and ZSYMM, and complex Hermitian for CHEMM and
ZHEMM:
1. C←αAB+βC

2. C←αBA+βC

where:
α and β are scalars.
A is a matrix of the type indicated above, stored in upper or lower storage
mode. It is order m for equation 1 and order n for equation 2.
B and C are m by n rectangular matrices.

See references [40 on page 1315] and [46 on page 1316]. In the following two cases,
no computation is performed:
v n or m is 0.
v β is one and α is zero.

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. m < 0
3. m > ldb

4. m > ldc

5. n < 0
6. lda, ldb, ldc ≤ 0
7. side ≠ 'L' or 'R'
8. side = 'L' and m > lda

9. side = 'R' and n > lda

10. cblas_side ≠ CblasLeft or CblasRight
11. cblas_side = CblasLeft and m > lda

12. cblas_side = CblasRight and n > lda

13. uplo ≠ 'L' or 'U'
14. cblas_uplo ≠ CblasLower or CblasUpper

Examples

Example 1

This example shows the computation C←αAB+βC, where A is a real symmetric
matrix of order 5, stored in upper storage mode, and B and C are 5 by 4
rectangular matrices.

Call Statement and Input:

Chapter 9. Matrix Operations 463

|

|

|

|

SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM(’L’ , ’U’ , 5 , 4 , 2.0 , A , 8 , B , 6 , 1.0 , C , 5)

┌ ┐
| 1.0 2.0 -1.0 -1.0 4.0 |
| . 0.0 1.0 1.0 -1.0 |
| . . -1.0 1.0 2.0 |

A = | . . . 2.0 0.0 |
| -1.0 |
| |
| |
| |
└ ┘

┌ ┐
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |

B = | 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| |
└ ┘

┌ ┐
| 23.0 12.0 -6.0 2.0 |
| -4.0 -5.0 1.0 3.0 |

C = | 5.0 6.0 -1.0 -4.0 |
| -4.0 1.0 0.0 -5.0 |
| 8.0 -4.0 -2.0 13.0 |
└ ┘

Output:
┌ ┐
| 69.0 36.0 -18.0 6.0 |
| -12.0 -15.0 3.0 9.0 |

C = | 15.0 18.0 -3.0 -12.0 |
| -12.0 3.0 0.0 -15.0 |
| 8.0 -20.0 -2.0 35.0 |
└ ┘

Example 2

This example shows the computation C←αAB+βC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 6
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM(’L’ , ’L’ , 3 , 6 , 2.0 , A , 4 , B , 3 , 2.0 , C , 5)

┌ ┐
| 1.0 . . |

A = | 2.0 4.0 . |
| 1.0 -1.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 2.0 -1.0 2.0 |

B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
| 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
└ ┘

┌ ┐
| 6.0 4.0 1.0 1.0 0.0 -1.0 |
| 9.0 11.0 5.0 5.0 3.0 -5.0 |

C = | -2.0 -6.0 3.0 3.0 -1.0 32.0 |

464 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| |
| |
└ ┘

Output:
┌ ┐
| 24.0 16.0 4.0 4.0 0.0 -4.0 |
| 36.0 44.0 20.0 20.0 12.0 -20.0 |

C = | -8.0 -24.0 12.0 12.0 -4.0 12.0 |
| |
| |
└ ┘

Example 3

This example shows the computation C←αBA+βC, where A is a real symmetric
matrix of order 3, stored in upper storage mode, and B and C are 2 by 3
rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM(’R’ , ’U’ , 2 , 3 , 2.0 , A , 4 , B , 3 , 1.0 , C , 5)

┌ ┐
| 1.0 -3.0 1.0 |

A = | . 4.0 -1.0 |
| . . 2.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 -3.0 3.0 |

B = | 2.0 4.0 -1.0 |
| . . . |
└ ┘

┌ ┐
| 13.0 -18.0 10.0 |
| -11.0 11.0 -4.0 |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| 39.0 -54.0 30.0 |
| -33.0 33.0 -12.0 |

C = | . . . |
| . . . |
| . . . |
└ ┘

Example 4

This example shows the computation C←αBA+βC, where A is a real symmetric
matrix of order 3, stored in lower storage mode, and B and C are 3 by 3 square
matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYMM(’R’ , ’L’ , 3 , 3 , -1.0 , A , 3 , B , 3 , 1.0 , C , 3)

Chapter 9. Matrix Operations 465

┌ ┐
| 1.0 . . |

A = | 2.0 10.0 . |
| 1.0 11.0 4.0 |
└ ┘

┌ ┐
| 1.0 -3.0 2.0 |

B = | 2.0 4.0 0.0 |
| 1.0 -1.0 -1.0 |
└ ┘

┌ ┐
| 1.0 5.0 -9.0 |

C = | -3.0 10.0 -2.0 |
| -2.0 8.0 0.0 |
└ ┘

Output:
┌ ┐
| 4.0 11.0 15.0 |

C = | -13.0 -34.0 -48.0 |
| 0.0 27.0 14.0 |
└ ┘

Example 5

This example shows the computation C←αBA+βC, where A is a complex
symmetric matrix of order 3, stored in upper storage mode, and B and C are 2
by 3 rectangular matrices.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CSYMM(’R’ , ’U’ , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

┌ ┐
| (1.0, 5.0) (-3.0, 2.0) (1.0, 6.0) |

A = | . (4.0, 5.0) (-1.0, 4.0) |
| . . (2.0, 5.0) |
| . . . |
└ ┘

┌ ┐
| (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |

B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
| . . . |
└ ┘

┌ ┐
| (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
| (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-96.0, 72.0) (-141.0, -226.0) (-112.0, 38.0) |
| (-230.0, -269.0) (-133.0, -23.0) (-272.0, -198.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

466 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 6

This example shows the computation C←αBA+βC, where A is a complex
Hermitian matrix of order 3, stored in lower storage mode, and B and C are 3
by 3 square matrices.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values.

Call Statement and Input:
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CHEMM(’R’ , ’L’ , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

┌ ┐
| (1.0, .) . . |

A = | (3.0, 2.0) (4.0, .) . |
| (-1.0, 6.0) (1.0, 4.0) (2.0, .) |
| . . . |
└ ┘

┌ ┐
| (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |

B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
| . . . |
└ ┘

┌ ┐
| (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
| (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Output:
┌ ┐
| (-137.0, 17.0) (-158.0, -102.0) (-39.0, 141.0) |
| (-154.0, -77.0) (-63.0, 186.0) (159.0, 104.0) |

C = | . . . |
| . . . |
| . . . |
└ ┘

Chapter 9. Matrix Operations 467

STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix
Product)

Purpose

STRMM and DTRMM compute one of the following matrix-matrix products, using
the scalar α, rectangular matrix B, and triangular matrix A or its transpose:

1. B←αAB 3. B←αBA
2. B←αATB 4. B←αBAT

CTRMM and ZTRMM compute one of the following matrix-matrix products, using
the scalar α, rectangular matrix B, and triangular matrix A, its transpose, or its
conjugate transpose:

1. B←αAB 3. B←αBA 5. B←αAHB
2. B←αATB 4. B←αBAT 6. B←αBAH

Table 112. Data Types

A, B, α Subroutine

Short-precision real STRMM

Long-precision real DTRMM

Short-precision complex CTRMM

Long-precision complex ZTRMM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b,
ldb)

C and C++ strmm | dtrmm | ctrmm | ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

CBLAS cblas_strmm | cblas_dtrmm | cblas_ctrmm | cblas_ztrmm (cblas_order, cblas_side, cblas_uplo,
cblas_transa, cblas_diag, m, n, alpha, a, lda, b, ldb);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

side
indicates whether the triangular matrix A is located to the left or right of
rectangular matrix B in the equation used for this computation, where:

468 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

|
|
|

|

|
|

|
|

If side = 'L', A is to the left of B in the equation, resulting in either equation 1,
2, or 5.

If side = 'R', A is to the right of B in the equation, resulting in either equation 3,
4, or 6.

Specified as: a single character. It must be 'L' or 'R'.

cblas_side
indicates whether matrix A is located to the left or right of rectangular matrix
B in the equation used for this computation, where:

If cblas_side = CblasLeft, A is to the left of B in the equation, resulting in either
equation 1, 2, or 5.

If cblas_side = CblasRight, A is to the right of B in the equation, resulting in
either equation 3, 4, or 6.

Specified as: an object of enumerated type CBLAS_SIDE. It must be CblasLeft
or CblasRight.

uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in either equation 1 or 3.

If transa = 'T', AT is used in the computation, resulting in either equation 2 or 4.

If transa = 'C', AH is used in the computation, resulting in either equation 5 or
6.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used in the computation, resulting in either
equation 1 or 3.

If cblas_transa = CblasTrans, AT is used in the computation, resulting in either
equation 2 or 4.

If cblas_transa = CblasConjTrans, AH is used in thecomputation, resulting in
either equation 5 or 6.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

Chapter 9. Matrix Operations 469

|
|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

m is the number of rows in rectangular matrix B, and:

If side = 'L', m is the order of triangular matrix A.

Specified as: an integer, where:

If side = 'L', 0 ≤ m ≤ lda and m ≤ ldb.

If side = 'R', 0 ≤ m ≤ ldb.

n is the number of columns in rectangular matrix B, and:

If side = 'R', n is the order of triangular matrix A.

Specified as: an integer; n ≥ 0 and:

If side = 'R', n ≤ lda.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 112 on page 468.

a is the triangular matrix A, of which only the upper or lower triangular portion
is used, where:

If side = 'L', A is order m.

If side = 'R', A is order n.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 112 on page 468, where:

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B.

470 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|
|

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 112 on page 468.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ m.

On Return

b is the m by n matrix B, containing the results of the computation. Returned as:
an ldb by (at least) n array, containing numbers of the data type indicated in
Table 112 on page 468.

Notes
1. These subroutines accept lowercase letters for the side, uplo, transa, and diag

arguments.
2. For STRMM and DTRMM, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements; otherwise, results are

unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a

result, you do not have to set these values. For unit triangular matrices, the
elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0)
for complex matrices. When using upper- or lower-triangular storage, the
unreferenced elements in the lower and upper triangular part, respectively, are
assumed to be zero.

5. For a description of triangular matrices and how they are stored, see
“Triangular Matrix” on page 91.

Function

These subroutines can perform the following matrix-matrix product computations,
using the triangular matrix A, its transpose, or its conjugate transpose, where A
can be either upper- or lower-triangular:
1. B←αAB

2. B←αATB

3. B←αAHB (for CTRMM and ZTRMM only)
where:

αis a scalar.
A is a triangular matrix of order m.
B is an m by n rectangular matrix.

4. B←αBA

5. B←αBAT

6. B←αBAH (for CTRMM and ZTRMM only)
where:

α is a scalar.
A is a triangular matrix of order n.
B is an m by n rectangular matrix.

See references [40 on page 1315] and [46 on page 1316]. If n or m is 0, no
computation is performed.

Chapter 9. Matrix Operations 471

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. m < 0
3. m > ldb

4. n < 0
5. lda, ldb ≤ 0
6. side ≠ 'L' or 'R'
7. side = 'L' and m > lda

8. side = 'R' and n > lda

9. cblas_side ≠ CblasLeft or CblasRight
10. cblas_side = CblasLeft and m > lda

11. cblas_side = CblasRight and n > lda

12. uplo ≠ 'L' or 'U'
13. cblas_uplo ≠ CblasLower or CblasUpper
14. transa ≠ 'T', 'N', or 'C'
15. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
16. diag ≠ 'N' or 'U'
17. cblas_diag ≠ CblasNonUnit or CblasUnit

Examples

Example 1

This example shows the computation B←αAB, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 3 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM(’L’ , ’U’ , ’N’ , ’N’ , 5 , 3 , 1.0 , A , 7 , B , 6)

┌ ┐
| 3.0 -1.0 2.0 2.0 1.0 |
| . -2.0 4.0 -1.0 3.0 |
| . . -3.0 0.0 2.0 |

A = | . . . 4.0 -2.0 |
| 1.0 |
| |
| |
└ ┘

┌ ┐
| 2.0 3.0 1.0 |
| 5.0 5.0 4.0 |

B = | 0.0 1.0 2.0 |
| 3.0 1.0 -3.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Output:

472 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|

|

|

|

┌ ┐
| 6.0 10.0 -2.0 |
| -16.0 -1.0 6.0 |

B = | -2.0 1.0 -4.0 |
| 14.0 0.0 -14.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Example 2

This example shows the computation B←αATB, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 4 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM(’L’ , ’U’ , ’T’ , ’N’ , 5 , 4 , 1.0 , A , 7 , B , 6)

┌ ┐
| -1.0 -4.0 -2.0 2.0 3.0 |
| . -2.0 2.0 2.0 2.0 |
| . . -3.0 -1.0 4.0 |

A = | . . . 1.0 0.0 |
| -2.0 |
| |
| |
└ ┘

┌ ┐
| 1.0 2.0 3.0 4.0 |
| 3.0 3.0 -1.0 2.0 |

B = | -2.0 -1.0 0.0 1.0 |
| 4.0 4.0 -3.0 -3.0 |
| 2.0 2.0 2.0 2.0 |
| |
└ ┘

Output:
┌ ┐
| -1.0 -2.0 -3.0 -4.0 |
| 2.0 -2.0 -14.0 -12.0 |

B = | 10.0 5.0 -8.0 -7.0 |
| 14.0 15.0 1.0 8.0 |
| -3.0 4.0 3.0 16.0 |
| |
└ ┘

Example 3

This example shows the computation B←αBA, where A is a 5 by 5 lower
triangular matrix that is not unit triangular, and B is a 3 by 5 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM(’R’ , ’L’ , ’N’ , ’N’ , 3 , 5 , 1.0 , A , 7 , B , 4)

┌ ┐
| 2.0 |
| 2.0 3.0 . . . |
| 2.0 1.0 1.0 . . |

A = | 0.0 3.0 0.0 -2.0 . |

Chapter 9. Matrix Operations 473

| 2.0 4.0 -1.0 2.0 -1.0 |
| |
| |
└ ┘

┌ ┐
| 3.0 4.0 -1.0 -1.0 -1.0 |

B = | 2.0 1.0 -1.0 0.0 3.0 |
| -2.0 -1.0 -3.0 0.0 2.0 |
| |
└ ┘

Output:
┌ ┐
| 10.0 4.0 0.0 0.0 1.0 |

B = | 10.0 14.0 -4.0 6.0 -3.0 |
| -8.0 2.0 -5.0 4.0 -2.0 |
| |
└ ┘

Example 4

This example shows the computation B←αBA, where A is a 6 by 6 upper
triangular matrix that is unit triangular, and B is a 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRMM(’R’ , ’U’ , ’N’ , ’U’ , 1 , 6 , 1.0 , A , 7 , B , 2)

┌ ┐
| . 2.0 -3.0 1.0 2.0 4.0 |
| . . 0.0 1.0 1.0 -2.0 |
| . . . 4.0 -1.0 1.0 |

A = | 0.0 -1.0 |
| 2.0 |
| |
| |
└ ┘

┌ ┐
B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |

| |
└ ┘

Output:
┌ ┐

B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |
| |
└ ┘

Example 5

This example shows the computation B←αAHB, where A is a 5 by 5 upper
triangular matrix that is not unit triangular, and B is a 5 by 1 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRMM(’L’ , ’U’ , ’C’ , ’N’ , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

474 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
| . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |

A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
| . . . (4.0, -4.0) (2.0, 0.0) |
| (2.0, -1.0) |
| |
└ ┘

┌ ┐
| (3.0, 4.0) |
| (-4.0, 2.0) |

B = | (-5.0, 0.0) |
| (1.0, 3.0) |
| (3.0, 1.0) |
| . |
└ ┘

Output:
┌ ┐
| (-8.0, -19.0) |
| (8.0, 21.0) |

B = | (44.0, -8.0) |
| (13.0, -7.0) |
| (19.0, 2.0) |
| . |
└ ┘

Chapter 9. Matrix Operations 475

STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems
of Equations with Multiple Right-Hand Sides)

Purpose

STRSM and DTRSM perform one of the following solves for a triangular system of
equations with multiple right-hand sides, using scalar α, rectangular matrix B, and
triangular matrix A or its transpose:

Solution Equation
1. B←α(A-1)B AX = αB
2. B←α(A-T)B ATX = αB
3. B←αB(A-1) XA = αB
4. B←αB(A-T) XAT = αB

CTRSM and ZTRSM perform one of the following solves for a triangular system of
equations with multiple right-hand sides, using scalar α, rectangular matrix B, and
triangular matrix A, its transpose, or its conjugate transpose:

Solution Equation
1. B←α(A-1)B AX = αB
2. B←α(A-T)B ATX = αB
3. B←αB(A-1) XA = αB
4. B←αB(A-T) XAT = αB
5. B←α(A-H)B AHX = αB
6. B←αB(A-H) XAH = αB

Note: The term X used in the systems of equations listed above represents the
output solution matrix. It is important to note that in these subroutines the
solution matrix is actually returned in the input-output argument b.

Table 113. Data Types

A, B, α Subroutine

Short-precision real STRSM

Long-precision real DTRSM

Short-precision complex CTRSM

Long-precision complex ZTRSM

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b,
ldb)

C and C++ strsm | dtrsm | ctrsm | ztrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

CBLAS cblas_strsm | cblas_dtrsm | cblas_ctrsm | cblas_ztrsm (cblas_order, cblas_side, cblas_uplo,
cblas_transa, cblas_diag, m, n, alpha, a, lda, b, ldb);

On Entry

476 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

side
indicates whether the triangular matrix A is located to the left or right of
rectangular matrix B in the system of equations, where:

If side = 'L', A is to the left of B, resulting in solution 1, 2, or 5.

If side = 'R', A is to the right of B, resulting in solution 3, 4, or 6.

Specified as: a single character. It must be 'L' or 'R'.

cblas_side
indicates whether matrix A is located to the left or right of rectangular matrix
B in the equation used for this computation, where:

If cblas_side = CblasLeft, A is to the left of B, resulting in solution 1, 2, or 5.

If cblas_side = CblasRight, A is to the right of B, resulting in solution 3, 4, or 6.

Specified as: an object of enumerated type CBLAS_SIDE. It must be CblasLeft
or CblasRight.

uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If cblas_uplo = CblasUpper, A is an upper triangular matrix.

If cblas_uplo = CblasLower, A is a lower triangular matrix.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

transa
indicates the form of matrix A used in the system of equations, where:

If transa = 'N', A is used, resulting in solution 1 or 3.

If transa = 'T', AT is used, resulting in solution 2 or 4.

If transa = 'C', AH is used, resulting in solution 5 or 6.

Specified as: a single character. It must be 'N', 'T', or 'C'.

cblas_transa
indicates the form of matrix A to use in the computation, where:

If cblas_transa = CblasNoTrans, A is used, resulting in solution 1 or 3.

If cblas_transa = CblasTrans, AT is used, resulting in solution 2 or 4.

Chapter 9. Matrix Operations 477

|
|
|

|

|
|

|
|

|
|
|

|

|

|
|

|
|

|

|

|
|

|
|

|

|

If cblas_transa = CblasConjTrans, AH is used, resulting in solution 5 or 6.

Specified as: an object of enumerated type CBLAS_TRANSPOSE. It must be
CblasNoTrans, CblasTrans, or CblasConjTrans.

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

cblas_diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = CblasUnit, A is a unit triangular matrix.

If diag = CblasNonUnit A is not a unit triangular matrix.

Specified as: an object of enumerated type CBLAS_DIAG. It must be
CblasNonUnit or CblasUnit.

m is the number of rows in rectangular matrix B, and:

If side = 'L', m is the order of triangular matrix A.

Specified as: an integer, where:

If side = 'L', 0 ≤ m ≤ lda and m ≤ ldb.

If side = 'R', 0 ≤ m ≤ ldb.

n is the number of columns in rectangular matrix B, and:

If side = 'R', n is the order of triangular matrix A.

Specified as: an integer; n ≥ 0, and:

If side = 'R', n ≤ lda.

alpha
is the scalar α. Specified as: a number of the data type indicated in Table 113 on
page 476.

a is the triangular matrix A, of which only the upper or lower triangular portion
is used, where:

If side = 'L', A is order m.

If side = 'R', A is order n.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 113 on page 476, where:

If side = 'L', its size must be lda by (at least) m.

If side = 'R', it size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0, and:

If side = 'L', lda ≥ m.

If side = 'R', lda ≥ n.

b is the m by n rectangular matrix B, which contains the right-hand sides of the
triangular system to be solved.

478 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|

|
|

|

|

|
|

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 113 on page 476.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ m.

On Return

b is the m by n matrix B, containing the results of the computation.

Returned as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 113 on page 476.

Notes
1. These subroutines accept lowercase letters for the transa, side, diag, and uplo

arguments.
2. For STRSM and DTRSM, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements or results are unpredictable.
4. If matrix A is upper triangular (uplo = 'U'), these subroutines refer to only the

upper triangular portion of the matrix. If matrix A is lower triangular, (uplo =
'L'), these subroutines refer to only the lower triangular portion of the matrix.
The unreferenced elements are assumed to be zero.

5. The elements of the diagonal of a unit triangular matrix are always one, so you
do not need to set these values. The ESSL subroutines always assume that the
values in these positions are 1.0 for STRSM and DTRSM and (1.0, 0.0) for
CTRSM and ZTRSM.

6. For a description of triangular matrices and how they are stored, see
“Triangular Matrix” on page 91.

Function

These subroutines solve a triangular system of equations with multiple right-hand
sides. The solution B may be any of the following, where A is a triangular matrix
and B is a rectangular matrix:
1. B←α(A-1)B
2. B←α(A-T)B
3. B←αB(A-1)
4. B←αB(A-T)
5. B←α(A-H)B (only for CTRSM and ZTRSM)
6. B←αB(A-H) (only for CTRSM and ZTRSM)

where:

α is a scalar.
B is an m by n rectangular matrix.
A is an upper or lower triangular matrix, where:
If side = 'L', it has order m, and equation 1, 2, or 5 is performed.
If side = 'R', it has order n, and equation 3, 4, or 6 is performed.

If n or m is 0, no computation is performed. See references [40 on page 1315] and
[44 on page 1316].

Chapter 9. Matrix Operations 479

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Note: If the triangular matrix A is singular, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors
1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. m < 0
3. m > ldb
4. n < 0
5. lda, ldb ≤ 0
6. side ≠ 'L' or 'R'
7. side = 'L' and m > lda
8. side = 'R' and n > lda
9. cblas_side ≠ CblasLeft or CblasRight

10. cblas_side = CblasLeft and m > lda
11. cblas_side = CblasRight and n > lda
12. uplo ≠ 'L' or 'U'
13. cblas_uplo ≠ CblasLower or CblasUpper
14. transa ≠ 'T', 'N', or 'C'
15. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans
16. diag ≠ 'N' or 'U'
17. cblas_diag ≠ CblasNonUnit or CblasUnit

Examples

Example 1

This example shows the solution B←α(A-1)B, where A is a real 5 by 5 upper
triangular matrix that is not unit triangular, and B is a real 5 by 3 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM(’L’ , ’U’ , ’N’ , ’N’ , 5 , 3 , 1.0 , A , 7 , B , 6)

┌ ┐
| 3.0 -1.0 2.0 2.0 1.0 |
| . -2.0 4.0 -1.0 3.0 |
| . . -3.0 0.0 2.0 |

A = | . . . 4.0 -2.0 |
| 1.0 |
| |
| |
└ ┘

┌ ┐
| 6.0 10.0 -2.0 |
| -16.0 -1.0 6.0 |

B = | -2.0 1.0 -4.0 |
| 14.0 0.0 -14.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Output:

480 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|

|

|

|

┌ ┐
| 2.0 3.0 1.0 |
| 5.0 5.0 4.0 |

B = | 0.0 1.0 2.0 |
| 3.0 1.0 -3.0 |
| -1.0 2.0 1.0 |
| . . . |
└ ┘

Example 2

This example shows the solution B←α(A-T)B, where A is a real 5 by 5 upper
triangular matrix that is not unit triangular, and B is a real 5 by 4 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM(’L’ , ’U’ , ’T’ , ’N’ , 5 , 4 , 1.0 , A , 7 , B , 6)

┌ ┐
| -1.0 -4.0 -2.0 2.0 3.0 |
| . -2.0 2.0 2.0 2.0 |
| . . -3.0 -1.0 4.0 |

A = | . . . 1.0 0.0 |
| -2.0 |
| |
| |
└ ┘

┌ ┐
| -1.0 -2.0 -3.0 -4.0 |
| 2.0 -2.0 -14.0 -12.0 |

B = | 10.0 5.0 -8.0 -7.0 |
| 14.0 15.0 1.0 8.0 |
| -3.0 4.0 3.0 16.0 |
| |
└ ┘

Output:
┌ ┐
| 1.0 2.0 3.0 4.0 |
| 3.0 3.0 -1.0 2.0 |

B = | -2.0 -1.0 0.0 1.0 |
| 4.0 4.0 -3.0 -3.0 |
| 2.0 2.0 2.0 2.0 |
| |
└ ┘

Example 3

This example shows the solution B←αB(A-1), where A is a real 5 by 5 lower
triangular matrix that is not unit triangular, and B is a real 3 by 5 rectangular
matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM(’R’ , ’L’ , ’N’ , ’N’ , 3 , 5 , 1.0 , A , 7 , B , 4)

┌ ┐
| 2.0 |
| 2.0 3.0 . . . |
| 2.0 1.0 1.0 . . |

A = | 0.0 3.0 0.0 -2.0 . |

Chapter 9. Matrix Operations 481

| 2.0 4.0 -1.0 2.0 -1.0 |
| |
| |
└ ┘

┌ ┐
| 10.0 4.0 0.0 0.0 1.0 |

B = | 10.0 14.0 -4.0 6.0 -3.0 |
| -8.0 2.0 -5.0 4.0 -2.0 |
| |
└ ┘

Output:
┌ ┐
| 3.0 4.0 -1.0 -1.0 -1.0 |

B = | 2.0 1.0 -1.0 0.0 3.0 |
| -2.0 -1.0 -3.0 0.0 2.0 |
| |
└ ┘

Example 4

This example shows the solution B←αB(A-1), where A is a real 6 by 6 upper
triangular matrix that is unit triangular, and B is a real 1 by 6 rectangular
matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of 1.0 for the diagonal element.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL STRSM(’R’ , ’U’ , ’N’ , ’U’ , 1 , 6 , 1.0 , A , 7 , B , 2)

┌ ┐
| . 2.0 -3.0 1.0 2.0 4.0 |
| . . 0.0 1.0 1.0 -2.0 |
| . . . 4.0 -1.0 1.0 |

A = | 0.0 -1.0 |
| 2.0 |
| |
| |
└ ┘

┌ ┐
B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |

| |
└ ┘

Output:
┌ ┐

B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |
| |
└ ┘

Example 5

This example shows the solution B←αB(A-1), where A is a complex 5 by 5 lower
triangular matrix that is not unit triangular, and B is a complex 3 by 5
rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRSM(’R’ , ’L’ , ’N’ , ’N’ , 3 , 5 , ALPHA , A , 7 , B , 4)

ALPHA = (1.0, 0.0)

482 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (2.0, -3.0) |
| (2.0, -4.0) (3.0, -1.0) . . . |
| (2.0, 2.0) (1.0, 2.0) (1.0, 1.0) . . |

A = | (0.0, 0.0) (3.0, -1.0) (0.0, -1.0) (-2.0, 1.0) . |
| (2.0, 2.0) (4.0, 0.0) (-1.0, 2.0) (2.0, -4.0) (-1.0, -4.0) |
| |
| |
└ ┘

┌ ┐
| (22.0, -41.0) (7.0, -26.0) (9.0, 0.0) (-15.0, -3.0) (-15.0, 8.0) |

B = | (29.0, -18.0) (24.0, -10.0) (9.0, 6.0) (-12.0, -24.0) (-19.0, -8.0) |
| (-15.0, 2.0) (-3.0, -21.0) (-2.0, 4.0) (-4.0, -12.0) (-10.0, -6.0) |
| |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) (4.0, 0.0) (-1.0, -2.0) (-1.0, -1.0) (-1.0, -4.0) |

B = | (2.0, -1.0) (1.0, 2.0) (-1.0, -3.0) (0.0, 2.0) (3.0, -4.0) |
| (-2.0, 1.0) (-1.0, -3.0) (-3.0, 1.0) (0.0, 0.0) (2.0, -2.0) |
| |
└ ┘

Example 6

This example shows the solution B←α(A-H)B, where A is a complex 5 by 5
upper triangular matrix that is not unit triangular, and B is a complex 5 by 1
rectangular matrix.

Call Statement and Input:
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | | |

CALL CTRSM(’L’ , ’U’ , ’C’ , ’N’ , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

┌ ┐
| (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
| . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |

A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
| . . . (4.0, -4.0) (2.0, 0.0) |
| (2.0, -1.0) |
| |
└ ┘

┌ ┐
| (-8.0, -19.0) |
| (8.0, 21.0) |

B = | (44.0, -8.0) |
| (13.0, -7.0) |
| (19.0, 2.0) |
| . |
└ ┘

Output:
┌ ┐
| (3.0, 4.0) |
| (-4.0, 2.0) |

B = | (-5.0, 0.0) |
| (1.0, 3.0) |
| (3.0, 1.0) |
| . |
└ ┘

Chapter 9. Matrix Operations 483

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update
of a Real or Complex Symmetric or a Complex Hermitian Matrix)

Purpose

These subroutines compute one of the following rank-k updates, where matrix C is
stored in either upper or lower storage mode. SSYRK, DSYRK, CSYRK, and ZSYRK
use the scalars α and β, real or complex matrix A or its transpose, and real or
complex symmetric matrix C to compute:
1. C ← αAAT+βC

2. C ← αATA+βC

CHERK and ZHERK use the scalars α and β, complex matrix A or its complex
conjugate transpose, and complex Hermitian matrix C to compute:
1. C ← αAAH+βC

2. C ← αAHA+βC

Table 114. Data Types

A, C α, β Subprogram

Short-precision real Short-precision real SSYRK

Long-precision real Long-precision real DSYRK

Short-precision complex Short-precision complex CSYRK

Long-precision complex Long-precision complex ZSYRK

Short-precision complex Short-precision real CHERK

Long-precision complex Long-precision real ZHERK

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a,
lda, beta, c, ldc)

C and C++ ssyrk | dsyrk | csyrk | zsyrk | cherk | zherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);

CBLAS cblas_ssyrk | cblas_dsyrk | cblas_csyrk | cblas_zsyrk | cblas_cherk | cblas_zherk
(cblas_order, cblas_uplo, cblas_trans, n, k, alpha, a, lda, beta, c, ldc);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.
v If cblas_order = CblasColMajor, the matrices are stored in column major

order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix C, where:

484 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

||
|

|
|
|

|

|
|

|
|

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

trans
indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used, resulting in equation 1 or 3.

If trans = 'T', AT is used, resulting in equation 2.

If trans = 'C', AH is used, resulting in equation 4.

Specified as: a single character, where:

For SSYRK and DSYRK, it must be 'N', 'T', or 'C'.

For CSYRK and ZSYRK, it must be 'N' or 'T'.

For CHERK and ZHERK, it must be 'N' or 'C'.

cblas_trans
indicates the form of matrix A to use in the computation, where:

If cblas_trans = CblasNoTrans, A is used, resulting in equation 1 or 3.

If cblas_trans = CblasTrans, AT is used, resulting in equation 2.

If cblas_trans = CblasConjTrans, AH is used, resulting in equation 4.

Specified as: an object of enumerated type CBLAS_TRANSPOSE, where:

For SSYRK and DSYRK, it must be CblasNoTrans, CblasTrans, or
CblasConjTrans.

For CSYRK and ZSYRK, it must be CblasNoTrans or CblasTrans.

For CHERK and ZHERK, it must be CblasNoTrans or CblasConjTrans.

n is the order of matrix C.

Specified as: an integer; 0 ≤ n ≤ ldc and:

If trans = 'N', then n ≤ lda.

k has the following meaning, where:

If trans = 'N', it is the number of columns in matrix A.

If trans = 'T' or 'C', it is the number of rows in matrix A.

Specified as: an integer; k ≥ 0 and:

If trans = 'T' or 'C', then k ≤ lda.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 114 on page 484.

Chapter 9. Matrix Operations 485

|
|

|

|

|
|

|
|

|

|

|

|

|
|

|

|

a is the rectangular matrix A, where:

If trans = 'N', A is n by k.

If trans = 'T' or 'C', A is k by n.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 114 on page 484, where:

If trans = 'N', its size must be lda by (at least) k.

If trans = 'T' or 'C', its size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If trans = 'N', lda ≥ n.

If trans = 'T' or 'C', lda ≥ k.

beta
is the scalar β.

Specified as: a number of the data type indicated in Table 114 on page 484.

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 114 on page 484.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ n.

On Return

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, containing the results of the computation, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 114 on page 484.

Notes
1. These subroutines accept lowercase letters for the uplo and trans arguments.
2. For SSYRK and DSYRK, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrices A and C must have no common elements; otherwise, results are

unpredictable.

486 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix C
are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when β is one and α or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 83. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 88.

Function

These subroutines can perform the following rank-k updates. For SSYRK and
DSYRK, matrix C is real symmetric. For CSYRK and ZSYRK, matrix C is complex
symmetric. They perform:
1. C←αAAT+βC

2. C←αATA+βC

For CHERK and ZHERK, matrix C is complex Hermitian. They perform:
1. C←αAAH+βC

2. C←αAHA+βC

where:

α and β are scalars.

A is a rectangular matrix, which is n by k for equations 1 and 3, and is k by n for
equations 2 and 4.

C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references [40 on page 1315] and [46 on page 1316]. In the following two cases,
no computation is performed:
v n is 0.
v β is one, and α is zero or k is zero.

Assuming the above conditions do not exist, if β is not one, and αis zero or k is
zero, then βC is returned.

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. lda, ldc ≤ 0
3. ldc < n
4. k, n < 0
5. uplo ≠ 'U' or 'L'
6. cblas_uplo ≠ CblasLower or CblasUpper

Chapter 9. Matrix Operations 487

|

|

7. trans ≠ 'N', 'T', or 'C' for SSYRK and DSYRK
8. trans ≠ 'N' or 'T' for CSYRK and ZSYRK
9. trans ≠ 'N' or 'C' for CHERK and ZHERK

10. trans = 'N' and lda < n
11. trans = 'T' or 'C' and lda < k
12. cblas_trans ≠ CblasNoTrans, CblasTrans, or CblasConjTrans for SSYRK and

DSYRK
13. cblas_trans ≠ CblasNoTrans or CblasTrans for CSYRK and ZSYRK
14. cblas_trans ≠ CblasNoTrans or CblasConjTrans for CHERK and ZHERK
15. cblas_trans = CblasNoTrans and lda < n
16. cblas_trans = CblasTrans, or CblasConjTrans and lda < k

Examples

Example 1

This example shows the computation C←αAAT+βC, where A is an 8 by 2 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in
upper storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL SSYRK(’U’ , ’N’ , 8 , 2 , 1.0 , A , 9 , 1.0 , C , 10)

┌ ┐
| 0.0 8.0 |
| 1.0 9.0 |
| 2.0 10.0 |
| 3.0 11.0 |

A = | 4.0 12.0 |
| 5.0 13.0 |
| 6.0 14.0 |
| 7.0 15.0 |
| . . |
└ ┘

┌ ┐
| 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
| . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
| . . 5.0 8.0 12.0 17.0 23.0 30.0 |
| . . . 9.0 13.0 18.0 24.0 31.0 |

C = | 14.0 19.0 25.0 32.0 |
| 20.0 26.0 33.0 |
| 27.0 34.0 |
| 35.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 64.0 73.0 83.0 94.0 106.0 119.0 133.0 148.0 |
| . 84.0 96.0 109.0 123.0 138.0 154.0 171.0 |
| . . 109.0 124.0 140.0 157.0 175.0 194.0 |
| . . . 139.0 157.0 176.0 196.0 217.0 |

C = | 174.0 195.0 217.0 240.0 |
| 214.0 238.0 263.0 |
| 259.0 286.0 |
| 309.0 |
| |
| |
└ ┘

488 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|

|

|

|

Example 2

This example shows the computation C←αATA+βC, where A is a 3 by 8 real
rectangular matrix, and C is a real symmetric matrix of order 8, stored in lower
storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL SSYRK(’L’ , ’T’ , 8 , 3 , 1.0 , A , 4 , 1.0 , C , 8)

┌ ┐
| 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |

A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |
| 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
| |
└ ┘

┌ ┐
| 0.0 |
| 1.0 8.0 |
| 2.0 9.0 15.0 |

C = | 3.0 10.0 16.0 21.0 |
| 4.0 11.0 17.0 22.0 26.0 . . . |
| 5.0 12.0 18.0 23.0 27.0 30.0 . . |
| 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
| 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
└ ┘

Output:
┌ ┐
| 5.0 |
| 15.0 58.0 |
| 25.0 95.0 164.0 |

C = | 35.0 132.0 228.0 323.0 |
| 45.0 169.0 292.0 414.0 535.0 . . . |
| 55.0 206.0 356.0 505.0 653.0 800.0 . . |
| 65.0 243.0 420.0 596.0 771.0 945.0 1118.0 . |
| 75.0 280.0 484.0 687.0 889.0 1090.0 1290.0 1489.0 |
└ ┘

Example 3

This example shows the computation C←αAAT+βC, where A is a 3 by 5 complex
rectangular matrix, and C is a complex symmetric matrix of order 3, stored in
upper storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL CSYRK(’U’ , ’N’ , 3 , 5 , ALPHA , A , 3 , BETA , C , 4)

ALPHA = (1.0, 1.0)
BETA = (1.0, 1.0)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |

A = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) (3.0, 2.0) (2.0, 2.0) |
└ ┘

┌ ┐
| (2.0, 1.0) (1.0, 9.0) (4.0, 5.0) |

C = | . (3.0, 1.0) (6.0, 7.0) |
| . . (8.0, 1.0) |
| . . . |
└ ┘

Output:

Chapter 9. Matrix Operations 489

┌ ┐
| (-57.0, 13.0) (-63.0, 79.0) (-24.0, 70.0) |

C = | . (-28.0, 90.0) (-55.0, 103.0) |
| . . (13.0, 75.0) |
| . . . |
└ ┘

Example 4

This example shows the computation C←αAHA+βC, where A is a 5 by 3
complex rectangular matrix, and C is a complex Hermitian matrix of order 3,
stored in lower storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |

CALL CHERK(’L’ , ’C’ , 3 , 5 , 1.0 , A , 5 , 1.0 , C , 4)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |

A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
└ ┘

┌ ┐
| (6.0, .) . . |

C = | (3.0, 4.0) (10.0, .) . |
| (9.0, 1.0) (12.0, 2.0) (3.0, .) |
| . . . |
└ ┘

Output:
┌ ┐
| (138.0, 0.0) . . |

C = | (65.0, 80.0) (165.0, 0.0) . |
| (134.0, 46.0) (88.0, -88.0) (199.0, 0.0) |
| . . . |
└ ┘

490 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K
Update of a Real or Complex Symmetric or a Complex Hermitian
Matrix)

Purpose

These subroutines compute one of the following rank-2k updates, where matrix C
is stored in upper or lower storage mode. SSYR2K, DSYR2K, CSYR2K, and
ZSYR2K use the scalars α and β, real or complex matrices A and B or their
transposes, and real or complex symmetric matrix C to compute:
1. C ← αABT+αBAT+βC

2. C ← αATB+αBTA+βC

CHER2K and ZHER2K use the scalars α and β, complex matrices A and B or their
complex conjugate transposes, and complex Hermitian matrix C to compute:

Table 115. Data Types

A, B, C, α β Subprogram

Short-precision real Short-precision real SSYR2K

Long-precision real Long-precision real DSYR2K

Short-precision complex Short-precision complex CSYR2K

Long-precision complex Long-precision complex ZSYR2K

Short-precision complex Short-precision real CHER2K

Long-precision complex Long-precision real ZHER2K

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SSYR2K | DSYR2K | CSYR2K | ZSYR2K | CHER2K | ZHER2K (uplo, trans, n, k,
alpha, a, lda, b, ldb, beta, c, ldc)

C and C++ ssyr2k | dsyr2k | csyr2k | zsyr2k | cher2k | zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc);

CBLAS cblas_ssyr2k | cblas_dsyr2k | cblas_csyr2k | cblas_zsyr2k | cblas_cher2k | cblas_zher2k
(cblas_order, cblas_uplo, cblas_trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

On Entry

cblas_order
indicates whether the input and output matrices are stored in row major order
or column major order, where:
v If cblas_order = CblasRowMajor, the matrices are stored in row major order.

Chapter 9. Matrix Operations 491

||
|

|
|
|

|

v If cblas_order = CblasColMajor, the matrices are stored in column major
order.

Specified as: an object of enumerated type CBLAS_ORDER. It must be
CblasRowMajor or CblasColMajor.

uplo
indicates the storage mode used for matrix C, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

cblas_uplo
indicates the storage mode used for matrix A, where:

If cblas_uplo = CblasUpper, A is stored in upper storage mode.

If cblas_uplo = CblasLower, A is stored in lower storage mode.

Specified as: an object of enumerated type CBLAS_UPLO. It must be
CblasUpper or CblasLower.

trans
indicates the form of matrices A and B to use in the computation, where:

If trans = 'N', A and B are used, resulting in equation 1 or 3.

If trans = 'T', AT and BT are used, resulting in equation 2.

If trans = 'C', AH and BH are used, resulting in equation 4.

Specified as: a single character, where:

For SSYR2K and DSYR2K, it must be 'N', 'T', or 'C'.

For CSYR2K and ZSYR2K, it must be 'N' or 'T'.

For CHER2K and ZHER2K, it must be 'N' or 'C'.

cblas_trans
indicates the form of matrix A to use in the computation, where:

If cblas_trans = CblasNoTrans, A is used, resulting in equation 1 or 3.

If cblas_trans = CblasTrans, AT is used, resulting in equation 2.

If cblas_trans = CblasConjTrans, AH is used, resulting in equation 4.

Specified as: an object of enumerated type CBLAS_TRANSPOSE, where:

For SSYR2K and DSYR2K, it must be CblasNoTrans, CblasTrans, or
CblasConjTrans.

For CSYR2K and ZSYR2K, it must be CblasNoTrans or CblasTrans.

For CHER2K and ZHER2K, it must be CblasNoTrans or CblasConjTrans.

n is the order of matrix C.

Specified as: an integer; 0 ≤ n ≤ ldc and:

If trans = 'N', then n ≤ lda and n ≤ ldb.

k has the following meaning, where:

If trans = 'N', it is the number of columns in matrices A and B.

If trans = 'T' or 'C', it is the number of rows in matrices A and B.

492 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|

|
|

|

|

Specified as: an integer; k ≥ 0 and:

If trans = 'T' or 'C', then k ≤ lda and k ≤ ldb.

alpha
is the scalar α.

Specified as: a number of the data type indicated in Table 115 on page 491.

a is the rectangular matrix A, where:

If trans = 'N', A is n by k.

If trans = 'T' or 'C', A is k by n.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 115 on page 491, where:

If trans = 'N', its size must be lda by (at least) k.

If trans = 'T' or 'C', its size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and:

If trans = 'N', lda ≥ n.

If trans = 'T' or 'C', lda ≥ k.

b is the rectangular matrix B, where:

If trans = 'N', B is n by k.

If trans = 'T' or 'C', B is k by n.

Note: No data should be moved to form BT or BH; that is, the matrix B should
always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type
indicated in Table 115 on page 491, where:

If trans = 'N', its size must be ldb by (at least) k.

If trans = 'T' or 'C', its size must be ldb by (at least) n.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and:

If trans = 'N', ldb ≥ n.

If trans = 'T' or 'C', ldb ≥ k.

beta
is the scalar β.

Specified as: a number of the data type indicated in Table 115 on page 491.

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Chapter 9. Matrix Operations 493

Specified as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 115 on page 491.

ldc
is the leading dimension of the array specified for c.

Specified as: an integer; ldc > 0 and ldc ≥ n.

On Return

c is matrix C of order n, which is real symmetric, complex symmetric, or
complex Hermitian, containing the results of the computation, where:

If uplo = 'U', C is stored in upper storage mode.

If uplo = 'L', C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data type
indicated in Table 115 on page 491.

Notes
1. These subroutines accept lowercase letters for the uplo and trans arguments.
2. For SSYR2K and DSYR2K, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements with matrix C; otherwise,

results are unpredictable.
4. The imaginary parts of the diagonal elements of a complex Hermitian matrix C

are assumed to be zero, so you do not have to set these values. On output, they
are set to zero, except when β is one and α or k is zero, in which case no
computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower
storage mode, see “Symmetric Matrix” on page 83. For a description of how
complex Hermitian matrices are stored in upper and lower storage mode, see
“Complex Hermitian Matrix” on page 88.

Function

These subroutines can perform the following rank-2k updates. For SSYR2K and
DSYR2K, matrix C is real symmetric. For CSYR2K and ZSYR2K, matrix C is
complex symmetric. They perform:
1. C ← αABT + αBAT + βC

2. C ← αATB + αBTA + βC

For CHER2K and ZHER2K, matrix C is complex Hermitian. They perform:

where:

α and β are scalars.

A and B are rectangular matrices, which are n by k for equations 1 and 3, and are k
by n for equations 2 and 4.

494 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C is a matrix of order n of the type indicated above, stored in upper or lower
storage mode.

See references [40 on page 1315], [46 on page 1316], and [84 on page 1318]. In the
following two cases, no computation is performed:
v n is 0.
v β is one, and α is zero or k is zero.

Assuming the above conditions do not exist, if β is not one, and α is zero or k is
zero, then βC is returned.

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

1. cblas_order ≠ CblasRowMajor or CblasColMajor
2. lda, ldb, ldc ≤ 0
3. ldc < n
4. k, n < 0
5. uplo ≠ 'U' or 'L'
6. cblas_uplo ≠ CblasLower or CblasUpper
7. trans ≠ 'N', 'T', or 'C' for SSYR2K and DSYR2K
8. trans ≠ 'N' or 'T' for CSYR2K and ZSYR2K
9. trans ≠ 'N' or 'C' for CHER2K and ZHER2K

10. trans = 'N' and lda < n
11. trans = 'T' or 'C' and lda < k
12. trans = 'N' and ldb < n
13. trans = 'T' or 'C' and ldb < k
14. cblas_transa ≠ CblasNoTrans, CblasTrans, or CblasConjTrans for SSYR2K

and DSYR2K
15. cblas_transa ≠ CblasNoTrans or CblasTrans for CSYR2K and ZSYR2K
16. cblas_transa ≠ CblasNoTrans or CblasConjTrans for CHER2K and ZHER2K
17. cblas_transa = CblasNoTrans and lda < n
18. cblas_transa = CblasTrans, or CblasConjTrans and lda < k
19. cblas_trans = CblasNoTrans and ldb < n
20. cblas_trans = CblasNoTrans or CblasConjTrans and ldb < k

Examples

Example 1

This example shows the computation C←αABT+αBAT+βC, where A and B are 8
by 2 real rectangular matrices, and C is a real symmetric matrix of order 8,
stored in upper storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYR2K(’U’ , ’N’ , 8 , 2 , 1.0 , A , 9 , B , 8 , 1.0 , C , 10)

Chapter 9. Matrix Operations 495

|

|

|
|

|

|

|

|

|

|

┌ ┐
| 0.0 8.0 |
| 1.0 9.0 |
| 2.0 10.0 |
| 3.0 11.0 |

A = | 4.0 12.0 |
| 5.0 13.0 |
| 6.0 14.0 |
| 7.0 15.0 |
| . . |
└ ┘

┌ ┐
| 15.0 7.0 |
| 14.0 6.0 |
| 13.0 5.0 |

B = | 12.0 4.0 |
| 11.0 3.0 |
| 10.0 2.0 |
| 9.0 1.0 |
| 8.0 0.0 |
└ ┘

┌ ┐
| 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
| . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
| . . 5.0 8.0 12.0 17.0 23.0 30.0 |
| . . . 9.0 13.0 18.0 24.0 31.0 |

C = | 14.0 19.0 25.0 32.0 |
| 20.0 26.0 33.0 |
| 27.0 34.0 |
| 35.0 |
| |
| |
└ ┘

Output:
┌ ┐
| 112.0 127.0 143.0 160.0 178.0 197.0 217.0 238.0 |
| . 138.0 150.0 163.0 177.0 192.0 208.0 225.0 |
| . . 157.0 166.0 176.0 187.0 199.0 212.0 |
| . . . 169.0 175.0 182.0 190.0 199.0 |

C = | 174.0 177.0 181.0 186.0 |
| 172.0 172.0 173.0 |
| 163.0 160.0 |
| 147.0 |
| |
| |
└ ┘

Example 2

This example shows the computation C←αATB+αBTA+βC, where A and B are 3
by 8 real rectangular matrices, and C is a real symmetric matrix of order 8,
stored in lower storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL SSYR2K(’L’ , ’T’ , 8 , 3 , 1.0 , A , 4 , B , 5 , 1.0 , C , 8)

┌ ┐
| 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |

A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |
| 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
| |
└ ┘

496 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 |
| 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |

B = | 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 |
| |
| |
└ ┘

┌ ┐
| 0.0 |
| 1.0 8.0 |
| 2.0 9.0 15.0 |

C = | 3.0 10.0 16.0 21.0 |
| 4.0 11.0 17.0 22.0 26.0 . . . |
| 5.0 12.0 18.0 23.0 27.0 30.0 . . |
| 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
| 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
└ ┘

Output:
┌ ┐
| 16.0 |
| 38.0 84.0 |
| 60.0 124.0 187.0 |

C = | 82.0 164.0 245.0 325.0 |
| 104.0 204.0 303.0 401.0 498.0 . . . |
| 126.0 244.0 361.0 477.0 592.0 706.0 . . |
| 148.0 284.0 419.0 553.0 686.0 818.0 949.0 . |
| 170.0 324.0 477.0 629.0 780.0 930.0 1079.0 1227.0 |
└ ┘

Example 3

This example shows the computation C←αABT+αBAT+βC, where A and B are 3
by 5 complex rectangular matrices, and C is a complex symmetric matrix of
order 3, stored in lower storage mode.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CSYR2K(’L’ , ’N’ , 3 , 5 , ALPHA , A , 3 , B , 3 , BETA , C , 4)

ALPHA = (1.0, 1.0)

BETA = (1.0, 1.0)

┌ ┐
| (2.0, 5.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |

A = | (3.0, 3.0) (8.0, 5.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 5.0) (3.0, 2.0) (2.0, 2.0) |
└ ┘

┌ ┐
| (1.0, 5.0) (6.0, 2.0) (3.0, 1.0) (2.0, 0.0) (1.0, 0.0) |

B = | (2.0, 4.0) (7.0, 5.0) (2.0, 5.0) (2.0, 4.0) (0.0, 0.0) |
| (3.0, 5.0) (8.0, 1.0) (1.0, 5.0) (1.0, 0.0) (1.0, 1.0) |
└ ┘

┌ ┐
| (2.0, 3.0) . . |

C = | (1.0, 9.0) (3.0, 3.0) . |
| (4.0, 5.0) (6.0, 7.0) (8.0, 3.0) |
| . . . |
└ ┘

Output:
┌ ┐
| (-101.0, 121.0) . . |

C = | (-182.0, 192.0) (-274.0, 248.0) . |

Chapter 9. Matrix Operations 497

| (-98.0, 146.0) (-163.0, 205.0) (-151.0, 115.0) |
| . . . |
└ ┘

Example 4

This example shows the computation:

where A and B are 5 by 3 complex rectangular matrices, and C is a complex
Hermitian matrix of order 3, stored in upper storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero.

Call Statement and Input:
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | | | |

CALL CHER2K(’U’ , ’C’ , 3 , 5 , ALPHA , A , 5 , B , 5 , 1.0 , C , 4)

ALPHA = (1.0, 1.0)

┌ ┐
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |

A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
└ ┘

┌ ┐
| (4.0, 5.0) (6.0, 7.0) (8.0, 0.0) |
| (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |

B = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
| (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
| (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
└ ┘

┌ ┐
| (6.0, .) (3.0, 4.0) (9.0, 1.0) |

C = | . (10.0, .) (12.0, 2.0) |
| . . (3.0, .) |
| . . . |
└ ┘

Output:
┌ ┐
| (102.0, 0.0) (56.0, -143.0) (244.0, -96.0) |

C = | . (174.0, 0.0) (238.0, 78.0) |
| . . (363.0, 0.0) |
| . . . |
└ ┘

498 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General
Matrix Transpose or Conjugate Transpose [In-Place])

Purpose

Subroutines SGETMI, DGETMI, CGETMI, and ZGETMI perform a transpose of an
n by n matrix A in place—that is, in matrix A:

A←AT

Subroutines CGECMI and ZGECMI perform a conjugate transpose of an n by n
matrix A in place—that is, in matrix A:

A←AH

Table 116. Data Types

A Subroutine

Short-precision real SGETMI

Long-precision real DGETMI

Short-precision complex CGETMI
CGECMI

Long-precision complex ZGETMI
ZGECMI

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SGETMI | DGETMI | CGETMI | ZGETMI | CGECMI | ZGECMI (a, lda, n)

C and C++ sgetmi | dgetmi | cgetmi | zgetmi | cgecmi | zgecmi (a, lda, n);

On Entry

a is the matrix A having n rows and n columns.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 116.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the number of rows and columns in matrix A.

Specified as: an integer; n ≥ 0.

On Return

a is the n by n matrix, containing the results of the operation.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 116.

Chapter 9. Matrix Operations 499

Function

Subroutines SGETMI, DGETMI, CGETMI, and ZGETMI perform a transpose of
matrix A in place. For matrix A with elements aij, where i, j = 1, n, the in-place
transpose is expressed as:

aji = aij for i, j = 1, n

Subroutines CGECMI and ZGECMI perform a conjugate transpose of matrix A in
place. For matrix A with elements aij, where i, j = 1, n, the in-place conjugate
transpose is expressed as:

–a = a i, j = , nji ij for 1

If n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0 or n > lda

2. lda ≤ 0

Examples

Example 1

This example shows an in-place matrix transpose of matrix A having 5 rows
and 5 columns.

Call Statement and Input:
A LDA N
| | |

CALL SGETMI(A(2,3) , 10 , 5)

┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 21.0 |
| . . 2.0 7.0 12.0 17.0 22.0 |
| . . 3.0 8.0 13.0 18.0 23.0 |

A = | . . 4.0 9.0 14.0 19.0 24.0 |
| . . 5.0 10.0 15.0 20.0 25.0 |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . . 1.0 2.0 3.0 4.0 5.0 |
| . . 6.0 7.0 8.0 9.0 10.0 |
| . . 11.0 12.0 13.0 14.0 15.0 |

A = | . . 16.0 17.0 18.0 19.0 20.0 |
| . . 21.0 22.0 23.0 24.0 25.0 |
| |
| |
| |
| |
└ ┘

500 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 2

This example shows an in-place matrix conjugate transpose of matrix A having
5 rows and 5 columns.

Call Statement and Input:
A LDA N
| | |

CALL ZGECMI(A(2,3) , 10 , 5)

┌ ┐
| |
| . . (1.0,1.0) (6.0, 6.0) (11.0,11.0) (16.0,16.0) (21.0,21.0) |
| . . (2.0,2.0) (7.0, 7.0) (12.0,12.0) (17.0,17.0) (22.0,22.0) |
| . . (3.0,3.0) (8.0, 8.0) (13.0,13.0) (18.0,18.0) (23.0,23.0) |

A = | . . (4.0,4.0) (9.0, 9.0) (14.0,14.0) (19.0,19.0) (24.0,24.0) |
| . . (5.0,5.0)(10.0,10.0) (15.0,15.0) (20.0,20.0) (25.0,25.0) |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . . (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) |
| . . (6.0, -6.0) (7.0, -7.0) (8.0, -8.0) (9.0, -9.0) (10.0,-10.0) |
| . . (11.0,-11.0) (12.0,-12.0) (13.0,-13.0) (14.0,-14.0) (15.0,-15.0) |

A = | . . (16.0,-16.0) (17.0,-17.0) (18.0,-18.0) (19.0,-19.0) (20.0,-20.0) |
| . . (21.0,-21.0) (22.0,-22.0) (23.0,-23.0) (24.0,-24.0) (25.0,-25.0) |
| |
| |
| |
| |
└ ┘

Chapter 9. Matrix Operations 501

SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO
(General Matrix Transpose or Conjugate Transpose [Out-of-Place])

Purpose

Subroutines SGETMO, DGETMO, CGETMO, and ZGETMO perform a transpose of
an m by n matrix A out of place, returning the result in matrix B:

B←AT

Subroutines CGECMO, and ZGECMO perform a conjugate transpose of an m by n
matrix A out of place, returning the result in matrix B:

B←AH

Table 117. Data Types

A, B Subroutine

Short-precision real SGETMO

Long-precision real DGETMO

Short-precision complex CGETMO
CGECMO

Long-precision complex ZGETMO
ZGECMO

Note: On certain processors, SIMD algorithms may be used if alignment
requirements are met. For further details, see “Use of SIMD Algorithms by Some
Subroutines in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SGETMO | DGETMO | CGETMO | ZGETMO | CGECMO | ZGECMO (a, lda, m, n,
b, ldb)

C and C++ sgetmo | dgetmo | cgetmo | zgetmo | cgecmo | zgecmo (a, lda, m, n, b, ldb);

On Entry

a is the matrix A having m rows and n columns.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 117.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

m is the number of rows in matrix A and the number of columns in matrix B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

b See On Return.

ldb
is the leading dimension of the array specified for b.

502 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; ldb > 0 and ldb ≥ n.

On Return

b is the matrix B having n rows and m columns, containing the results of the
operation.

Returned as: an ldb by (at least) m array, containing numbers of the data type
indicated in Table 117 on page 502.

Notes
1. The matrix B must have no common elements with matrix A; otherwise, results

are unpredictable. See “Concepts” on page 73.

Function

Subroutines SGETMO, DGETMO, CGETMO, and ZGETMO perform a transpose of
matrix A out of place. For matrix A with elements aij, where i = 1, m and j = 1, n,
the out-of-place transpose is expressed as:

bji = aij for i = 1, m and j = 1, n

Subroutines CGECMO and ZGECMO perform a conjugate transpose of matrix A
out of place. For matrix A with elements aij, where i = 1, m and j = 1, n, the
out-of-place transpose is expressed as:

b = i = , m j = , nfor 1 and 1ji ija–

If m or n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors

1. m < 0 or m > lda

2. n < 0 or n > ldb

3. lda ≤ 0
4. ldb ≤ 0

Examples

Example 1

This example shows an out-of-place matrix transpose of matrix A, having 5
rows and 4 columns, with the result going into matrix B.

Call Statement and Input:
A LDA M N B LDB
| | | | | |

CALL SGETMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)

┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 . |
| . . 2.0 7.0 12.0 17.0 . |
| . . 3.0 8.0 13.0 18.0 . |

A = | . . 4.0 9.0 14.0 19.0 . |

Chapter 9. Matrix Operations 503

| . . 5.0 10.0 15.0 20.0 . |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . 1.0 2.0 3.0 4.0 5.0 . |

B = | . 6.0 7.0 8.0 9.0 10.0 . |
| . 11.0 12.0 13.0 14.0 15.0 . |
| . 16.0 17.0 18.0 19.0 20.0 . |
| |
└ ┘

Example 2

This example uses the same input matrix A as in Example 1 to show that
transposes can be achieved in the same array as long as the input and output
data do not overlap. On output, the input data is not overwritten in the array.

Call Statement and Input:
A LDA M N B LDB
| | | | | |

CALL SGETMO(A(2,3) , 10 , 5 , 4 , A(7,1) , 10)

Output:
┌ ┐
| |
| . . 1.0 6.0 11.0 16.0 . |
| . . 2.0 7.0 12.0 17.0 . |
| . . 3.0 8.0 13.0 18.0 . |

A = | . . 4.0 9.0 14.0 19.0 . |
| . . 5.0 10.0 15.0 20.0 . |
| 1.0 2.0 3.0 4.0 5.0 . . |
| 6.0 7.0 8.0 9.0 10.0 . . |
| 11.0 12.0 13.0 14.0 15.0 . . |
| 16.0 17.0 18.0 19.0 20.0 . . |
└ ┘

Example 3

This example shows an out-of-place matrix conjugate transpose of matrix A,
having 5 rows and 4 columns, with the result going into matrix B.

Call Statement and Input:
A LDA M N B LDB
| | | | | |

CALL ZGECMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)

┌ ┐
| |
| . . (1.0,1.0) (6.0, 6.0) (11.0,11.0) (16.0,16.0) |
| . . (2.0,2.0) (7.0, 7.0) (12.0,12.0) (17.0,17.0) |
| . . (3.0,3.0) (8.0, 8.0) (13.0,13.0) (18.0,18.0) |

A = | . . (4.0,4.0) (9.0, 9.0) (14.0,14.0) (19.0,19.0) |
| . . (5.0,5.0) (10.0,10.0) (15.0,15.0) (20.0,20.0) |
| |
| |
| |
| |
└ ┘

Output:
┌ ┐
| |
| . (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) |

B = | . (6.0, -6.0) (7.0, -7.0) (8.0, -8.0) (9.0, -9.0) (10.0,-10.0) |

504 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| . (11.0,-11.0) (12.0,-12.0) (13.0,-13.0) (14.0,-14.0) (15.0,-15.0) |
| . (16.0,-16.0) (17.0,-17.0) (18.0,-18.0) (19.0,-19.0) (20.0,-20.0) |
| |
└ ┘

Chapter 9. Matrix Operations 505

506 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 10. Linear Algebraic Equations

The linear algebraic equation subroutines, provided in four areas, are described
here.

Overview of the Linear Algebraic Equation Subroutines
This describes the subroutines in each of the four linear algebraic equation areas:
v “Dense Linear Algebraic Equation Subroutines”
v “Banded Linear Algebraic Equation Subroutines” on page 509
v “Sparse Linear Algebraic Equation Subroutines” on page 511
v “Linear Least Squares Subroutines” on page 511

Note: Some of the linear algebraic equations were designed in accordance with the
LAPACK de facto standard. If these subprograms do not comply with the standard
as approved, IBM will consider updating them to do so. If IBM updates these
subprograms, the updates could require modifications of the calling application
program. For details on LAPACK, see [8 on page 1313].

Dense Linear Algebraic Equation Subroutines
The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, indefinite real or
complex symmetric or complex Hermitian matrices, and triangular matrices. Some
of these subroutines correspond to the LAPACK routines described in reference [8
on page 1313].

Table 118. List of LAPACK Dense Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESV∆

CGESV∆
DGESV∆

ZGESV∆
“SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple
Right-Hand Side Solve)” on page 518

SGETRF∆

CGETRF∆
DGETRF∆

ZGETRF∆
“SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)” on
page 522

SGETRS∆

CGETRS∆
DGETRS∆

ZGETRS∆
“SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple
Right-Hand Side Solve)” on page 527

SGECON∆

CGECON∆
DGECON∆

ZGECON∆
“SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the
Condition Number of a General Matrix)” on page 543

SGETRI∆

CGETRI∆
DGETRI∆

ZGETRI∆
“SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix
Inverse, Condition Number Reciprocal, and Determinant)” on page 551

SLANGE∆

CLANGE∆
DLANGE∆

ZLANGE∆
“SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)” on page
558

SPPSV∆

CPPSV∆
DPPSV∆

ZPPSV∆
“SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”
on page 561

SPOSV∆

CPOSV∆
DPOSV∆

ZPOSV∆
“SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”
on page 567

© Copyright IBM Corp. 1986, 2015 507

|
|
|
|
|

|
|
|
|
|
|

||

|
|
|
||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

Table 118. List of LAPACK Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPOTRF∆

CPOTRF∆

SPPTRF∆

CPPTRF∆

DPOTRF∆

ZPOTRF∆

DPPTRF∆

ZPPTRF∆

“SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF,
DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric
or Complex Hermitian Matrix Factorization)” on page 573

SPOTRS∆

CPOTRS∆

SPPTRS∆

CPPTRS∆

DPOTRS∆

ZPOTRS∆

DPPTRS∆

ZPPTRS∆

“SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM,
SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 585

SPOCON∆

CPOCON∆

SPPCON∆

CPPCON∆

DPOCON∆

ZPOCON∆

DPPCON∆

ZPPCON∆

“SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and
ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
Definite Real Symmetric or Complex Hermitian Matrix)” on page 596

SPOTRI∆

CPOTRI∆

SPPTRI∆

CPPTRI∆

DPOTRI∆

ZPOTRI∆

DPPTRI∆

ZPPTRI∆

“SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI,
CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric or
Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and
Determinant)” on page 610

SLANSY∆

CLANHE∆

SLANSP∆

CLANHP∆

DLANSY∆

ZLANHE∆

DLANSP∆

ZLANHP∆

“SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and
ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)” on page 621

SSYSV∆

CSYSV∆

CHESV∆

SSPSV∆

CSPSV∆

CHPSV∆

DSYSV∆

ZSYSV∆

ZHESV∆

DSPSV∆

ZSPSV∆

ZHPSV∆

“SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV,
CHPSV, ZHPSV (Indefinite Real or Complex Symmetric or Complex Hermitian
Matrix Factorization and Multiple Right-Hand Side Solve)” on page 626

SSYTRF∆

CSYTRF∆

CHETRF∆

SSPTRF∆

CSPTRF∆

CHPTRF∆

DSYTRF∆

ZSYTRF∆

ZHETRF∆

DSPTRF∆

ZSPTRF∆

ZHPTRF∆

“SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or Complex Symmetric or
Complex Hermitian Matrix Factorization)” on page 635

SSYTRS∆

CSYTRS∆

CHETRS∆

SSPTRS∆

CSPTRS∆

CHPTRS∆

DSYTRS∆

ZSYTRS∆

ZHETRS∆

DSPTRS∆

ZSPTRS∆

ZHPTRS∆

“SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS,
CSPTRS, ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or Complex Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 643

STRTRI∆

CTRTRI∆

STPTRI∆

CTPTRI∆

DTRTRI∆

ZTRTRI∆

DTPTRI∆

ZTPTRI∆

“STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI
(Triangular Matrix Inverse)” on page 664

SLANTR∆

CLANTR∆

SLANTP∆

CLANTP∆

DLANTR∆

ZLANTR∆

DLANTP∆

ZLANTP∆

“SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and
ZLANTP (Trapezoidal or Triangular Matrix Norm)” on page 672

∆ LAPACK

508 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|
|
||

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

Table 119. List of Dense Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEF
CGEF

DGEF
ZGEF
DGEFP§

“SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)” on page 531

SGESM
CGESM

DGESM
ZGESM

“SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its
Conjugate Transpose Multiple Right-Hand Side Solve)” on page 538

SGES
CGES

DGES
ZGES

“SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate
Transpose Solve)” on page 534

SGEFCD DGEFCD “SGEFCD and DGEFCD (General Matrix Factorization, Condition Number
Reciprocal, and Determinant)” on page 547

SGEICD DGEICD “SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix
Inverse, Condition Number Reciprocal, and Determinant)” on page 551

SPOF
CPOF
SPPF

DPOF
ZPOF
DPPF
DPPFP§

“SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF,
DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric
or Complex Hermitian Matrix Factorization)” on page 573

SPOSM
CPOSM

DPOSM
ZPOSM

“SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM,
SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 585

SPPS DPPS “SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)” on page 593

SPPFCD
SPOFCD

DPPFCD
DPOFCD

“SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric
Matrix Factorization, Condition Number Reciprocal, and Determinant)” on page
604

SPPICD
SPOICD

DPPICD
DPOICD

“SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI,
CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric or
Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and
Determinant)” on page 610

DBSSV “DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand
Side Solve)” on page 649

DBSTRF “DBSTRF (Symmetric Indefinite Matrix Factorization)” on page 655

DBSTRS “DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)” on
page 660

STRI§

STPI§
DTRI§

DTPI§
“STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI
(Triangular Matrix Inverse)” on page 664

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equation Subroutines
The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for:
v Real or complex general band matrices
v Positive definite real symmetric or complex Hermitian band matrices
v Real or complex general tridiagonal matrices
v Positive definite real symmetric or complex Hermitian tridiagonal matrices

Chapter 10. Linear Algebraic Equations 509

|

|

|

|

Table 120. List of LAPACK Banded Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGBSV∆

CGBSV∆
DGBSV∆

ZGBSV∆
“SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization
and Multiple Right-Hand Side Solve)” on page 679

SGBTRF∆

CGBTRF∆
DGBTRF∆

ZGBTRF∆
“SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix
Factorization)” on page 683

SGBTRS∆

CGBTRS∆
DGBTRS∆

ZGBTRS∆
“SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple
Right-Hand Side Solve)” on page 687

SPBSV∆

CPBSV∆
DPBSV∆

ZPBSV∆
“SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or
Complex Hermitian Band Matrix Factorization and Multiple Right-Hand Side
Solve)” on page 696

SPBTRF∆

CPBTRF∆
DPBTRF∆

ZPBTRF∆
“SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric
or Complex Hermitian Band Matrix Factorization)” on page 701

SPBTRS∆

CPBTRS∆
DPBTRS∆

ZPBTRS∆
“SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric
or Complex Hermitian Band Matrix Multiple Right-Hand Side Solve)” on
page 706

SGTSV∆

CGTSV∆
DGTSV∆

ZGTSV∆
“SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix
Factorization and Multiple Right-Hand Side Solve)” on page 711

SGTTRF∆

CGTTRF∆
DGTTRF∆

ZGTTRF∆
“SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix
Factorization)” on page 715

SGTTRS∆

CGTTRS∆
DGTTRS∆

ZGTTRS∆
“SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix
Multiple Right-Hand Side Solve)” on page 719

SPTSV∆

CPTSV∆
DPTSV∆

ZPTSV∆
“SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or
Complex Hermitian Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve)” on page 725

SPTTRF∆

CPTTRF∆
DPTTRF∆

ZPTTRF∆
“SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric
or Complex Hermitian Tridiagonal Matrix Factorization)” on page 729

SPTTRS∆

CPTTRS∆
DPTTRS∆

ZPTTRS∆
“SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric
or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand Solve)” on
page 733

∆ LAPACK

Table 121. List of non-LAPACK Banded Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGBF§ DGBF§ “SGBF and DGBF (General Band Matrix Factorization)” on page 739

SGBS§ DGBS§ “SGBS and DGBS (General Band Matrix Solve)” on page 693

SPBF§

SPBCHF§
DPBF§

DPBCHF§
“SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band
Matrix Factorization)” on page 746

SPBS§

SPBCHS§
DPBS§

DPBCHS§
“SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band
Matrix Solve)” on page 750

SGTF§ DGTF§ “SGTF and DGTF (General Tridiagonal Matrix Factorization)” on page 753

SGTS§ DGTS§ “SGTS and DGTS (General Tridiagonal Matrix Solve)” on page 756

SGTNP
CGTNP

DGTNP
ZGTNP

“SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix
Combined Factorization and Solve with No Pivoting)” on page 758

SGTNPF
CGTNPF

DGTNPF
ZGTNPF

“SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix
Factorization with No Pivoting)” on page 761

510 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 121. List of non-LAPACK Banded Linear Algebraic Equation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGTNPS
CGTNPS

DGTNPS
ZGTNPS

“SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix
Solve with No Pivoting)” on page 764

SPTF§ DPTF§ “SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix
Factorization)” on page 767

SPTS§ DPTS§ “SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)” on
page 769

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs.

Sparse Linear Algebraic Equation Subroutines
The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 122. List of Sparse Linear Algebraic Equation Subroutines

Long-Precision
Subroutine Descriptive Name and Location

DGSF “DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)”
on page 772

DGSS “DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or
Columns)” on page 778

DGKFS
DGKFSP§

“DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve
Using Skyline Storage Mode)” on page 782

DSKFS
DSKFSP§

“DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline
Storage Mode)” on page 799

DSRIS “DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by
Rows)” on page 817

DSMCG‡ “DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Matrix Storage Mode)” on page 828

DSDCG “DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve
Using Compressed-Diagonal Storage Mode)” on page 836

DSMGCG‡ “DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)”
on page 844

DSDGCG “DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage
Mode)” on page 851

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

‡ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares Subroutines
The linear least squares subroutines provide least squares solutions to linear
systems of equations for general matrices using a QR factorization or a singular

Chapter 10. Linear Algebraic Equations 511

value decomposition. Some of these subroutines correspond to the LAPACK
routines described in reference [8 on page 1313].

Table 123. List of LAPACK Linear Least Squares Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESVD∆

CGESVD∆
DGESVD∆

ZGESVD∆
“SGESVD, DGESVD, CGESVD, and ZGESVD (Singular Value Decomposition
for a General Matrix)” on page 859

SGEQRF∆

CGEQRF∆
DGEQRF∆

ZGEQRF∆
“SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR
Factorization)” on page 868

SGELS∆

CGELS∆
DGELS∆

ZGELS∆
“SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a
General Matrix)” on page 874

SGELSD∆

CGELSD∆
DGELSD∆

ZGELSD∆
“SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution
for a General Matrix Using the Singular Value Decomposition)” on page 884

∆ LAPACK

Table 124. List of Non–LAPACK Linear Least Squares Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGESVF§ DGESVF§ “SGESVF and DGESVF (Singular Value Decomposition for a General
Matrix)” on page 891

SGESVS§ DGESVS§ “SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix
Using the Singular Value Decomposition)” on page 899

SGELLS§ DGELLS§ “SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix
with Column Pivoting)” on page 904

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

Dense and Banded Linear Algebraic Equation Considerations
This provides some key points about using the dense and banded linear algebraic
equation subroutines.

Use Considerations
To solve a system of equations, you have two choices:
v Use the combined factorization-and-solve subroutine for the type of matrix you

have.
v Use both the factorization subroutine and the solve subroutine for the type of

matrix you have. When doing so, note the following:
– Each factorization subroutine should be followed in your program by the

corresponding solve subroutine. The output from the factorization subroutine
should be used as input to the solve subroutine.

– To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to a solve
subroutine or one call to a multiple solve subroutine.

Performance and Accuracy Considerations
1. Except in a few instances, the _GTNP subroutines provide better performance

than the _GTNPF and _GTNPS subroutines. For details, see the subroutine
descriptions.

512 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. The general subroutines (dense and banded) use partial pivoting for accuracy
and fast performance.

3. The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision when the AltiVec or VSX unit is not used.
Occasionally, for performance reasons, these intermediate results are stored.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 62.

Sparse Matrix Direct Solver Considerations
This provides some key points about using the sparse matrix direct solver
subroutines.

Use Considerations
1. To solve a sparse system of equations by a direct method, you must use both

the factorization and solve subroutines. The factorization subroutine should be
followed in your program by the corresponding solve subroutine; that is, the
output from the factorization subroutine should be used as input to the solve
subroutine.

2. To solve a system of equations with one or more right-hand sides, follow the
call to the factorization subroutine with one or more calls to the solve
subroutine.

3. The amount of storage required for the arrays depends on the sparsity pattern
of the matrix. The requirement that lna > 2nz on entry to DGSF does not
guarantee a successful run of the program. Some programs may be terminated
because of the large number of fill-ins generated upon factorization. Fill-ins
generated in a program depend on the structure of each matrix. If a large
number of fill-ins is anticipated when factoring a matrix, the value of lna
should be large enough to accommodate your problem.

Performance and Accuracy Considerations
1. To make the subroutine more efficient, an input matrix comprised of all

nonzero elements is preferable. See the syntax description of each subroutine
for details.

2. DGSF optionally checks the validity of the indices and pointers of the input
matrix. Use of this option is suggested; however, it may affect performance. For
details, see the syntax description for DGSF.

3. In DGSS, if there are multiple sparse right-hand sides to be solved, you should
take advantage of the sparsity by selecting a proper value for jopt (such as jopt
= 10 or 11). If there is only one right-hand side to be solved, it is suggested that
you do not exploit the sparsity.

4. In DGSF, the value you enter for the lower bound of all elements in the matrix
(RPARM(1)) affects the accuracy of the result. Specifying a larger number allows
you to gain some performance; however, you may lose some accuracy in the
solution.

5. In DGSF, the threshold pivot tolerance (RPARM(2)) is used to select pivots. A
value that is close to 0.0 approaches no pivoting. A value close to 1.0
approaches partial pivoting. A value of 0.1 is considered to be a good
compromise between numerical stability and sparsity.

Chapter 10. Linear Algebraic Equations 513

6. If the ESSL subroutine performs storage compressions, you receive an attention
message. When this occurs, the performance of this subroutine is affected. You
can improve the performance by increasing the value specified for lna.

7. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 62.

Sparse Matrix Skyline Solver Considerations
This provides some key points about using the sparse matrix skyline solver
subroutines.

Use Considerations
1. To solve a system of equations with one or more right-hand sides, where the

matrix is stored in skyline storage mode, you can use either of the following
methods. The factored output matrix is the same for both of these methods.
v Call the skyline subroutine with the combined factor-and-solve option.
v Call the skyline subroutine with the factor-only option, followed in your

program by a call to the same subroutine with the solve-only option. The
factored output matrix resulting from the factorization should be used as
input to the same subroutine to do the solve. You can solve for the
right-hand sides in a single call or in individual calls.

You also have the option of doing a partial factorization, where the subroutine
assumes that the initial part of the input matrix is already factored. It then
factors the remaining rows and columns. If you want, you can factor a very
large matrix progressively by using this option.

2. Forward elimination can be done with or without scaling the right-hand side
by the diagonal matrix elements. To perform the computation without scaling,
call DGKFS with the normal solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKFS with the transpose solve-only, option and define the lower triangular
skyline matrix (AL) as a diagonal.

3. Back substitution can be done with or without scaling the right-hand side by
the diagonal matrix elements. To perform the computation without scaling, call
DGKFS with the transpose solve-only option, and define the upper triangular
skyline matrix (AU) as a diagonal. To perform the computation with scaling, call
DGKFS with the normal solve-only option, and define the lower triangular
skyline matrix (AL) as a diagonal.

Performance and Accuracy Considerations
1. For optimal performance, use diagonal-out skyline storage mode for both your

input and output matrices. If you specify profile-in skyline storage mode for
your input matrix, and either you do not plan to use the factored output or
you plan to do a solve only, it is more efficient to specify diagonal-out skyline
storage mode for your output matrix. These rules apply to all the
computations.

2. In some cases, elapsed time may be reduced significantly by using the
combined factor-and-solve option to solve for all right-hand sides at once, in
conjunction with the factorization, rather than doing the factorization and solve
separately.

514 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

3. If you do a solve only, and you solve for more than one right-hand side, it is
most efficient to call the skyline subroutine once with all right-hand sides,
rather than once for each right-hand side.

4. The skyline subroutines allow some control over processing of the pivot
(diagonal) elements of the matrix during the factorization phase. Pivot
processing is controlled by IPARM(10) through IPARM(15) and RPARM(10)
through RPARM(15). If a pivot occurs within a range that is designated to be
fixed (IPARM(0) = 1, IPARM(10) = 1, and the appropriate element IPARM(11)
through IPARM(15) = 1), it is replaced with the corresponding element of
RPARM(11) through RPARM(15). Should this pivot fix-up occur, you receive an
attention message. This message indicates that the matrix being factored may
be unstable (singular or not definite). The results produced in this situation
may be inaccurate, and you should review them carefully.

Sparse Matrix Iterative Solver Considerations
This provides some key points about using the sparse matrix iterative solver
subroutines.

Use Considerations
If you need to solve linear systems with different right-hand sides but with the
same matrix using the preconditioned algorithms, you can reuse the incomplete
factorization computed during the first call to the subroutine.

Performance and Accuracy Considerations
1. The DSMCG and DSMGCG subroutines are provided for migration purposes

from earlier releases of ESSL. You get better performance and a wider choice of
algorithms if you use the DSRIS subroutine.

2. To select the sparse matrix subroutine that provides the best performance, you
must consider the sparsity pattern of the matrix. From this, you can determine
the most efficient storage mode for your sparse matrix. ESSL provides a
number of versions of the sparse matrix iterative solve subroutines. They
operate on sparse matrices stored in row-wise, diagonal, and
compressed-matrix storage modes. These storage modes are described in
“Sparse Matrix” on page 114.
Storage-by-rows is generally applicable. You should use this storage mode
unless your matrices are already set up in one of the other storage modes. If,
however, your matrix has a regular sparsity pattern—that is, where the nonzero
elements are concentrated along a few diagonals—you may want to use
compressed-diagonal storage mode. This can save some storage space.
Compressed-matrix storage mode is provided for migration purposes from
earlier releases of ESSL and is not intended for use. (You get better performance
and a wider choice of algorithms if you use the DSRIS subroutine, which uses
storage-by-rows.)

3. The performance achieved in the sparse matrix iterative solver subroutines
depends on the value specified for the relative accuracy ε.

4. You can select the iterative algorithm you want to use to solve your linear
system. The methods include conjugate gradient (CG), conjugate gradient
squared (CGS), generalized minimum residual (GMRES), more smoothly
converging variant of the CGS method (Bi-CGSTAB), or transpose-free
quasi-minimal residual method (TFQMR).

5. For a general sparse or positive definite symmetric matrix, the iterative
algorithm may fail to converge for one of the following reasons:

Chapter 10. Linear Algebraic Equations 515

v The value of ε is too small, asking for too much precision.
v The maximum number of iterations is too small, allowing too few iterations

for the algorithm to converge.
v The matrix is not positive real; that is, the symmetric part, (A+AT)/2, is not

positive definite.
v The matrix is ill-conditioned, which may cause overflows during the

computation.
6. These algorithms have a tendency to generate underflows that may hurt overall

performance. The system default is to mask underflow, which improves the
performance of these subroutines.

Linear Least Squares Considerations
This provides some key points about using the linear least squares subroutines.

Use Considerations
If you want to use a singular value decomposition method to compute the minimal
norm linear least squares solution of AX≅B, calls to SGESVF or DGESVF should be
followed by calls to SGESVS or DGESVS, respectively.

Performance and Accuracy Considerations
1. Least squares solutions obtained by using a singular value decomposition

require more storage and run time than those obtained using a QR
decomposition with column pivoting. The singular value decomposition
method, however, is a more reliable way to handle rank deficiency.

2. The short-precision subroutines provide increased accuracy by accumulating
intermediate results in long precision when the AltiVec or VSX unit is not used.
Occasionally, for performance reasons, these intermediate results are stored.

3. The accuracy of the resulting singular values and singular vectors varies
between the short- and long-precision versions of each subroutine. The degree
of difference depends on the size and conditioning of the matrix computation.

4. There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You
Know About?” on page 62.

516 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Dense Linear Algebraic Equation Subroutines

This contains the dense linear algebraic equation subroutine descriptions.

Chapter 10. Linear Algebraic Equations 517

SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and
Multiple Right-Hand Side Solve)

Purpose

These subroutines solve the system of linear equations AX = B for X, where A, B,
and X are general matrices.

The matrix A is factored using Gaussian elimination with partial pivoting.

Table 125. Data Types

A, B Subroutine

Short-precision real SGESV⌂

Long-precision real DGESV⌂

Short-precision complex CGESV⌂

Long-precision complex ZGESV⌂

⌂ LAPACK

Syntax

Fortran CALL SGESV | DGESV | CGESV | ZGESV (n, nrhs, a, lda, ipvt, bx, ldb, info)

C and C++ sgesv | dgesv | cgesv | zgesv (n, nrhs, a, lda, ipvt, bx, ldb, info);

On Entry

n is the order n of matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0, n ≤ lda, and n ≤ ldb.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the general matrix A to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 125.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

ipvt
See On Return.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 125.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

518 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

info
See On Return.

On Return

a is the transformed matrix A of order n, containing the results of the
factorization.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 125 on page 518. See “Function.”

ipvt
is the integer vector of length n, containing the pivot indices.

Returned as: a one-dimensional array of (at least) length n, containing integers,
where 1 ≤ ipvt(i) ≤ n.

bx is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 125 on page 518.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, the factorization was unsuccessful and the solution was not
computed. info is set equal to the first i where Uii is singular and its inverse
could not be computed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. The matrices and vector used in this computation must have no common

elements; otherwise, results are unpredictable.
3. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information about
the singularity of A, but they also provide an error message.

4. On both input and output, matrices A and B conform to LAPACK format.

Function

These subroutines solve the system of linear equations AX = B for X, where A, B,
and X are general matrices.

The matrix A is factored using Gaussian elimination with partial pivoting to
compute the LU factorization of A, where:

A=PLU

and

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

Chapter 10. Linear Algebraic Equations 519

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix.

See references [8 on page 1313], [44 on page 1316], and [73 on page 1317].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is singular.
v The first column, i, of L with a corresponding Uii = 0 diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors
1. n < 0
2. nrhs < 0
3. n > lda
4. lda ≤ 0
5. n > ldb
6. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 1 for DGETRF.
Matrix B is the same used as input in Example 1 for DGETRS.

Call Statement and Input:
N NRHS A LDA IPVT BX LDB INFO
| | | | | | | |

CALL DGESV(9 , 5 , A , 9 , IPVT, BX , 9 , INFO)

A = (same as input A in Example 1)
BX = (same as input BX in Example 1)

Output:
IPIV = (9, 9, 9, 9, 9, 9, 9, 9, 9)

┌ ┐
| 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
| 0.4 0.3 0.6 0.8 1.1 1.4 1.7 1.9 2.2 |
| 0.5 -0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 |
| 0.5 -0.3 0.0 0.4 0.8 1.2 1.6 2.0 2.4 |

A = | 0.6 -0.3 0.0 0.0 0.4 0.8 1.2 1.6 2.0 |
| 0.7 -0.2 0.0 0.0 0.0 0.4 0.8 1.2 1.6 |
| 0.8 -0.2 0.0 0.0 0.0 0.0 0.4 0.8 1.2 |
| 0.8 -0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.8 |
| 0.9 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 |
└ ┘

┌ ┐
| 1.0 2.0 3.0 4.0 5.0 |
| 2.0 4.0 6.0 8.0 10.0 |

520 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 3.0 6.0 9.0 12.0 15.0 |
| 4.0 8.0 12.0 16.0 20.0 |

BX = | 5.0 10.0 15.0 20.0 25.0 |
| 6.0 12.0 18.0 24.0 30.0 |
| 7.0 14.0 21.0 28.0 35.0 |
| 8.0 16.0 24.0 32.0 40.0 |
| 9.0 18.0 27.0 36.0 45.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 2 for ZGETRF.
Matrix B is the same used as input in Example 2 for ZGETRS.

Call Statement and Input:
N NRHS A LDA IPVT BX LDB INFO
| | | | | | | |

CALL ZGESV(9 , 5 , A , 9 , IPVT, BX, 9 , INFO)

A = (same as input A in Example 2)
IPVT = (same as input IPVT in Example 2)
BX = (same as input BX in Example 2)

Output:

┌ ┐
| (1.0,1.0) (1.0,2.0) (1.0,3.0) (1.0,4.0) (1.0,5.0) |
| (2.0,1.0) (2.0,2.0) (2.0,3.0) (2.0,4.0) (2.0,5.0) |
| (3.0,1.0) (3.0,2.0) (3.0,3.0) (3.0,4.0) (3.0,5.0) |
| (4.0,1.0) (4.0,2.0) (4.0,3.0) (4.0,4.0) (4.0,5.0) |

BX = | (5.0,1.0) (5.0,2.0) (5.0,3.0) (5.0,4.0) (5.0,5.0) |
| (6.0,1.0) (6.0,2.0) (6.0,3.0) (6.0,4.0) (6.0,5.0) |
| (7.0,1.0) (7.0,2.0) (7.0,3.0) (7.0,4.0) (7.0,5.0) |
| (8.0,1.0) (8.0,2.0) (8.0,3.0) (8.0,4.0) (8.0,5.0) |
| (9.0,1.0) (9.0,2.0) (9.0,3.0) (9.0,4.0) (9.0,5.0) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 521

SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)
Purpose

These subroutines factor general matrix A using Gaussian elimination with partial
pivoting.

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SGETRS, DGETRS CGETRS, or
ZGETRS, respectively.

To compute the inverse of matrix A, follow the call to these subroutines with a call
to SGETRI, DGETRI, CGETRI, or ZGETRI, respectively.

To estimate the reciprocal of the condition number of matrix A, follow the call to
these subroutines with a call to SGECON, DGECON, CGECON, or ZGECON,
respectively.

Table 126. Data Types

A Subroutine

Short-precision real SGETRF⌂

Long-precision real DGETRF⌂

Short-precision complex CGETRF⌂

Long-precision complex ZGETRF⌂

⌂ LAPACK

Note: The output from each of these subroutines should be used only as input for
specific other subroutines, as shown in the table below.

Output from this
subroutine:

Should be used only as input to the following subroutines:

Solve Inverse Reciprocal of the
condition number

SGETRF SGETRS SGETRI SGECON

DGETRF DGETRS DGETRI DGECON

CGETRF CGETRS CGETRI CGECON

ZGETRF ZGETRS ZGETRI ZGECON

Syntax

Fortran CALL SGETRF | DGETRF | CGETRF | ZGETRF (m, n, a, lda, ipvt, info)

C and C++ sgetrf | dgetrf | cgetrf | zgetrf (m, n, a, lda, ipvt, info);

On Entry

m the number of rows in general matrix A used in the computation.

Specified as: an integer; 0 ≤ m ≤ lda.

n the number of columns in general matrix A used in the computation.

Specified as: an integer; n ≥ 0.

522 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

a is the m by n general matrix A to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 126 on page 522.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda > 0 and lda ≥ m.

ipvt
See On Return.

info
See On Return.

On Return

a is the m by n transformed matrix A, containing the results of the factorization.
See “Function.” Returned as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 126 on page 522.

ipvt
is the integer vector ipvt of length min(m,n), containing the pivot indices.
Returned as: a one-dimensional array of (at least) length min(m,n), containing
integers,where 1 ≤ ipvt(i) ≤ m.

info
has the following meaning:

If info = 0, the factorization of general matrix A completed successfully.

If info > 0, info is set equal to the first i where Uii is singular and its inverse
could not be computed.

Specified as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. The matrix A and vector ipvt must have no common elements; otherwise

results are unpredictable.
3. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information about
the singularity of A, but they also provide an error message.

4. On both input and output, matrix A conforms to LAPACK format.

Function

The matrix A is factored using Gaussian elimination with partial pivoting to
compute the LU factorization of A, where:

A=PLU

and

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

Chapter 10. Linear Algebraic Equations 523

On output, the transformed matrix A contains U in the upper triangle (if m ≥ n) or
upper trapezoid (if m < n) and L in the strict lower triangle (if m ≤ n) or lower
trapezoid (if m > n). ipvt contains the pivots representing permutation P, such that
A = PLU.

If m or n is 0, no computation is performed and the subroutine returns after doing
some parameter checking. See references [8 on page 1313],[44 on page 1316], and
[73 on page 1317].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is singular.
v The first column, i, of L with a corresponding Uii = 0 diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors
1. m < 0
2. n < 0
3. m > lda
4. lda ≤ 0

Examples

Example 1

This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:
M N A LDA IPVT INFO
| | | | | |

CALL DGETRF(9 , 9 , A, 9 , IPVT, INFO)

┌ ┐
| 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 |
| 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 |
| 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 |
| 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 |

A = | 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 |
| 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 |
| 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 |
| 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 |
| 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
└ ┘

Output:
┌ ┐
| 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
| 0.4 0.3 0.6 0.8 1.1 1.4 1.7 1.9 2.2 |
| 0.5 -0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 |
| 0.5 -0.3 0.0 0.4 0.8 1.2 1.6 2.0 2.4 |

A = | 0.6 -0.3 0.0 0.0 0.4 0.8 1.2 1.6 2.0 |
| 0.7 -0.2 0.0 0.0 0.0 0.4 0.8 1.2 1.6 |
| 0.8 -0.2 0.0 0.0 0.0 0.0 0.4 0.8 1.2 |
| 0.8 -0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.8 |
| 0.9 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 |
└ ┘

524 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

Example 2

This example shows a factorization of a complex general matrix A of order 9.

Call Statement and Input:
M N A LDA IPVT INFO
| | | | | |

CALL ZGETRF(9 , 9 , A, 9 , IPVT, INFO)

Output:

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

Example 3

This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:
M N A LDA IPVT INFO
| | | | | |

CALL SGETRF(9 , 9 , A, 9 , IPVT, INFO)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

Output:

┌ ┐
| (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) (5.2,-1.0) |
| (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) |
| (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) |
| (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) |

A = | (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) |
| (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) |
| (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) |
| (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) |
| (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
└ ┘

┌ ┐
| (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
| (0.4, 0.1) (0.6,-2.0) (1.1,-1.9) (1.7,-1.9) (2.3,-1.8) (2.8,-1.8) (3.4,-1.7) (3.9,-1.7) (4.5,-1.6) |
| (0.5, 0.1) (0.0,-0.1) (0.6,-1.9) (1.2,-1.8) (1.8,-1.7) (2.5,-1.6) (3.1,-1.5) (3.7,-1.4) (4.3,-1.3) |
| (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (0.7,-1.9) (1.3,-1.7) (2.0,-1.6) (2.7,-1.5) (3.4,-1.4) (4.0,-1.2) |

A = | (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (-0.1, 0.0) (0.7,-1.9) (1.5,-1.7) (2.2,-1.6) (2.9,-1.5) (3.7,-1.3) |
| (0.7, 0.1) (0.0,-0.1) (0.0, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.8,-1.9) (1.6,-1.8) (2.4,-1.6) (3.2,-1.5) |
| (0.8, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-1.9) (1.7,-1.8) (2.5,-1.8) |
| (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) (1.7,-1.9) |
| (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) |
└ ┘

Chapter 10. Linear Algebraic Equations 525

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

┌ ┐
| 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
| 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
| 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
| 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |

A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
| 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
└ ┘

526 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple
Right-Hand Side Solve)

Purpose

SGETRS and DGETRS solve one of the following systems of equations for multiple
right-hand sides:

1. AX = B
2. ATX = B

CGETRS and ZGETRS solve one of the following systems of equations for multiple
right-hand sides:
1. AX = B
2. ATX = B
3. AHX = B

In the formulas above:
v A represents the general matrix A containing the LU factorization.
v B represents the general matrix B containing the right-hand sides in its columns.
v X represents the general matrix B containing the solution vectors in its columns.

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

Table 127. Data Types

A, B Subroutine

Short-precision real SGETRS⌂

Long-precision real DGETRS⌂

Short-precision complex CGETRS⌂

Long-precision complex ZGETRS⌂

⌂ LAPACK

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGETRF, DGETRF, CGETRF and ZGETRF, respectively.

Syntax

Fortran CALL SGETRS | DGETRS | CGETRS | ZGETRS (transa, n, nrhs, a, lda, ipvt, bx, ldb, info)

C and C++ sgetrs | dgetrs | cgetrs | zgetrs (transa, n, nrhs, a, lda, ipvt, bx, ldb, info);

On Entry

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in solution 1.

If transa = 'T', AT is used in the computation, resulting in solution 2.

If transa = 'C', AH is used in the computation, resulting in solution 3.

Specified as: a single character; transa = 'N', 'T', or 'C'.

Chapter 10. Linear Algebraic Equations 527

n is the order of factored matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

nrhs
the number of right-hand sides—that is, the number of columns in matrix B
used in the computation.

Specified as: an integer; nrhs ≥ 0.

a is the factorization of matrix A, produced by a preceding call to SGETRF,
DGETRF, CGETRF, or ZGETRF, respectively.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 127 on page 527.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

ipvt
is the integer vector ipvt of length n, containing the pivot indices produced by
a preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

Specified as: a one-dimensional array of (at least) length n, containing integers,
where 1 ≤ ipvt(i) ≤ n.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 127 on page 527.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See On Return.

On Return

bx is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 127 on page 527.

info
info has the following meaning:

If info = 0, the solve of general matrix A completed successfully.

Notes
1. In your C program, argument info must be passed by reference.
2. These subroutines accept lower case letters for the transa argument.
3. For SGETRS and DGETRS, if you specify 'C' for the transa argument, it is

interpreted as though you specified 'T'.
4. The scalar data specified for input argument n must be the same for both

_GETRF and _GETRS. In addition, the scalar data specified for input argument
m in _GETRF must be the same as input argument n in both _GETRF and
_GETRS.

528 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If, however, you do not plan to call _GETRS after calling _GETRF, then input
arguments m and n in _GETRF do not need to be equal.

5. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGETRF,
DGETRF, CGETRF, and ZGETRF, respectively.

6. The matrices and vector used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

7. On both input and output, matrices A and B conform to LAPACK format.

Function

One of the following systems of equations is solved for multiple right-hand sides:

1. AX = B
2. ATX = B
3. AHX = B (only for CGETRS and ZGETRS)

where A, B, and X are general matrices. These subroutines uses the results of the
factorization of matrix A, produced by a preceding call to SGETRF, DGETRF,
CGETRF or ZGETRF, respectively. For details on the factorization, see “SGETRF,
DGETRF, CGETRF and ZGETRF (General Matrix Factorization)” on page 522.

If n = 0 or nrhs = 0, no computation is performed and the subroutine returns after
doing some parameter checking. See references [8 on page 1313, [44 on page 1316],
and [73 on page 1317].

Error conditions

Computational Errors
None

Note: If the factorization performed by SGETRF, DGETRF, CGETRF or
ZGETRF failed because a pivot element is zero, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors
1. transa ≠ 'N', 'T', or 'C'
2. n < 0
3. nrhs < 0
4. n > lda
5. lda ≤ 0
6. n > ldb
7. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B, where matrix A is the
same matrix factored in the Example 1 for DGETRF.

Call Statement and Input:
TRANSA N NRHS A LDA IPIV BX LDB INFO
| | | | | | | | |

CALL DGETRS(’N’ , 9 , 5 , A , 9 , IPIV, BX , 9 , INFO)

Chapter 10. Linear Algebraic Equations 529

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
A = (same as output A in Example 1)

┌ ┐
| 93.0 186.0 279.0 372.0 465.0 |
| 84.4 168.8 253.2 337.6 422.0 |
| 76.6 153.2 229.8 306.4 383.0 |
| 70.0 140.0 210.0 280.0 350.0 |

BX = | 65.0 130.0 195.0 260.0 325.0 |
| 62.0 124.0 186.0 248.0 310.0 |
| 61.4 122.8 184.2 245.6 307.0 |
| 63.6 127.2 190.8 254.4 318.0 |
| 69.0 138.0 207.0 276.0 345.0 |
└ ┘

Output:
┌ ┐
| 1.0 2.0 3.0 4.0 5.0 |
| 2.0 4.0 6.0 8.0 10.0 |
| 3.0 6.0 9.0 12.0 15.0 |
| 4.0 8.0 12.0 16.0 20.0 |

BX = | 5.0 10.0 15.0 20.0 25.0 |
| 6.0 12.0 18.0 24.0 30.0 |
| 7.0 14.0 21.0 28.0 35.0 |
| 8.0 16.0 24.0 32.0 40.0 |
| 9.0 18.0 27.0 36.0 45.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = b, where matrix A is the
same matrix factored in the Example 2 for ZGETRF.

Call Statement and Input:
TRANS N NRHS A LDA IPIV BX LDB INFO
| | | | | | | | |

CALL ZGETRS(’N’ , 9 , 5 , A , 9 , IPIV, BX , 9 , INFO)

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
A = (same as output A in Example 2)

Output:

┌ ┐
| (193.0,-10.6) (200.0, 21.8) (207.0, 54.2) (214.0, 86.6) (221.0,119.0) |
| (173.8, -9.4) (178.8, 20.2) (183.8, 49.8) (188.8, 79.4) (193.8,109.0) |
| (156.2, -5.4) (159.2, 22.2) (162.2, 49.8) (165.2, 77.4) (168.2,105.0) |
| (141.0, 1.4) (142.0, 27.8) (143.0, 54.2) (144.0, 80.6) (145.0,107.0) |

BX = | (129.0, 11.0) (128.0, 37.0) (127.0, 63.0) (126.0, 89.0) (125.0,115.0) |
| (121.0, 23.4) (118.0, 49.8) (115.0, 76.2) (112.0,102.6) (109.0,129.0) |
| (117.8, 38.6) (112.8, 66.2) (107.8, 93.8) (102.8,121.4) (97.8,149.0) |
| (120.2, 56.6) (113.2, 86.2) (106.2,115.8) (99.2,145.4) (92.2,175.0) |
| (129.0, 77.4) (120.0,109.8) (111.0,142.2) (102.0,174.6) (93.0,207.0) |
└ ┘

530 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)
Purpose

This subroutine factors a square general matrix A using Gaussian elimination with
partial pivoting. To solve the system of equations with one or more right-hand
sides, follow the call to these subroutines with one or more calls to SGES/SGESM,
DGES/DGESM, CGES/CGESM, or ZGES/ZGESM, respectively. To compute the
inverse of matrix A, follow the call to these subroutines with a call to SGEICD or
DGEICD, respectively.

Table 128. Data Types

A Subroutine

Short-precision real SGEF

Long-precision real DGEF

Short-precision complex CGEF

Long-precision complex ZGEF

Note: The output from these factorization subroutines should be used only as
input to the following subroutines for performing a solve or inverse:
SGES/SGESM/SGEICD, DGES/DGESM/DGEICD, CGES/CGESM, and
ZGES/ZGESM, respectively.

Syntax

Fortran CALL SGEF | DGEF | CGEF | ZGEF (a, lda, n, ipvt)

C and C++ sgef | dgef | cgef | zgef (a, lda, n, ipvt);

On Entry

a is the n by n general matrix A to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 128.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

┌ ┐
| (1.0,1.0) (1.0,2.0) (1.0,3.0) (1.0,4.0) (1.0,5.0) |
| (2.0,1.0) (2.0,2.0) (2.0,3.0) (2.0,4.0) (2.0,5.0) |
| (3.0,1.0) (3.0,2.0) (3.0,3.0) (3.0,4.0) (3.0,5.0) |
| (4.0,1.0) (4.0,2.0) (4.0,3.0) (4.0,4.0) (4.0,5.0) |

BX = | (5.0,1.0) (5.0,2.0) (5.0,3.0) (5.0,4.0) (5.0,5.0) |
| (6.0,1.0) (6.0,2.0) (6.0,3.0) (6.0,4.0) (6.0,5.0) |
| (7.0,1.0) (7.0,2.0) (7.0,3.0) (7.0,4.0) (7.0,5.0) |
| (8.0,1.0) (8.0,2.0) (8.0,3.0) (8.0,4.0) (8.0,5.0) |
| (9.0,1.0) (9.0,2.0) (9.0,3.0) (9.0,4.0) (9.0,5.0) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 531

ipvt
See On Return.

On Return

a is the n by n transformed matrix A, containing the results of the factorization.
See “Function.” Returned as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 128 on page 531.

ipvt
is the integer vector ipvt of length n, containing the pivot indices. Returned as:
a one-dimensional array of (at least) length n, containing integers.

Notes
1. Calling SGEFCD or DGEFCD with iopt = 0 is equivalent to calling SGEF or

DGEF.
2. On both input and output, matrix A conforms to LAPACK format.

Function

The matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to
compute the LU factorization of A, where (A = PLU):

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle and L in the
strict lower triangle where ipvt contains the pivots representing permutation P,
such that A = PLU.

If n is 0, no computation is performed. See references [44 on page 1316] and [46 on
page 1316].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is singular.
v One or more columns of L and the corresponding diagonal of U contain all

zeros (all columns of L are checked). The first column, i, of L with a
corresponding U = 0 diagonal element is identified in the computational
error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this
error occurs. For details, see “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors
1. lda ≤ 0
2. n < 0
3. n > lda

532 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Examples

Example 1

This example shows a factorization of a real general matrix A of order 9.

Call Statement and Input:
A LDA N IPVT
| | | |

CALL SGEF(A , 9 , 9 , IPVT)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

Output:

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

Example 2

This example shows a factorization of a complex general matrix A of order 4.

Call Statement and Input:
A LDA N IPVT
| | | |

CALL CGEF(A , 4 , 4 , IPVT)

┌ ┐
| (1.0, 2.0) (1.0, 7.0) (2.0, 4.0) (3.0, 1.0) |

A = | (2.0, 0.0) (1.0, 3.0) (4.0, 4.0) (2.0, 3.0) |
| (2.0, 1.0) (5.0, 0.0) (3.0, 6.0) (0.0, 0.0) |
| (8.0, 5.0) (1.0, 9.0) (6.0, 6.0) (8.0, 1.0) |
└ ┘

Output:

IPVT = (4, 4, 3, 4)

┌ ┐
| 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
| 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
| 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
| 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |

A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
| 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
└ ┘

┌ ┐
| (8.0000, 5.0000) (1.0000, 9.0000) (6.0000, 6.0000) (8.0000, 1.0000) |

A = | (0.2022, 0.1236) (1.9101, 5.0562) (1.5281, 2.0449) (1.5056, -0.1910) |
| (0.2360, -0.0225) (-0.0654, -0.9269) (-0.3462, 6.2692) (-1.6346, 1.3269) |
| (0.1798, -0.1124) (0.2462, 0.1308) (0.4412, -0.3655) (0.2900, 2.3864) |
└ ┘

Chapter 10. Linear Algebraic Equations 533

SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its
Conjugate Transpose Solve)

Purpose

These subroutines solve the system Ax = b for x, where A is a general matrix and x
and b are vectors. Using the iopt argument, they can also solve the real system ATx
= b or the complex system AHx = b for x. These subroutines use the results of the
factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.

Table 129. Data Types

A, b, x Subroutine

Short-precision real SGES

Long-precision real DGES

Short-precision complex CGES

Long-precision complex ZGES

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and
ZGEF, respectively.

Syntax

Fortran CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt)

C and C++ sges | dges | cges | zges (a, lda, n, ipvt, bx, iopt);

On Entry

a is the factorization of matrix A, produced by a preceding call to
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 129.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

ipvt
is the integer vector ipvt of length n, containing the pivot indices produced by
a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF,
respectively.

Specified as: a one-dimensional array of (at least) length n, containing integers.

bx is the vector b of length n, containing the right-hand side of the system.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 129.

iopt
determines the type of computation to be performed, where:

534 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If iopt = 0, A is used in the computation.

If iopt = 1, AT is used in SGES and DGES. AH is used in CGES and ZGES.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an integer; iopt = 0 or 1.

On Return

bx is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 129 on page 534.

Notes
1. The scalar data specified for input arguments lda and n for these subroutines

must be the same as the corresponding input arguments specified for
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

2. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

3. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

Function

The system Ax = b is solved for x, where A is a general matrix and x and b are
vectors. Using the iopt argument, this subroutine can also solve the real system ATx
= b or the complex system AHx = b for x. These subroutines use the results of the
factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how A
is factored, see “SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)” on
page 531.

If n is 0, no computation is performed. See references [44 on page 1316] and [46 on
page 1316].

Error conditions

Computational Errors
None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD,
DGEFCD, or DGEFP failed because a pivot element is zero, the results
returned by this subroutine are unpredictable, and there may be a
divide-by-zero program exception message.

Input-Argument Errors
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0 or 1

Examples

Example 1

Part 1

Chapter 10. Linear Algebraic Equations 535

This part of the example shows how to solve the system Ax = b, where matrix
A is the same matrix factored in the Example 1 for SGEF and DGEF.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL SGES(A , 9 , 9 , IPVT , BX , 0)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
BX = (4.0, 5.0, 9.0, 10.0, 11.0, 12.0, 12.0, 12.0, 33.0)
A = (same as output A in Example 1)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Part 2

This part of the example shows how to solve the system ATx = b, where matrix
A is the input matrix factored in Example 1 for SGEF and DGEF. Most of the
input is the same in Part 2 as in Part 1.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL SGES(A , 9 , 9 , IPVT , BX , 1)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
BX = (6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0)
A = (same as output A in Example 1)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2

Part 1

This part of the example shows how to solve the system Ax = b, where matrix
A is the same matrix factored in the Example 2 for CGEF and ZGEF.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL CGES(A , 4 , 4 , IPVT , BX , 0)

IPVT = (4, 4, 3, 4)
BX = ((-10.0, 85.0), (-6.0, 61.0), (10.0, 38.0),

(58.0, 168.0))
A = (same as output A in Example 1)

Output:
BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

Part 2

This part of the example shows how to solve the system AHx = b, where matrix
A is the input matrix factored in Example 2 for CGEF and ZGEF. Most of the
input is the same in Part 2 as in Part 1.

Call Statement and Input:
A LDA N IPVT BX IOPT
| | | | | |

CALL CGES(A , 4 , 4 , IPVT , BX , 1)

536 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPVT = (4, 4, 3, 4)
BX = ((71.0, 12.0), (61.0, -70.0), (123.0, -34.0),

(68.0, 7.0))
A = (same as output A in Example 1)

Output:
BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

Chapter 10. Linear Algebraic Equations 537

SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose,
or Its Conjugate Transpose Multiple Right-Hand Side Solve)

Purpose

These subroutines solve the following systems of equations for multiple right-hand
sides, where A, X, and B are general matrices. SGESM and DGESM solve one of
the following:

1. AX = B
2. ATX = B

CGESM and ZGESM solve one of the following:

1. AX = B
2. ATX = B
3. AHX = B

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF,
respectively.

Table 130. Data Types

A, B, X Subroutine

Short-precision real SGESM

Long-precision real DGESM

Short-precision complex CGESM

Long-precision complex ZGESM

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and
ZGEF, respectively.

Syntax

Fortran CALL SGESM | DGESM | CGESM | ZGESM (trans, a, lda, n, ipvt, bx, ldb, nrhs)

C and C++ sgesm | dgesm | cgesm | zgesm (trans, a, lda, n, ipvt, bx, ldb, nrhs);

On Entry

trans
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation, resulting in equation 1.

If transa = 'T', AT is used in the computation, resulting in equation 2.

If transa = 'C', AH is used in the computation, resulting in equation 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

a is the factorization of matrix A, produced by a preceding call to
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 130.

538 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

ipvt
is the integer vector ipvt of length n, containing the pivot indices produced by
a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF,
respectively.

Specified as: a one-dimensional array of (at least) length n, containing integers.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 130 on page 538.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ n.

nrhs
is the number of right-hand sides in the system to be solved.

Specified as: an integer; nrhs ≥ 0.

On Return

bx is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 130 on page 538.

Notes
1. For SGESM and DGESM, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
2. The scalar data specified for input arguments lda and n for these subroutines

must be the same as the corresponding input arguments specified for
SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

3. The array data specified for input arguments a and ipvt for these subroutines
must be the same as the corresponding output arguments for SGEF/SGEFCD,
DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

Function

One of the following systems of equations is solved for multiple right-hand sides:

1. AX = B
2. ATX = B
3. AHX = B (only for CGESM and ZGESM)

where A, B, and X are general matrices. These subroutines use the results of the
factorization of matrix A, produced by a preceding call to SGEF/SGEFCD,

Chapter 10. Linear Algebraic Equations 539

DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how A
is factored, see “SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)” on
page 531.

If n or nrhs is 0, no computation is performed. See references [44 on page 1316] and
[46 on page 1316].

Error conditions

Computational Errors
None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD,
DGEFCD, or DGEFP failed because a pivot element is zero, the results
returned by this subroutine are unpredictable, and there may be a
divide-by-zero program exception message.

Input-Argument Errors
1. trans ≠ 'N', 'T', or 'C'
2. lda, ldb ≤ 0
3. n < 0
4. n > lda, ldb
5. nrhs < 0

Examples

Example 1

Part 1

This part of the example shows how to solve the system AX = B for two
right-hand sides, where matrix A is the same matrix factored in the Example 1
for SGEF and DGEF.

Call Statement and Input:
TRANS A LDA N IPVT BX LDB NRHS
| | | | | | | |

CALL SGESM(’N’ , A , 9 , 9 , IPVT , BX , 9 , 2)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
A = (same as output A in Example 1)

┌ ┐
| 4.0 10.0 |
| 5.0 15.0 |
| 9.0 24.0 |
| 10.0 35.0 |

BX = | 11.0 48.0 |
| 12.0 63.0 |
| 12.0 70.0 |
| 12.0 78.0 |
| 33.0 266.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |

540 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

Part 2

This part of the example shows how to solve the system ATX = B for two
right-hand sides, where matrix A is the input matrix factored in Example 1 for
SGEF and DGEF.

Call Statement and Input:
TRANS A LDA N IPVT BX LDB NRHS
| | | | | | | |

CALL SGESM(’T’ , A , 9 , 9 , IPVT , BX , 9 , 2)

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
A = (same as output A in Example 1)

┌ ┐
| 6.0 15.0 |
| 8.0 26.0 |
| 10.0 40.0 |
| 12.0 57.0 |

BX = | 13.0 76.0 |
| 14.0 97.0 |
| 15.0 120.0 |
| 15.0 125.0 |
| 15.0 129.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

Example 2

Part 1

This part of the example shows how to solve the system AX = B for two
right-hand sides, where matrix A is the same matrix factored in the Example 2
for CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT BX LDB NRHS
| | | | | | | |

CALL CGESM(’N’ , A , 4 , 4 , IPVT , BX , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in Example 2)

┌ ┐
| (-10.0, 85.0) (-11.0, 53.0) |

BX = | (-6.0, 61.0) (-6.0, 54.0) |
| (10.0, 38.0) (2.0, 40.0) |
| (58.0, 168.0) (15.0, 105.0) |
└ ┘

Chapter 10. Linear Algebraic Equations 541

Output:
┌ ┐
| (9.0, 0.0) (1.0, 1.0) |

BX = | (5.0, 1.0) (2.0, 2.0) |
| (1.0, 6.0) (3.0, 3.0) |
| (3.0, 4.0) (4.0, 4.0) |
└ ┘

Part 2

This part of the example shows how to solve the system ATX = B for two
right-hand sides, where matrix A is the input matrix factored in Example 2 for
CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT BX LDB NRHS
| | | | | | | |

CALL CGESM(’T’ , A , 4 , 4 , IPVT , BX , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in Example 2)

┌ ┐
| (71.0, 12.0) (18.0, 68.0) |

BX = | (61.0, -70.0) (-27.0, 71.0) |
| (123.0, -34.0) (-11.0, 97.0) |
| (68.0, 7.0) (28.0, 50.0) |
└ ┘

Output:
┌ ┐
| (9.0, 0.0) (1.0, 1.0) |

BX = | (5.0, 1.0) (2.0, 2.0) |
| (1.0, 6.0) (3.0, 3.0) |
| (3.0, 4.0) (4.0, 4.0) |
└ ┘

Part 3:

This part of the example shows how to solve the system AHX = B for two
right-hand sides, where matrix A is the input matrix factored in Example 2 for
CGEF and ZGEF.

Call Statement and Input:
TRANS A LDA N IPVT BX LDB NRHS
| | | | | | | |

CALL CGESM(’C’ , A , 4 , 4 , IPVT , BX , 4 , 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in Example 2)

┌ ┐
| (58.0, -3.0) (45.0, 20.0) |

BX = | (68.0, -31.0) (83.0, -20.0) |
| (89.0, -22.0) (98.0, 1.0) |
| (53.0, 15.0) (45.0, 25.0) |
└ ┘

Output:
┌ ┐
| (1.0, 4.0) (4.0, 5.0) |

BX = | (2.0, 3.0) (3.0, 4.0) |
| (3.0, 2.0) (2.0, 3.0) |
| (4.0, 1.0) (1.0, 2.0) |
└ ┘

542 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal
of the Condition Number of a General Matrix)

Purpose

SGECON, DGECON, CGECON, and ZGECON estimate the reciprocal of the
condition number of general matrix A. These subroutines use the results of the
factorization of matrix A produced by a preceding call to SGETRF, DGETRF,
CGETRF, or ZGETRF, respectively. For details on the factorization, see “SGETRF,
DGETRF, CGETRF and ZGETRF (General Matrix Factorization)” on page 522.

Table 131. Data Types

A, work anorm, rcond, rwork Subroutine

Short-precision real Short-precision real SGECON⌂

Long-precision real Long-precision real DGECON⌂

Short-precision complex Short-precision real CGECON⌂

Long-precision complex Long-precision real ZGECON⌂

Syntax

Fortran CALL SGECON | DGECON (norm, n, a, lda, anorm, rcond, work, iwork, info)
CALL CGECON | ZGECON (norm, n, a, lda, anorm, rcond, work, rwork, info)

C and C++
sgecon | dgecon (norm, n, a, lda, anorm, rcond, work, iwork, info);
cgecon | zgecon (norm, n, a, lda, anorm, rcond, work, rwork, info);

On Entry

norm
specifies whether the estimate of the condition number is computed using the
one norm or the infinity norm; where:

If norm = 'O' or '1', the one norm is used in the computation.

If norm = 'I', the infinity norm is used in the computation.

Specified as: a single character; norm = 'O', '1', or 'I'.

n the order of the factored general matrix A used in the computation.

Specified as: an integer; n ≥ 0.

a is the general matrix A, containing the factorization of matrix A produced by a
preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 131.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda > 0 and lda ≥ n.

anorm
has the following meaning:

If norm = 'O' or '1', then anorm is the one norm of the original matrix.

Chapter 10. Linear Algebraic Equations 543

If norm = 'I', then anorm is the infinity norm of the original matrix.

Note: You may obtain the value of anorm by a preceding call to SLANGE,
DLANGE, CLANGE, or ZLANGE, respectively. Refer to “SLANGE, DLANGE,
CLANGE, and ZLANGE (General Matrix Norm)” on page 558.

Specified as: a number ≥ 0.0, of the data type indicated in Table 131 on page
543.

rcond
See On Return.

work
is the work area used by this subroutine, where:

For SGECON and DGECON
The size of work is (at least) of length 4n.

For CGECON and ZGECON
The size of work is (at least) of length 2n.

Specified as: an area of storage containing numbers of data type indicated in
Table 131 on page 543.

iwork
is a work area used by this subroutine whose size is (at least) of length n.

Specified as: an area of storage containing integers.

rwork
is a work area used by this subroutine whose size is (at least) of length 2n.

Specified as: an area of storage containing numbers of the data type indicated
in Table 131 on page 543.

info
See On Return.

On Return

rcond
has the following meaning:

If info = 0, an estimate of the reciprocal of the condition number of general
matrix A is returned; i.e., rcond = 1.0/(NORM(A) ×NORM(A -1)).

If n = 0, the subroutines return with rcond = 1.0.

If n ≠ 0 and anorm = 0.0, the subroutines return with rcond = 0.0.

Returned as: a number ≥ 0.0, of the data type indicated in Table 131 on page
543.

info
has the following meaning:

If info = 0, the computation completed normally.

Returned as: an integer; info = 0.

Notes
1. In your C program, arguments rcond and info must be passed by reference.
2. This subroutine accepts lowercase letters for the norm argument.
3. The scalar data specified for input argument n must be the same for

SLANGE/DLANGE/CLANGE/ZLANGE, SGETRF/DGETRF/CGETRF/

544 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ZGETRF, and SGECON/DGECON/CGECON/ZGECON. In addition, the scalar
data specified for input argument m in SLANGE/DLANGE/CLANGE/
ZLANGE and SGETRF/DGETRF/CGETRF/ZGETRF must be the same as input
argument n in SLANGE/DLANGE/CLANGE/ZLANGE, SGETRF/DGETRF/
CGETRF/ZGETRF, and SGECON/DGECON/CGECON/ZGECON.

4. The matrix A input to SLANGE/DLANGE/CLANGE/ZLANGE must be the
same as the corresponding input argument for SGETRF/DGETRF/CGETRF/
ZGETRF.

5. The matrix A input to SGECON/DGECON/CGECON/ZGECON must be the
same as the corresponding output argument for SGETRF/DGETRF/CGETRF/
ZGETRF.

6. On both input and output, matrix A conforms to LAPACK format.

Function

The reciprocal of the condition number of general matrix A is estimated, using the
results of the factorization of matrix A produced by a preceding call of SGETRF,
DGETRF, CGETRF, or ZGETRF.

rcond = 1.0/(NORM(A) × NORM(A-1)).

If n = 0, the subroutines return with rcond = 1.0.

If n ≠ 0 and anorm = 0.0, the subroutines return with rcond = 0.0.

See reference [82 on page 1318].

Error conditions

Resource Errors
None.

Computational Errors
None.

Input-Argument Errors
1. norm ≠ 'O', '1', or 'I'
2. n < 0
3. n > lda
4. lda ≤ 0
5. anorm < 0
6. anorm ≠ 0 and anorm > big or anorm < tiny

Where:
For SGECON and CGECON

big and tiny have the following values:
big = 2127 × (1 - ULP)
tiny = 2-126 × (221)

For DGECON
big and tiny have the following values:

big = 21023 × (1 - ULP)
tiny = 2-1022 × (249)

For ZGECON
big and tiny have the following values:

big = 21023 × (1 - ULP)
tiny = 2-1022 × (250)

Where ULP = unit in last place.

Chapter 10. Linear Algebraic Equations 545

Note: To avoid this error, scale matrix A so that tiny ≤ anorm ≤ big.

Examples

Example 1

This example estimates the reciprocal of the condition number of real general
matrix A. The input matrix A to DLANGE and DGETRF is the same as input
matrix A in Example 3.

Call Statements and Input:
NORM M N A LDA WORK
| | | | | |

ANORM = DLANGE(’1’, 9 , 9 , A , 9 , WORK)

M N A LDA IPVT INFO
| | | | | |

CALL DGETRF(9 , 9 , A , 9 , IPVT, INFO)

NORM N A LDA ANORM RCOND WORK IWORK INFO
| | | | | | | | |

CALL DGECON(’1’, 9 , A , 9 , ANORM, RCOND, WORK, IWORK, INFO)

A = (same as output A in Example 3)

ANORM = (same as output ANORM in Example 1)

Output:

RCOND = 5.44 × 10-5

INFO = 0

Example 2

This example estimates the reciprocal of the condition number of complex
general matrix A. The input matrix A to ZLANGE and ZGETRF is the same as
input matrix A in Example 2.

Call Statements and Input:
NORM M N A LDA WORK
| | | | | |

ANORM = ZLANGE(’1’, 4 , 4 , A , 4 , RWORK)

M N A LDA IPVT INFO
| | | | | |

CALL ZGETRF(4 , 4 , A , 4 , IPVT, INFO)

NORM N A LDA ANORM RCOND WORK RWORK INFO
| | | | | | | | |

CALL ZGECON(’1’, 4 , A , 4 , ANORM, RCOND, WORK, RWORK, INFO)

A = (same as output A in Example 2)

ANORM = (same as output ANORM in Example 2)

Output:

RCOND = 3.66 × 10-2

INFO = 0

546 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGEFCD and DGEFCD (General Matrix Factorization, Condition
Number Reciprocal, and Determinant)

Purpose

These subroutines factor general matrix A using Gaussian elimination. An estimate
of the reciprocal of the condition number and the determinant of matrix A can also
be computed. To solve a system of equations with one or more right-hand sides,
follow the call to these subroutines with one or more calls to SGES/SGESM or
DGES/DGESM, respectively. To compute the inverse of matrix A, follow the call to
these subroutines with a call to SGEICD and DGEICD, respectively.

Table 132. Data Types

A, aux, rcond, det Subroutine

Short-precision real SGEFCD

Long-precision real DGEFCD

Note: The output from these factorization subroutines should be used only as
input to the following subroutines for performing a solve or inverse:
SGES/SGESM/SGEICD and DGES/DGESM/DGEICD, respectively.

Syntax

Fortran CALL SGEFCD | DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux)

C and C++ sgefcd | dgefcd (a, lda, n, ipvt, iopt, rcond, det, aux, naux);

On Entry

a is a general matrix A of order n, whose factorization, reciprocal of condition
number, and determinant are computed. Specified as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 132.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

ipvt
See On Return.

iopt
indicates the type of computation to be performed, where:

If iopt = 0, the matrix is factored.

If iopt = 1, the matrix is factored, and the reciprocal of the condition number is
computed.

If iopt = 2, the matrix is factored, and the determinant is computed.

If iopt = 3, the matrix is factored, and the reciprocal of the condition number
and the determinant are computed.

Specified as: an integer; iopt = 0, 1, 2, or 3.

Chapter 10. Linear Algebraic Equations 547

rcond
See On Return.

det
See On Return.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is is a storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 132 on page 547.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SGEFCD and DGEFCD
dynamically allocate the work area used by the subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux ≥ n.

On Return

a is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 549. Returned as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 132 on page 547.

ipvt
is the integer vector ipvt of length n, containing the pivot indices. Returned as:
a one-dimensional array of (at least) length n, containing integers.

rcond
is an estimate of the reciprocal of the condition number, rcond, of matrix A.
Returned as: a number of the data type indicated in Table 132 on page 547;
rcond ≥ 0.

det
is the vector det, containing the two components, det1 and det2, of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing numbers of
the data type indicated in Table 132 on page 547.

Notes
1. In your C program, argument rcond must be passed by reference.
2. When iopt = 0, these subroutines provide the same function as a call to SGEF or

DGEF, respectively.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

548 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. On both input and output, matrix A conforms to LAPACK format.

Function

Matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to
compute the LU factorization of A, where (A=PLU):

L is a unit lower triangular matrix.
U is an upper triangular matrix.
P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle and L in the
strict lower triangle where ipvt contains the pivots representing permutation P,
such that A = PLU.

An estimate of the reciprocal of the condition number, rcond, and the determinant,
det, can also be computed by this subroutine. The estimate of the condition
number uses an enhanced version of the algorithm described in references [81 on
page 1318] and [82 on page 1318].

If n is 0, no computation is performed. See reference [44 on page 1316].

These subroutines call SGEF and DGEF, respectively, to perform the factorization.
ipvt is an output vector of SGEF and DGEF. It is returned for use by SGES/SGESM
and DGES/DGESM, the solve subroutines.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
Matrix A is singular.
v If your program is not terminated by SGEF and DGEF, then SGEFCD and

DGEFCD, respectively, return 0 for rcond and det.
v One or more columns of L and the corresponding diagonal of U contain all

zeros (all columns of L are checked). The first column, i, of L with a
corresponding U = 0 diagonal element is identified in the computational
error message, issued by SGEF or DGEF, respectively.

v i can be determined at run time by using the ESSL error-handling facilities.
To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table;
otherwise, the default value causes your program to be terminated by SGEF
or DGEF, respectively, when this error occurs. If your program is not
terminated by SGEF or DGEF, respectively, the return code is set to 2. For
details, see “What Can You Do about ESSL Computational Errors?” on page
66.

Input-Argument Errors
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0, 1, 2, or 3
5. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Chapter 10. Linear Algebraic Equations 549

Examples

Example

This example shows a factorization of matrix A of order 9. The input is the
same as used in SGEF and DGEF. See Example 1. The reciprocal of the
condition number and the determinant of matrix A are also computed. The
values used to estimate the reciprocal of the condition number in this example
are obtained with the following values:

{A{1 = max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0

Estimate of {A-1{1 = 1091.87

This estimate is equal to the actual rcond of 5.436(10-5), which is computed by
SGEICD and DGEICD. (See Example 3.) On output, the value in det, |A|, is
equal to 336.

Call Statement and Input:
A LDA N IPVT IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL DGEFCD(A , 9 , 9 , IPVT , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
Example 1)

Output:

A = (same as output A in Example 1)
IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
RCOND = 0.00005436
DET = (3.36, 2.00)

550 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General
Matrix Inverse, Condition Number Reciprocal, and Determinant)

Purpose

These subroutines find the inverse of general matrix A.

Subroutines SGEICD and DGEICD also find the reciprocal of the condition number
and the determinant of general matrix A.

Table 133. Data Types

A, aux, rcond, det, work Subroutine

Short-precision real SGETRI⌂ and SGEICD

Long-precision real DGETRI⌂ and DGEICD

Short-precision complex CGETRI⌂

Long-precision complex ZGETRI⌂

⌂LAPACK

Note: The input to SGETRI, DGETRI, CGETRI, and ZGETRI must be the output
from the factorization subroutines SGETRF, DGETRF, CGETRF, and ZGETRF,
respectively.

If you call subroutines SGEICD and DGEICD with iopt = 4, the input must be the
output from the factorization subroutines SGEF/SGEFCD/SGETRF or
DGEF/DGEFCD/DGEFP/DGETRF, respectively.

Syntax

Fortran
CALL SGETRI | DGETRI | CGETRI | ZGETRI (n, a, lda, ipvt, work, lwork, info)

CALL SGEICD | DGEICD (a, lda, n, iopt, rcond, det, aux, naux)

C and C++ sgetri | dgetri | cgetri | zgetri (n, a, lda, ipvt, work, lwork, info);

sgeicd | dgeicd (a, lda, n, iopt, rcond, det, aux, naux);

On Entry

a has the following meaning, where:

For subroutines SGETRI, DGETRI, CGETRI, and ZGETRI:

It is the transformed matrix A of order n, resulting from the factorization
performed in a previous call to SGETRF, DGETRF, CGETRF, or ZGETRF,
respectively, whose inverse is computed.

For subroutines SGEICD and DGEICD:

If iopt = 0, 1, 2, or 3, it is matrix A of order n, whose inverse, reciprocal of
condition number, and determinant are computed.

If iopt = 4, it is the transformed matrix A of order n, resulting from the
factorization performed in a previous call to SGEF/SGEFCD or
DGEF/DGEFCD/DGEFP, respectively, whose inverse is computed.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 133.

Chapter 10. Linear Algebraic Equations 551

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A.

Specified as: an integer; 0 ≤ n ≤ lda.

iopt
indicates the type of computation to be performed, where:

If iopt = 0, the inverse is computed for matrix A.

If iopt = 1, the inverse and the reciprocal of the condition number are
computed for matrix A.

If iopt = 2, the inverse and the determinant are computed for matrix A.

If iopt = 3, the inverse, the reciprocal of the condition number, and the
determinant are computed for matrix A.

If iopt = 4, the inverse is computed using the factored matrix A.

Specified as: an integer; iopt = 0, 1, 2, 3, 4.

rcond
See On Return.

det
See On Return.

aux
has the following meaning, and its size is specified by naux:

If iopt = 0, 1, 2, or 3, then if naux = 0 and error 2015 is unrecoverable, aux is
ignored. Otherwise, it is the storage work area used by this subroutine.

If iopt = 4, aux has the following meaning:
v For SGEICD, the first n (32-bit integer arguments) or 2n (64-bit integer

arguments) locations in aux must contain the ipvt integer vector of length n,
resulting from a previous call to SGEF, SGETRF, or SGEFCD.

v For DGEICD, the first ceiling(n/2) (32-bit integer arguments) or n (64-bit
integer arguments) locations in aux must contain the ipvt integer vector of
length n, resulting from a previous call to DGEF, DGETRF, DGEFCD, or
DGEFP.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 133 on page 551.

naux
is the size of the work area specified by aux; that is, the number of elements in
aux.

Specified as: an integer, where:

If iopt ≠ 4, then if naux = 0 and error 2015 is unrecoverable, SGEICD and
DGEICD dynamically allocate the work area used by the subroutine. The work
area is deallocated before control is returned to the calling program.

Otherwise, naux ≥ 100n.

ipvt
is the integer vector ipvt of length n, containing the pivot indices resulting
from a previous call to SGETRF, DGETRF, CGETRF, or ZGETRF.

552 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a one-dimensional array of (at least) length n, containing integers,
where 1 ≤ ipvt(i) ≤ n.

work
has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:
v If lwork ≠ -1, its size is (at least) of length lwork.
v If lwork = -1, its size is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated in
Table 133 on page 551.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork = 0, SGETRI/DGETRI/CGETRI/ZGETRI dynamically allocates the

work area used by this subroutine. The work area is deallocated before
control is returned to the calling program. This option is an extension to the
LAPACK standard.

v If lwork = -1, SGETRI/DGETRI/CGETRI/ZGETRI performs a work area
query and returns the optimal size of work in work1. No computation is
performed and the subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, n)

v For optimal performance, lwork ≥ 100*n.

info
See On Return.

On Return

a is the resulting inverse of matrix A of order n. Returned as: an lda by (at least)
n array, containing numbers of the data type indicated in Table 133 on page
551.

rcond
is the reciprocal of the condition number, rcond, of matrix A. Returned as: a
real number of the data type indicated in Table 133 on page 551; rcond ≥ 0.

det
is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing numbers of
the data type indicated in Table 133 on page 551.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

Chapter 10. Linear Algebraic Equations 553

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 133 on page 551. Except
for work1, the contents of work are overwritten on return.

info
has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i where Uii is exactly zero. The matrix is
singular, and its inverse could not be computed.

Specified as: an integer; info ≥ 0.

Notes
1. In your C program, arguments rcond and info must be passed by reference.
2. The input scalar arguments for SGETRI, DGETRI, CGETRI, and ZGETRI must

be set to the same values as the corresponding input arguments in the previous
call to SGETRF, DGETRF, CGETRF, and ZGETRF, respectively.
If iopt = 4, the input scalar arguments for SGEICD and DGEICD must be set to
the same values as the corresponding input arguments in the previous call to
SGEF/SGEFCD or DGEF/DGEFCD/DGEFP, respectively.

3. You have the option of having the value for naux dynamically returned to your
program. For details, see “Using Auxiliary Storage in ESSL” on page 49.

4. The way _GETRI subroutines handle computational errors differs from
LAPACK. Like LAPACK, these subroutines use the info argument to provide
information about the computational error, but they also provide an error
message.

5. On both input and output, matrix A conforms to LAPACK format.
6. For best performance, specify lwork = 0.

Function

These subroutines compute the inverse of general square matrix A, where:
v A-1 is the inverse of matrix A, where AA-1 = A-1A = I, and I is the identity matrix.

Additionally, the subroutines SGEICD and DGEICD compute the reciprocal of the
condition number and the determinant of a general square matrix A, using partial
pivoting to preserve accuracy, where:
v 1/({A{1)({A-1{1) is the reciprocal of the condition number, where {A{1 is

the one-norm of matrix A.
v |A| is the determinant of matrix A, where |A| is expressed as:

The iopt argument is used to determine the combination of output items produced
by SGEICD and DGEICD: the inverse, the reciprocal of the condition number, and
the determinant.

If n is 0, no computation is performed. See references [44 on page 1316], [46 on
page 1316], and [52 on page 1316].

554 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors

1. Unable to allocate internal work area.
2. If iopt = 0, 1, 2, or 3, then error 2015 is unrecoverable, naux = 0, and unable

to allocate work area.

Computational Errors
Matrix A is singular or nearly singular.

For SGETRI, DGETRI, CGETRI, and ZGETRI:
v The index i of the first pivot element having a value equal to zero is

identified in the computational error message.
v The computational error message may occur multiple times with

processing continuing after each error, because the default for the
number of allowable errors for error code 2149 is set to be unlimited in
the ESSL error option table.

For SGEICD and DGEICD:
v The index i of the first pivot element having a value equal to 0 is

identified in the computational error message.
v These subroutines return 0 for rcond and det, if you requested them.
v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change
the number of allowable errors for error code 2105 in the ESSL error
option table; otherwise, the default value causes your program to
terminate when this error occurs. For details, see “What Can You Do
about ESSL Computational Errors?” on page 66.

Input-Argument Errors
1. lda ≤ 0
2. n < 0
3. n > lda
4. iopt ≠ 0, 1, 2, 3, or 4
5. lwork ≠ 0, lwork ≠ -1, and lwork < max(1, n)
6. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example computes the inverse of matrix A, where matrix A is the
transformed matrix factored by SGETRF in Example 3 and the input contents
of IPVT are the same as the output contents of IPVT in Example 3.

Note: Because lwork is 0, SGETRI dynamically allocates the work area used by
this subroutine.

Call Statement and Input:
N A LDA IPVT WORK LWORK INFO
| | | | | | |

CALL SGETRI(9 , A , 9 , IPVT , WORK , 0 , INFO)

A = (same as output A in Example 3)
IPVT = (same as output IPVT in Example 3)

Chapter 10. Linear Algebraic Equations 555

Output:

Example 2

This example computes the inverse of matrix A, where A is the transformed
matrix factored by ZGETRF in Example 2 and the input contents of IPVT are
the same as the output contents of IPVT in Example 2.

Note: Because lwork is 0, ZGETRI dynamically allocates the work area used by
this subroutine.

Call Statement and Input:
N A LDA IPVT WORK LWORK INFO
| | | | | | |

CALL ZGETRI(9 , A , 9 , IPVT , WORK , 0 , INFO)

A = (same as output A in Example 2)
IPVT = (same as output IPVT in Example 2)

Output:

INFO = 0

Example 3

This example computes the inverse, the reciprocal of the condition number,
and the determinant of matrix A. The values used to compute the reciprocal of
the condition number in this example are obtained with the following values:

{A{1 = max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0
{A-1{1 = 1226.33

On output, the value in det, |A|, is equal to 336.

Call Statement and Input:

┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

INFO = 0

┌ ┐
| (-0.2, -0.4) (-0.1, 0.1) (-0.1, 0.1) (0.0, 0.1) (0.1, 0.1) (0.1, 0.1) (0.1, 0.0) (0.1, 0.0) (0.0, -0.3) |
| (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.0) |
| (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.1, 0.1) |

A = | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.1, 0.1) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.1) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.1) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.1) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (-0.2, -0.4) |
└ ┘

556 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:

Example 4

This example computes the inverse of matrix A, where: iopt = 4; matrix A is the
transformed matrix factored by SGEF in Example 1; and the input contents of
AUX are the same as the output contents of IPVT in Example 1.

Call Statement and Input:
A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | |

CALL SGEICD(A , 9 , 9 , 4 , RCOND , DET , AUX , 300)

A = (same as output A in Example 1)
AUX = (same as output IPVT in Example 1)

Output:

A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | |

CALL DGEICD(A , 9 , 9 , 3 , RCOND , DET , AUX , 293)

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |

A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

RCOND = 0.00005436
DET = (3.36, 2.00)

┌ ┐
| 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
| 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
| -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
| -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |

A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
| -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
| 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
| -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
└ ┘

Chapter 10. Linear Algebraic Equations 557

SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)
Purpose

SLANGE, DLANGE, CLANGE, and ZLANGE compute the norm of general matrix
A.

Table 134. Data Types

A work, Result Subprogram

Short-precision real Short-precision real SLANGE⌂

Long-precision real Long-precision real DLANGE⌂

Short-precision complex Short-precision real CLANGE⌂

Long-precision complex Long-precision real ZLANGE⌂

Syntax

Fortran SLANGE | DLANGE | CLANGE | ZLANGE (norm, m, n, a, lda, work)

C and C++ slange | dlange | clange | zlange (norm, m, n, a, lda, work);

On Entry

norm
specifies the type of computation, where:

If norm = 'O' or '1', the one norm of A is computed.

If norm = 'I', the infinity norm of A is computed.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is computed.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

Specified as: a single character; norm = 'O', '1', 'I', 'F', 'E', or 'M'.

m the number of rows in matrix A.

Specified as: an integer; m ≥ 0.

n the number of columns in matrix A.

Specified as: an integer; n ≥ 0.

a is the general matrix A, with m rows and n columns.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 134.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda > 0 and lda ≥ m.

work
is the work area used by this subroutine, where:
v When norm = 'I', the size of work is (at least) of length m.
v Otherwise, work is not referenced.

Specified as: an area of storage containing numbers of data type indicated in
Table 134.

558 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

On Return

Function value
is the result of the norm computation, returned as a number of the data type
indicated in Table 134 on page 558.

If norm = 'O' or '1', the one norm of A is returned.

If norm = 'I', the infinity norm of A is returned.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is returned.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

If m = 0 or n = 0, the function returns zero.

Notes
1. Declare this function in your program as returning a value of the data type

indicated in Table 134 on page 558.
2. This function accepts lowercase letters for the norm argument.

Function

One of the following computations is performed on general matrix A, depending
on the value specified for norm:

Value specified for norm Type of computation performed

'O' or '1' one norm

'I' infinity norm

'F' or 'E' Frobenius or Euclidean norm

'M' absolute value of the matrix element having
the largest absolute value, i.e., max (|A|)

If m = 0 or n = 0, the function returns zero.

Error conditions

Resource Errors
None.

Computational Errors
None.

Input-Argument Errors
1. norm ≠ 'O', '1', 'I', 'F', 'E', or 'M'
2. m < 0
3. n < 0
4. m > lda
5. lda ≤ 0

Examples

Example 1

This example computes the one norm of real general matrix A.

Call Statements and Input:

Chapter 10. Linear Algebraic Equations 559

A = (same as input matrix A in Example 3)

Output:

ANORM = 15.0

Example 2

This example computes the one norm of complex general matrix A.

Call Statements and Input:

A = (same as input matrix A in Example 2)

Output:

ANORM = 25.32

NORM M N A LDA WORK
| | | | | |

ANORM = DLANGE(’1’, 9 , 9 , A , 9 , WORK)

NORM M N A LDA WORK
| | | | | |

ANORM = ZLANGE(’1’, 4 , 4 , A , 4 , WORK)

560 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric
and Complex Hermitian Matrix Factorization and Multiple Right-Hand
Side Solve)

Purpose

These subroutines solve the system of linear equations AX = B for X, where X and
B are general matrices and:
v for SPPSV and DPPSV, A is a positive definite real symmetric matrix.
v for CPPSV and ZPPSV, A is a positive definite complex Hermitian matrix.

The matrix A, stored in upper- or lower-packed storage mode, is factored using
Cholesky factorization.

Table 135. Data Types

A, B Subroutine

Short-precision real SPPSV⌂

Long-precision real DPPSV⌂

Short-precision complex CPPSV⌂

Long-precision complex ZPPSV⌂

⌂ LAPACK

Syntax

Fortran CALL SPPSV | DPPSV | CPPSV | ZPPSV (uplo, n, nrhs, ap, bx, ldb, info)

C and C++ sppsv | dppsv | cppsv | zppsv (uplo, n, nrhs, ap, bx, ldb, info);

On Entry

uplo
indicates whether matrix A is stored in upper- or lower-packed storage mode,
where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

ap is an array, referred to as AP, in which matrix A, to be factored, is stored in
upper- or lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 135.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of B.

Chapter 10. Linear Algebraic Equations 561

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 135 on page 561.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See On Return.

On Return

ap is an array, referred to as AP, in which the transformed matrix A of order n,
containing the results of the factorization, is stored in upper- or lower-packed
storage mode.

Returned as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 135 on page 561. See “Function”
on page 563.

bx is the general matrix X, containing the nrhs solutions to the system. The
solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 135 on page 561.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, the factorization was unsuccessful. B is overwritten; that is, the
original input is not preserved. info is set equal to the order i of the first minor
encountered having a nonpositive determinant.

Specified as: an integer; info ≥ 0.

Notes
1. These subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. The matrices used in this computation must have no common elements;

otherwise, results are unpredictable. See “Concepts” on page 73.
4. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

5. For a description of the storage modes used for the matrices, see:
v For positive definite real symmetric matrices, see “Positive Definite or

Negative Definite Symmetric Matrix” on page 87.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 89.
6. On both input and output, matrices A, B, and X conform to LAPACK format.
7. The way these subroutines handle computational errors differs from LAPACK.

Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

562 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

The system AX = B is solved for X, where X and B are general matrices and:
v for SPPSV and DPPSV, A is a positive definite real symmetric matrix.
v for CPPSV and ZPPSV, A is a positive definite complex Hermitian matrix.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the
Cholesky factorization method, where A is expressed as:

A = LLT or A = UTU
for SPPSV and DPPSV

A = LLH or A = UHU
for CPPSV and ZPPSV

where:

L is a lower triangular matrix.
U is an upper triangular matrix.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix.

See references [8 on page 1313], [44 on page 1316], and [46 on page 1316].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is not positive definite.
v The order i of the first minor encountered having a nonpositive determinant

is identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2148 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. n > ldb
5. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B, where matrix A is a
positive definite real symmetric matrix of order 9, stored in lower-packed
storage mode.

On input, matrix A is:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |

Chapter 10. Linear Algebraic Equations 563

| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

On output, all elements of this matrix A are 1.0.

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in lower-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL SPPSV (’L’, 9, 2, AP, BX, 9, INFO)

AP = (same as input AP in Example 5)
BX = (same as input BX in Example 5)

Output:
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0,
1.0)

┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |

BX = | 1.0 4.0 |
| 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B, where matrix A is a
positive definite real symmetric matrix of order 9, stored in upper-packed
storage mode.

On input, matrix A is:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

On output, all elements of this matrix A are 1.0.

564 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in upper-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL SPPSV (’U’, 9, 2, AP, BX, 9, INFO)

AP = (same as input AP in Example 6)
BX = (same as input BX in Example 6)

Output:
AP = (1.0,

1.0, 1.0,
1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |

BX = | 1.0 4.0 |
| 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B, where matrix A is a
positive definite complex Hermitian matrix of order 3, stored in lower-packed
storage mode.

On input, matrix A is:
┌ ┐
| (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
| (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
| (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL ZPPSV (’L’, 3, 2, AP, BX, 3, INFO)

AP = (same as input AP in Example 7)
BX = (same as input BX in Example 7)

Output:
AP = ((5.0, 0.0), (-1.0, 1.0), (2.0, -1.0), (7.0, 0.0), (1.0, 1.0), (8.0, 0.0))

Chapter 10. Linear Algebraic Equations 565

┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, 1.0) (-1.0, 2.0) |
| (0.0, -2.0) (1.0, 1.0) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX = B, where matrix A is a
positive definite complex Hermitian matrix of order 3, stored in upper-packed
storage mode.

On input, matrix A is:
┌ ┐
| (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
| (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
| (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL ZPPSV (’U’, 3, 2, AP, BX, 3, INFO)

AP = (same as input AP in Example 8)
BX = (same as input BX in Example 8)

Output:
AP = ((3.0, 0.0), (1.0, 1.0), (4.0, 0.0), (1.0, -1.0), (2.0, -1.0), (6.0, 0.0))

┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

566 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric
or Complex Hermitian Matrix Factorization and Multiple Right-Hand
Side Solve)

Purpose

These subroutines solve the system of linear equations AX = B for X, where X and
B are general matrices and:
v for SPOSV and DPOSV, A is a positive definite real symmetric matrix.
v for CPOSV and ZPOSV, A is a positive definite complex Hermitian matrix.

The matrix A, stored in upper- or lower-storage mode, is factored using Cholesky
factorization.

Table 136. Data Types

A, B Subroutine

Short-precision real SPOSV⌂

Long-precision real DPOSV⌂

Short-precision complex CPOSV⌂

Long-precision complex ZPOSV⌂

⌂LAPACK

Syntax

Fortran CALL SPOSV | DPOSV | CPOSV | ZPOSV (uplo, n, nrhs, a, lda, bx, ldb, info)

C and C++ sposv | dposv | cposv | zposv (uplo, n, nrhs, a, lda, bx, ldb, info);

On Entry

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the positive definite matrix A to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 136. See “Notes ” on page 568.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

Chapter 10. Linear Algebraic Equations 567

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 136 on page 567.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See On Return.

On Return

a is the transformed matrix A of order n, containing the results of the
factorization.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 136 on page 567. See “Function” on page 569.

bx is the general matrix X, containing the nrhs solutions to the system. The
solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 136 on page 567.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, the factorization was unsuccessful and the solution was not
computed. info is set equal to the order i of the first minor encountered having
a nonpositive determinant.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

4. The way these subroutines handle computational errors differs from LAPACK.
Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

5. On both input and output, matrices A, B, and X conform to LAPACK format.
6. For a description of the storage modes used for the matrices, see:
v For positive definite real symmetric matrices, see “Positive Definite or

Negative Definite Symmetric Matrix” on page 87.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 89.
7. The matrices used in this computation must have no common elements;

otherwise, results are unpredictable. See “Concepts” on page 73.

568 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

These subroutines solve the system of linear equations AX = B for X, where X and
B are general matrices and:
v for SPOSV and DPOSV, A is a positive definite real symmetric matrix.
v for CPOSV and ZPOSV, A is a positive definite complex Hermitian matrix.

The matrix A is factored using Cholesky factorization, where A is expressed as:

A=LLT or A=UTU
for SPOSV and DPOSV

A=LLH or A=UHU
for CPOSV and ZPOSV

where:

L is a unit lower triangular matrix.
U is an upper triangular matrix.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix.

See references [8 on page 1313], [44 on page 1316], and [82 on page 1318].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is not positive definite.

The order i of the first minor encountered having a nonpositive determinant is
identified in the computational error message.

The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2148 is set to be unlimited in the ESSL error option table.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. n > lda
5. lda ≤ 0
6. n > ldb
7. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 1 for SPOTRF.
Matrix B is the same used as input in Example 1 for SPOTRS.

Call Statement and Input:

Chapter 10. Linear Algebraic Equations 569

UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL SPOSV(’L’, 9 , 2 , A , 9 , BX , 9 , INFO)

A = (same as input A in Example 1)
BX = (same as input BX in Example 1)

Output:
┌ ┐
| 1.0 |
| 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 2 for SPOTRF.
Matrix B is the same used as input in Example 2 for SPOTRS.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL SPOSV(’U’ , 9 , 2 , A , 9 , BX , 9 , INFO)

A = (same as input A in Example 2)
BX = (same as input BX in Example 2)

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . . 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 |
| 1.0 |
└ ┘

┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

570 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 3 for CPOTRF.
Matrix BX is the same used as input in Example 3 for CPOTRS.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL CPOSV(’L’, 3 , 2 , A , 3 , BX , 3 , INFO)

┌ ┐
| (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |

A = | (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
| (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
└ ┘

┌ ┐
| (60.0, -55.0) (70.0, 10.0) |

BX = | (34.0, 58.0) (-51.0, 110.0) |
| (13.0, -152.0) (75.0, 63.0) |
└ ┘

Output:
┌ ┐
| (5.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |

A = | (-1.0, 1.0) (7.0, 0.0) (4.0, -6.0) |
| (2.0, -1.0) (1.0, 1.0) (8.0, 0.0) |
└ ┘

┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, 1.0) (-1.0, 2.0) |
| (0.0, -2.0) (1.0, 1.0) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX = B, where:

Matrix A is the same used as input in Example 4 for CPOTRF.
Matrix BX is the same used as input in Example 4 for CPOTRS.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL CPOSV(’U’, 3 , 2 , A , 3 , BX , 3 , INFO)

┌ ┐
| (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |

A = | (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
| (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
└ ┘

Chapter 10. Linear Algebraic Equations 571

┌ ┐
| (33.0, -18.0) (15.0, -3.0) |

BX = | (45.0, -45.0) (8.0, -2.0) |
| (152.0, 1.0) (43.0, -29.0) |
└ ┘

Output:

Note: The strict lower part of A is not referenced.
┌ ┐
| (3.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

A = | (3.0, -3.0) (4.0, 0.0) (2.0, -1.0) |
| (3.0, 3.0) (8.0, 6.0) (6.0, 0.0) |
└ ┘

┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

572 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF,
SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
Real Symmetric or Complex Hermitian Matrix Factorization)

Purpose

These subroutines factor matrix A as explained below:

SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and ZPOF

The SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and ZPOF
subroutines factor matrix A stored in upper or lower storage mode, where:
v For SPOTRF, DPOTRF, SPOF, and DPOF, A is a positive definite real

symmetric matrix.
v For CPOTRF, ZPOTRF, CPOF, and ZPOF, A is a positive definite complex

Hermitian matrix.

Matrix A is factored using Cholesky factorization.

To solve the system of equations with one or more right-hand sides, follow the
call to SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, or ZPOF
with a call to SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM,
CPOSM, or ZPOSM, respectively.

To find the inverse of matrix A, follow the call to SPOTRF, DPOTRF, CPOTRF,
ZPOTRF, SPOF, or DPOF with a call to SPOTRI, DPOTRI, CPOTRI, ZPOTRI,
SPOICD, or DPOICD, respectively.

To estimate the reciprocal of the condition number of matrix A, follow the call
to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF with a call to SPOCON, DPOCON,
CPOCON, or ZPOCON, respectively.

SPPTRF, DPPTRF, CPPTRF, and ZPPTRF

The SPPTRF, DPPTRF, CPPTRF, and ZPPTRF subroutines factor matrix A,
stored in upper- or lower-packed storage mode, where:
v For SPPTRF and DPPTRF, A is a positive definite real symmetric matrix.
v For CPPTRF and ZPPTRF, A is a positive definite complex Hermitian matrix.

Matrix A is factored using Cholesky factorization.

To solve the system of equations with one or more right-hand sides, follow the
call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF with a call to SPPTRS, DPPTRS,
CPPTRS, or ZPPTRS, respectively.

To find the inverse of matrix A, follow the call to SPPTRF, DPPTRF, CPPTRF,
or ZPPTRF with a call to SPPTRI, DPPTRI, CPPTRI, or ZPPTRI, respectively.

To estimate the reciprocal of the condition number of matrix A, follow the call
to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF with a call to SPPCON, DPPCON,
CPPCON, or ZPPCON, respectively.

SPPF and DPPF

The SPPF and DPPF subroutines factor positive definite real symmetric matrix
A, stored in lower-packed storage mode, using Gaussian elimination (LDLT) or
Cholesky factorization. To solve a system of equations with one or more
right-hand sides, follow the call to these subroutines with one or more calls to
SPPS or DPPS, respectively. To find the inverse of matrix A, follow the call to
these subroutines, performing Cholesky factorization, with a call to SPPICD or
DPPICD, respectively.

Chapter 10. Linear Algebraic Equations 573

Table 137. Data Types

A Subroutine

Short-precision real SPOTRF⌂, SPOF, SPPTRF⌂, and SPPF

Long-precision real DPOTRF⌂, DPOF, DPPTRF⌂, and DPPF

Short-precision complex CPOTRF⌂, CPOF, and CPPTRF⌂

Long-precision complex ZPOTRF⌂, ZPOF, and ZPPTRF⌂

⌂LAPACK

Note: The output from each of these subroutines should be used only as input for
specific other subroutines, as shown in the table below.

Output from this
subroutine:

Should be used only as input to the following subroutines:

Solve Inverse Reciprocal of the
condition number

SPOTRF SPOTRS SPOTRI SPOCON

DPOTRF DPOTRS DPOTRI DPOCON

CPOTRF CPOTRS CPOTRI CPOCON

ZPOTRF ZPOTRS ZPOTRI ZPOCON

SPOF SPOSM SPOICD SPOICD

DPOF DPOSM DPOICD DPOICD

CPOF CPOSM

ZPOF ZPOSM

SPPTRF SPPTRS SPPTRI SPPCON

DPPTRF DPPTRS DPPTRI DPPCON

CPPTRF CPPTRS CPPTRI CPPCON

ZPPTRF ZPPTRS ZPPTRI ZPPCON

SPPF SPPS SPPICD SPPICD

DPPF DPPS DPPICD DPPICD

Syntax

Fortran
CALL SPOTRF | DPOTRF | CPOTRF | ZPOTRF (uplo, n, a, lda, info)
CALL SPOF | DPOF | CPOF | ZPOF (uplo, a, lda, n)
CALL SPPTRF | DPPTRF | CPPTRF | ZPPTRF (uplo, n, ap, info)
CALL SPPF | DPPF (ap, n, iopt)

C and C++
spotrf | dpotrf | cpotrf | zpotrf (uplo, n, a, lda, info);
spof | dpof | cpof | zpof (uplo, a, lda, n);
spptrf | dpptrf | cpptrf | zpptrf (uplo, n, ap, info);
sppf | dppf (ap, n, iopt);

On Entry

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

574 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is an array, referred to as AP, in which matrix A, to be factored, is stored as
follows:

SPPTRF, DPPTRF, CPPTRF, and ZPPTRF
Upper-packed or lower-packed storage mode

SPPF and DPPF
Lower-packed storage mode

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 137 on page 574. See “Notes ” on page 576.

For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:
The array must have at least n(n+1)/2 elements.

For SPPF and DPPF:
If iopt = 0 or 10, the array must have at least n(n+1)/2+n elements.

If iopt = 1 or 11, the array must have at least n(n+1)/2 elements.

a is the positive definite matrix A, to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 137 on page 574.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order n of matrix A.

Specified as: an integer; n ≥ 0.

iopt
determines the type of computation to be performed, where:

If iopt = 0, the matrix is factored using the LDLT method, and the output is
stored in an internal format.

If iopt = 1, the matrix is factored using Cholesky factorization, and the output
is stored in an internal format.

If iopt = 10, the matrix is factored using the LDLT method, and the output is
stored in lower-packed storage mode.

If iopt = 11, the matrix is factored using Cholesky factorization, and the output
is stored in lower-packed storage mode.

Specified as: an integer; iopt = 0, 1, 10, or 11.

info
See On Return.

On Return

ap is an array, referred to as AP, in which the transformed matrix A of order n,
containing the results of the factorization, is stored.

For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:
The transformed matrix is stored in upper-packed or lower-packed storage
mode.

Chapter 10. Linear Algebraic Equations 575

For SPPF and DPPF:
If iopt is 0 or 1, the transformed matrix is stored in an internal format and
should only be used as input to the corresponding solve or inverse
subroutine.

If iopt is 10 or 11, the transformed matrix is stored in lower-packed storage
mode.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 137 on page 574.

For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:
The array contains at least n(n+1)/2 elements.

For SPPF and DPPF:
If iopt = 0 or 10, the array contains n(n+1)/2+n elements.

If iopt = 1 or 11, the array contains n(n+1)/2 elements.

See “Notes ” and see “Function” on page 577.

a is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 577.

Returned as: a two-dimensional array, containing numbers of the data type
indicated in Table 137 on page 574.

info
has the following meaning:

If info = 0, the factorization completed successfully.

If info > 0, info is set equal to the order i of the first minor encountered having
a nonpositive determinant.

Specified as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

4. In the input and output arrays specified for ap, the first n(n+1)/2 elements are
matrix elements. The additional n locations, required in the array when iopt = 0
or 10, are used for working storage by this subroutine and should not be
altered between calls to the factorization and solve subroutines.

5. If iopt = 0 or 1, SPPF and DPPF in some cases utilize algorithms based on
recursive packed storage format. As a result, on output, if iopt = 0 or 1, the
array specified for AP may be stored in this new format rather than the
conventional lower packed format. (See references [61 on page 1317], [77 on
page 1318], and [79 on page 1318]).
The array specified for AP should not be altered between calls to the
factorization and solve subroutines; otherwise unpredictable results may occur.

6. The way _POTRF and _PPTRF subroutines handle computational errors differs
from LAPACK. Like LAPACK, these subroutines use the info argument to
provide information about the computational error, but they also provide an
error message.

7. On both input and output, matrix A conforms to LAPACK format.

576 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

8. For a description of the storage modes used for the matrices, see:
v For positive definite symmetric matrices, see “Positive Definite or Negative

Definite Symmetric Matrix” on page 87.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 89.

Function

The functions for these subroutines are described.

For SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and ZPOF

The positive definite matrix A, stored in upper or lower storage mode, is factored
using Cholesky factorization, where A is expressed as:

A = LLT or A = UTU
for SPOTRF, DPOTRF, SPOF, and DPOF

A = LLH or A = UHU
for CPOTRF, ZPOTRF, CPOF, and ZPOF

where:

L is a lower triangular matrix.
U is an upper triangular matrix.

If n is 0, no computation is performed. See references [8 on page 1313] and [44 on
page 1316].

For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:

The positive definite matrix A, stored in upper-packed or lower-packed storage
mode, is factored using Cholesky factorization, where A is expressed as:

A = LLT or A = UTU
for SPPTRF and DPPTRF

A = LLH or A = UHU
for CPPTRF and ZPPTRF

where:

L is a lower triangular matrix.
U is an upper triangular matrix.

If n is 0, no computation is performed. See references [8 on page 1313], [44 on page
1316], and [78 on page 1318].

For SPPF and DPPF:

If iopt = 0 or 10, the positive definite symmetric matrix A, stored in lower-packed
storage mode, is factored using Gaussian elimination, where A is expressed as:

A = LDLT

where:

Chapter 10. Linear Algebraic Equations 577

L is a unit lower triangular matrix.
D is a diagonal matrix.

If iopt = 1 or 11, the positive definite symmetric matrix A, stored in lower-packed
storage mode, is factored using Cholesky factorization, where A is expressed as:

A = LLT

where L is a lower triangular matrix.

If n is 0, no computation is performed. See references [8 on page 1313] and [44 on
page 1316].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
1. Matrix A is not positive definite (for SPOTRF, DPOTRF, CPOTRF, ZPOTRF,

SPPTRF, DPPTRF, CPPTRF, and ZPPTRF).
v The order i of the first minor encountered having a nonpositive

determinant is identified in the computational error message.
v The computational error message may occur multiple times with

processing continuing after each error, because the default for the
number of allowable errors for error code 2148 is set to be unlimited in
the ESSL error option table.

2. Matrix A is not positive definite (for SPPF and DPPF when iopt = 0 or 10).
v Processing continues to the end of the matrix.
v One or more elements of D contain values less than or equal to 0; all

elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2104 in the ESSL error option
table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see “What Can You Do about ESSL
Computational Errors?” on page 66.

3. Matrix A is not positive definite (for SPPF and DPPF when iopt = 1 or 11
and for SPOF, DPOF, CPOF, and ZPOF).
v Processing stops at the first occurrence of a nonpositive definite diagonal

element.
v The order i of the first minor encountered having a nonpositive

determinant is identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2115 in the ESSL error option
table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see “What Can You Do about ESSL
Computational Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. n > lda

578 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. lda ≤ 0
5. iopt ≠ 0, 1, 10, or 11

Examples

Example 1

This example shows a factorization of the same positive definite symmetric
matrix A of order 9 used in Example 9, but stored in lower storage mode.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL SPOTRF(’L’ , 9 , A , 9 , INFO)

or
UPLO A LDA N
| | | |

CALL SPOF(’L’ , A , 9 , 9)

┌ ┐
| 1.0 |
| 1.0 2.0 |
| 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

A = | 1.0 2.0 3.0 4.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

Output:
┌ ┐
| 1.0 |
| 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

INFO = 0

Example 2

This example shows a factorization of the same positive definite symmetric
matrix A of order 9 used in Example 9, but stored in upper storage mode.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL SPOTRF(’U’ , 9 , A , 9 , INFO)

or
UPLO A LDA N
| | | |

CALL SPOF(’U’ , A , 9 , 9)

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |

Chapter 10. Linear Algebraic Equations 579

| . . . 4.0 4.0 4.0 4.0 4.0 4.0 |
A = | 5.0 5.0 5.0 5.0 5.0 |

| 6.0 6.0 6.0 6.0 |
| 7.0 7.0 7.0 |
| 8.0 8.0 |
| 9.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . . . 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 |
| 1.0 1.0 |
| 1.0 |
└ ┘

INFO = 0

Example 3

This example shows a factorization of positive definite complex Hermitian
matrix A of order 3, stored in lower storage mode, where on input matrix A is:

┌ ┐
| (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
| (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
| (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL CPOTRF(’L’ , 3 , A , 3 , INFO)

or
UPLO A LDA N
| | | |

CALL CPOF(’L’ , A , 3 , 3)

┌ ┐
| (25.0, .) . . |

A = | (-5.0, 5.0) (51.0, .) . |
| (10.0, -5.0) (4.0, 6.0) (71.0, .) |
└ ┘

Output:
┌ ┐
| (5.0, 0.0) . . |

A = | (-1.0, 1.0) (7.0, 0.0) . |
| (2.0, -1.0) (1.0, 1.0) (8.0, 0.0) |
└ ┘

INFO = 0

Example 4

This example shows a factorization of positive definite complex Hermitian
matrix A of order 3, stored in upper storage mode, where on input matrix A is:

580 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
| (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
| (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
└ ┘

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL CPOTRF(’U’ , 3 , A , 3 , INFO)

or
UPLO A LDA N
| | | |

CALL CPOF(’U’ , A , 3 , 3)

┌ ┐
| (9.0, .) (3.0,3.0) (3.0,-3.0) |

A = | . (18.0, .) (8.0,-6.0) |
| . . (43.0, .) |
└ ┘

Output:
┌ ┐
| (3.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

A = | . (4.0, 0.0) (2.0, -1.0) |
| . . (6.0, 0.0) |
└ ┘

INFO = 0

Example 5

This example shows a factorization (using the Cholesky factorization method)
of the same positive definite symmetric matrix A of order 9 used in Example 9,
but stored in lower-packed storage mode.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL SPPTRF(’L’ , 9 , AP , INFO)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0)

Output:
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,

Chapter 10. Linear Algebraic Equations 581

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0,
1.0)

INFO = 0

Example 6

This example shows a factorization (using the Cholesky factorization method)
of the same positive definite symmetric matrix A of order 9 used in Example 9,
but stored in upper-packed storage mode.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in upper-packed storage mode.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL SPPTRF(’U’, 9, AP, INFO)

AP = (1.0,
1.0, 2.0,

1.0, 2.0, 3.0,
1.0, 2.0, 3.0, 4.0,

1.0, 2.0, 3.0, 4.0, 5.0,
1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

Output:
AP = (1.0,

1.0, 1.0,
1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

INFO = 0

Example 7

This example shows a factorization (using the Cholesky factorization method)
of the same positive definite complex Hermitian matrix A of order 3 used in
Example 3, but stored in lower-packed storage mode.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL ZPPTRF(’L’ , 3 , AP , INFO)

AP = ((25.0, .), (-5.0, 5.0), (10.0, -5.0), (51.0, .), (4.0, 6.0), (71.0, .))

Output:
AP = ((5.0, 0.0), (-1.0, 1.0), (2.0, -1.0), (7.0, 0.0), (1.0, 1.0), (8.0, 0.0))

INFO = 0

Example 8

582 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows a factorization (using the Cholesky factorization method)
of the same positive definite complex Hermitian matrix A of order 3 used in
Example 4, but stored in upper-packed storage mode.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL ZPPTRF(’U’ , 3 , AP , INFO)

AP = ((9.0, .), (3.0, 3.0), (18.0, .), (3.0, -3.0), (8.0, -6.0), (43.0, .))

Output:
AP = ((3.0, 0.0), (1.0, 1.0), (4.0, 0.0), (1.0, -1.0), (2.0, -1.0), (6.0, 0.0))

INFO = 0

Example 9

This example shows a factorization (using the Gaussian elimination method) of
positive definite symmetric matrix A of order 9, stored in lower-packed storage
mode, where on input matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

On output, all elements of this matrix A are 1.0.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT
| | |

CALL SPPF(AP, 9, 0)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0,
. , . , . , . , . , . , . , . , .)

Output:
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,

Chapter 10. Linear Algebraic Equations 583

1.0, 1.0, 1.0,
1.0, 1.0,
1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 10

This example shows a factorization (using the Cholesky factorization method)
of the same positive definite symmetric matrix A of order 9 used in Example 9,
stored in lower-packed storage mode.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT
| | |

CALL SPPF(AP, 9, 1)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0)

Output:
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0,
1.0)

584 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM,
ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite
Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side
Solve)

Purpose

These subroutines solve the system AX = B for X, where X and B are general
matrices and:
v For SPOTRS, DPOTRS, SPOSM, DPOSM, SPPTRS, and DPPTRS, A is a positive

definite real symmetric matrix.
v For CPOTRS, ZPOTRS, CPOSM, ZPOSM, CPPTRS, and ZPPTRS, A is a positive

definite complex Hermitian matrix.

SPOTRS, DPOTRS, CPOTRS, and ZPOTRS use the results of the factorization of
matrix A, produced by a preceding call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF,
respectively.

SPOSM, DPOSM, CPOSM, and ZPOSM use the results of the factorization of
matrix A, produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF,
or ZPOF, respectively.

SPPTRS, DPPTRS, CPPTRS, and ZPPTRS use the results of the factorization of
matrix A, produced by a preceding call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF,
respectively.

Table 138. Data Types

A, B, X Subroutine

Short-precision real SPOTRS⌂, SPOSM, and SPPTRS⌂

Long-precision real DPOTRS⌂, DPOSM, and DPPTRS⌂

Short-precision complex CPOTRS⌂, CPOSM, and CPPTRS⌂

Long-precision complex ZPOTRS⌂, ZPOSM, and ZPPTRS⌂

⌂LAPACK

Note: The input to these solve subroutines must be the output from the
corresponding factorization subroutines.

Syntax

Fortran

CALL SPOTRS | DPOTRS | CPOTRS | ZPOTRS (uplo, n, nrhs, a, lda, bx, ldb, info)

CALL SPOSM | DPOSM | CPOSM | ZPOSM (uplo, a, lda, n, bx, ldb, nrhs)

CALL SPPTRS | DPPTRS | CPPTRS | ZPPTRS (uplo, n, nrhs, ap, bx, ldb, info)

C and C++ spotrs | dpotrs | cpotrs | zpotrs (uplo, n, nrhs, a, lda, bx, ldb, info);

sposm | dposm | cposm | zposm (uplo, a, lda, n, bx, ldb, nrhs);

spptrs | dpptrs | cpptrs | zpptrs (uplo, n, nrhs, ap, bx, ldb, info);

On Entry

Chapter 10. Linear Algebraic Equations 585

uplo
indicates whether the original matrix A is stored in upper or lower storage
mode, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

a is the factorization of positive definite matrix A, produced by a preceding call
to SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF/SPOFCD, DPOF/DPOFCD,
CPOF, or ZPOF.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 138 on page 585.

ap is an array, referred to as AP, in which the factorization of positive definite
matrix A, produced by a preceding call to SPPTRF, DPPTRF, CPPTRF, or
ZPPTRF, is stored in upper-packed or lower-packed storage mode.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 138 on page 585.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order of matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 138 on page 585.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ n.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

info
See On Return.

On Return

bx is the general matrix X, containing the nrhs solutions to the system. The
solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 138 on page 585.

info
info has the following meaning:

If info = 0, the solve completed successfully.

586 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. The scalar data specified for input arguments uplo, lda, and n for these

subroutines must be the same as the corresponding input arguments specified
for SPOTRF/SPOF/SPOFCD/SPPTRF, DPOTRF/DPOF/DPOFCD/DPPTRF,
CPOTRF/CPOF/CPPTRF, and ZPOTRF/ZPOF/ZPPTRF, respectively.

4. The array data specified for input argument a for these subroutines must be the
same as the corresponding output arguments for SPOTRF/SPOF/SPOFCD,
DPOTRF/DPOF/DPOFCD, CPOTRF/CPOF, and ZPOTRF/ZPOF, respectively.

5. The array data specified for input argument ap for these subroutines must be
the same as the corresponding output arguments for SPPTRF, DPPTRF,
CPPTRF, and ZPPTRF, respectively.

6. The matrices used in this computation must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 73.

7. For a description of how the matrices are stored:
v For positive definite real symmetric matrices, see “Positive Definite or

Negative Definite Symmetric Matrix” on page 87.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 89.

Function

The system AX = B is solved for X, where X and B are general matrices and A is a
positive definite real symmetric matrix for SPOTRS/SPOSM/SPPTRS and
DPOTRS/DPOSM/DPPTRS, and a positive definite complex Hermitian matrix for
CPOTRS/CPOSM/CPPTRS and ZPOTRS/ZPOSM/ZPPTRS. These subroutines use
the results of the factorization of matrix A, produced by a preceding call to
SPOTRF/SPOF/SPOFCD/SPPTRF, DPOTRF/DPOF/DPOFCD/DPPTRF,
CPOTRF/CPOF/CPPTRF, or ZPOTRF/ZPOF/ZPPTRF, respectively. For a
description of how A is factored, see “SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF,
DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF
(Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization)” on
page 573.

If n or nrhs is 0, no computation is performed. See references [8 on page 1313] and
[44 on page 1316].

Error conditions

Computational Errors
None

Note: If the factorization performed by _POTRF, _POF, _POFCD, or _PPTRF
failed because matrix A was not positive definite, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. n > lda
5. lda ≤ 0
6. n > ldb

Chapter 10. Linear Algebraic Equations 587

7. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in the Example 1 for SPOTRF and
SPOF.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL SPOTRS(’L’ , 9 , 2 , A , 9 , BX , 9 , INFO)

or
UPLO A LDA N BX LDB NRHS
| | | | | | |

CALL SPOSM(’L’ , A , 9 , 9 , BX , 9 , 2)

A = (same as output A in Example 1)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

BX = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the input matrix factored in Example 2 for SPOTRF and
SPOF.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL SPOTRS(’U’ , 9 , 2 , A , 9 , BX , 9 , INFO)

or
UPLO A LDA N BX LDB NRHS
| | | | | | |

CALL SPOSM(’U’ , A , 9 , 9 , BX , 9 , 2)

588 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = (same as output A in Example 2)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

BX = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in the Example 3 for CPOTRF and
CPOF.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL CPOTRS(’L’ , 3 , 2 , A , 3 , BX , 3 , INFO)

or
UPLO A LDA N BX LDB NRHS
| | | | | | |

CALL CPOSM(’L’ , A , 3 , 3 , BX , 3 , 2)

A = (same as output A in Example 3)
┌ ┐
| (60.0, -55.0) (70.0, 10.0) |

BX = | (34.0, 58.0) (-51.0, 110.0) |
| (13.0, -152.0) (75.0, 63.0) |
└ ┘

Output:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, 1.0) (-1.0, 2.0) |
| (0.0, -2.0) (1.0, 1.0) |
└ ┘

INFO = 0

Example 4

Chapter 10. Linear Algebraic Equations 589

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the input matrix factored in Example 4 for CPOTRF and
CPOF.

Call Statement and Input:
UPLO N NRHS A LDA BX LDB INFO
| | | | | | | |

CALL CPOTRS(’U’ , 3 , 2 , A , 3 , BX , 3 , INFO)

or
UPLO A LDA N BX LDB NRHS
| | | | | | |

CALL CPOSM(’U’ , A , 3 , 3 , BX , 3 , 2)

A = (same as output A in Example 4)
┌ ┐
| (33.0, -18.0) (15.0, -3.0) |

BX = | (45.0, -45.0) (8.0, -2.0) |
| (152.0, 1.0) (43.0, -29.0) |
└ ┘

Output:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

Example 5

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the input matrix factored in Example 5 for SPPTRF and
DPPTRF.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL SPPTRS(’L’ , 9 , 2 , AP , BX , 9 , INFO)

A = (same as output A in Example 5)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

BX = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |

590 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 6

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in Example 6 for SPPTRF.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL SPPTRS(’U’ , 9 , 2 , AP , BX , 9 , INFO)

A = (same as output A in Example 6)
┌ ┐
| 9.0 45.0 |
| 17.0 89.0 |
| 24.0 131.0 |
| 30.0 170.0 |

BX = | 35.0 205.0 |
| 39.0 235.0 |
| 42.0 259.0 |
| 44.0 276.0 |
| 45.0 285.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 |
| 1.0 2.0 |
| 1.0 3.0 |
| 1.0 4.0 |

BX = | 1.0 5.0 |
| 1.0 6.0 |
| 1.0 7.0 |
| 1.0 8.0 |
| 1.0 9.0 |
└ ┘

INFO = 0

Example 7

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in Example 7 for ZPPTRF.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL ZPPTRS(’L’ , 3 , 2 , AP , BX , 3 , INFO)

AP = (same as output AP in Example 7)
┌ ┐
| (60.0, -55.0) (70.0, 10.0) |

BX = | (34.0, 58.0) (-51.0, 110.0) |
| (13.0, -152.0) (75.0, 63.0) |
└ ┘

Output:

Chapter 10. Linear Algebraic Equations 591

┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, 1.0) (-1.0, 2.0) |
| (0.0, -2.0) (1.0, 1.0) |
└ ┘

INFO = 0

Example 8

This example shows how to solve the system AX = B for two right-hand sides,
where matrix A is the same matrix factored in Example 8 for ZPPTRF.

Call Statement and Input:
UPLO N NRHS AP BX LDB INFO
| | | | | | |

CALL ZPPTRS(’U’ , 3 , 2 , AP , BX , 3 , INFO)

AP = (same as output AP in Example 8)
┌ ┐
| (33.0, -18.0) (15.0, -3.0) |

BX = | (45.0, -45.0) (8.0, -2.0) |
| (152.0, 1.0) (43.0, -29.0) |
└ ┘

Output:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

BX = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

592 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)
Purpose

These subroutines solve the system Ax = b for x, where A is a positive definite
symmetric matrix, and x and b are vectors. The subroutines use the results of the
factorization of matrix A, produced by a preceding call to SPPF/SPPFCD or
DPPF/DPPFP/DPPFCD, respectively.

Table 139. Data Types

A, b, x Subroutine

Short-precision real SPPS

Long-precision real DPPS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPPF/SPPFCD and DPPF/DPPFP/DPPFCD, respectively.

Syntax

Fortran CALL SPPS | DPPS (ap, n, bx, iopt)

C and C++ spps | dpps (ap, n, bx, iopt);

On Entry

ap is the factorization of matrix A, produced by a preceding call to SPPF/SPPFCD
or DPPF/DPPFP/DPPFCD, respectively.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 139, where:

If iopt = 0, the array must contain n(n+1)/2+n elements.

If iopt = 1, the array must contain n(n+1)/2 elements.

n is the order of matrix A used in the factorization, and the lengths of vectors b
and x.

Specified as: an integer; n ≥ 0.

bx is the vector b of length n, containing the right-hand side of the system.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 139.

iopt
indicates the type of factorization that was performed on matrix A, where:

If iopt = 0, the matrix was factored using the LDLT method.

If iopt = 1, the matrix was factored using Cholesky factorization.

Specified as: an integer; iopt = 0 or 1.

On Return

bx is the solution vector x of length n, containing the results of the computation.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 139.

Chapter 10. Linear Algebraic Equations 593

Notes
1. The array data specified for input argument ap for these subroutines must be

the same as the corresponding output argument for SPPF/SPPFCD and
DPPF/DPPFP/DPPFCD, respectively.

2. The scalar data specified for input argument n for these subroutines must be
the same as that specified for SPPF/SPPFCD and DPPF/DPPFP/DPPFCD,
respectively.

3. When you call these subroutines after calling SPPF or DPPF, the value of input
argument iopt must be as follows:

SPPF/DPPF Input iopt SPPS/DPPS Input iopt

0 or 10 0

1 or 11 1

4. When you call these subroutines after calling SPPFCD or DPPFCD, the value of
input argument iopt must be 0.

5. When you call these subroutines after calling DPPFP, the value of input
argument iopt must be 1.

6. In the input array specified for ap, the first n(n+1)/2 elements are matrix
elements. The additional n locations, required in the array when iopt = 0, are
used for working storage by this subroutine and should not be altered between
calls to the factorization and solve subroutines.

7. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

8. For a description of how a positive definite symmetric matrix is stored in
lower-packed storage mode in an array, see “Symmetric Matrix” on page 83.

Function

The system Ax = b is solved for x, where A is a positive definite symmetric matrix,
stored in lower-packed storage mode in array AP, and x and b are vectors. These
subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

If n is 0, no computation is performed. See references [44 on page 1316] and [46 on
page 1316].

Error conditions

Computational Errors
None

Note: If a call to SPPF, DPPF, SPPFCD, DPPFCD, or DPPFP resulted in a
nonpositive definite matrix, error 2104 or 2115, SPPS or DPPS results may be
unpredictable or numerically unstable.

Input-Argument Errors
1. n < 0
2. iopt ≠ 0 or 1

Examples

Example 1

This example shows how to solve the system Ax = b, where matrix A is the
same matrix factored in the Example 9 for SPPF and DPPF.

594 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Call Statement and Input:
AP N BX IOPT
| | | |

CALL SPPS (AP , 9 , BX , 0)

AP = (same as output AP in Example 9
for SPPF and DPPF)

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2

This example shows how to solve the same system as in Example 1, where
matrix A is the same matrix factored in the Example 10 for SPPF and DPPF.

Call Statement and Input:
AP N BX IOPT
| | | |

CALL SPPS(AP , 9 , BX , 1)

AP = (same as output AP in Example 10
for SPPF and DPPF)

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Chapter 10. Linear Algebraic Equations 595

SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON,
and ZPPCON (Estimate the Reciprocal of the Condition Number of a
Positive Definite Real Symmetric or Complex Hermitian Matrix)

Purpose

These subroutines estimate the reciprocal of the condition number of matrix A as
explained below:

SPOCON, DPOCON, CPOCON, and ZPOCON

The SPOCON, DPOCON, CPOCON, and ZPOCON subroutines estimate the
reciprocal of the condition number of matrix A, stored in upper or lower
storage mode, where:
v For SPOCON and DPOCON, A is a positive definite real symmetric matrix.
v For CPOCON and ZPOCON, A is a positive definite complex Hermitian

matrix.

These subroutines use the results of the factorization of matrix A produced by
a preceding call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF, respectively.

SPPCON, DPPCON, CPPCON, and ZPPCON

The SPPCON, DPPCON, CPPCON, and ZPPCON subroutines estimate the
reciprocal of the condition number of matrix A, stored in upper-packed or
lower-packed storage mode, where:
v For SPPCON and DPPCON, A is a positive definite real symmetric matrix.
v For CPPCON and ZPPCON, A is a positive definite complex Hermitian

matrix.

These subroutines use the results of the factorization of matrix A produced by
a preceding call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF, respectively.

For details about the factorization subroutines, see “SPOTRF, DPOTRF, CPOTRF,
ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF,
and DPPF (Positive Definite Real Symmetric or Complex Hermitian Matrix
Factorization)” on page 573.

Table 140. Data Types

A, work anorm, rcond, rwork Subroutine

Short-precision real Short-precision real SPOCON⌂, SPPCON⌂

Long-precision real Long-precision real DPOCON⌂, DPPCON⌂

Short-precision complex Short-precision real CPOCON⌂, CPPCON⌂

Long-precision complex Long-precision real ZPOCON⌂, ZPPCON⌂

Syntax

Fortran
CALL SPOCON | DPOCON (uplo, n, a, lda, anorm, rcond, work, iwork, info)
CALL CPOCON | ZPOCON (uplo, n, a, lda, anorm, rcond, work, rwork, info)
CALL SPPCON | DPPCON (uplo, n, ap, anorm, rcond, work, iwork, info)
CALL CPPCON | ZPPCON (uplo, n, ap, anorm, rcond, work, rwork, info)

596 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

C and C++
spocon | dpocon (uplo, n, a, lda, anorm, rcond, work, iwork, info);
cpocon | zpocon (uplo, n, a, lda, anorm, rcond, work, rwork, info);
sppcon | dppcon (uplo, n, ap, anorm, rcond, work, iwork, info);
cppcon | zppcon (uplo, n, ap, anorm, rcond, work, rwork, info);

On Entry

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n the order of the factored matrix A used in the computation.

Specified as: an integer; n ≥ 0.

ap is an array, referred to as AP, containing the factorization of the positive
definite matrix A produced by a preceding call to SPPTRF, DPPTRF, CPPTRF,
or ZPPTRF, respectively, stored in upper-packed or lower-packed storage
mode.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 140 on page 596. See “Notes ” on page 598.

a the factorization of positive definite matrix A produced by a preceding call to
SPOTRF, DPOTRF, CPOTRF, or ZPOTRF, respectively, stored in upper or lower
storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 140 on page 596.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda > 0 and lda ≥ n.

anorm
is the one norm of the original matrix A.

For SPOCON, DPOCON, CPOCON, and ZPOCON

To obtain the value of anorm, make a preceding call to SLANSY, DLANSY,
CLANHE, or ZLANHE, respectively.

For SPPCON, DPPCON, CPPCON, and ZPPCON

To obtain the value of anorm, make a preceding call to SLANSP, DLANSP,
CLANHP, or ZLANHP, respectively.

Refer to “SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP,
CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix
Norm)” on page 621.

Specified as: a number ≥ ≥ 0.0, of the data type indicated in Table 140 on page
596.

rcond
See On Return.

work
is the work area used by this subroutine, where:

Chapter 10. Linear Algebraic Equations 597

For SPOCON, DPOCON, SPPCON, and DPPCON
The size of work is (at least) of length 3n.

For CPOCON, ZPOCON, CPPCON, and ZPPCON
The size of work is (at least) of length 2n.

Specified as: an area of storage containing numbers of data type indicated in
Table 140 on page 596.

iwork
is a work area used by this subroutine whose size is (at least) of length n.

Specified as: an area of storage containing integers.

rwork
is a work area used by this subroutine whose size is (at least) of length n.

Specified as: an area of storage containing numbers of the data type indicated
in Table 140 on page 596.

info
See On Return.

On Return

rcond
has the following meaning:

If info = 0, an estimate of the reciprocal of the condition number of matrix A is
returned; i.e., rcond = 1.0/(NORM(A) × NORM(A-1)).

If n = 0, the subroutines return with rcond = 1.0.

If n ≠ 0 and anorm = 0.0, the subroutines return with rcond = 0.0.

Returned as: a number ≥ ≥ 0.0, of the data type indicated in Table 140 on page
596.

info
has the following meaning:

If info = 0, the computation completed normally.

Returned as: an integer; info = 0.

Notes
1. In your C program, arguments rcond and info must be passed by reference.
2. This subroutine accepts lowercase letters for the uplo argument.
3. For input arguments uplo, lda, and n, the following must be true:

For SPOCON/DPOCON/CPOCON/ZPOCON
The scalar data specified for uplo, lda, and n must be the same as the scalar
data specified for SLANSY/DLANSY/CLANHE/ZLANHE and
SPOTRF/DPOTRF/CPOTRF/ZPOTRF.

For SPPCON/DPPCON/CPPCON/ZPPCON
The scalar data specified for uplo and n must be the same as the scalar data
specified for SLANSP/DLANSP/CLANHP/ZLANHP and
SPPTRF/DPPTRF/CPPTRF/ZPPTRF.

4. For matrix A, the following must be true:

598 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For SPOCON/DPOCON/CPOCON/ZPOCON
The matrix A input to SLANSY/DLANSY/CLANHE/ZLANHE must be
the same as the corresponding input argument for SPOTRF/DPOTRF/
CPOTRF/ZPOTRF.

For SPPCON/DPPCON/CPPCON/ZPPCON
The matrix A input to SLANSP/DLANSP/CLANHP/ZLANHP must be the
same as the corresponding input argument for SPPTRF/DPPTRF/CPPTRF/
ZPPTRF.

5. On both input and output, matrix A conforms to LAPACK format.
6. For a description of the storage modes used for the matrices, see:
v For positive definite symmetric matrices, see “Positive Definite or Negative

Definite Symmetric Matrix” on page 87.
v For positive definite complex Hermitian matrices, see “Positive Definite or

Negative Definite Complex Hermitian Matrix” on page 89.

Function

The reciprocal of the condition number of general matrix A is estimated, using the
results of the factorization of matrix A produced by a preceding factorization call.

rcond = 1.0/(NORM(A) × NORM(A-1)).

If n = 0, the subroutines return with rcond = 1.0.

If n ≠ 0 and anorm = 0.0, the subroutines return with rcond = 0.0.

See reference [82 on page 1318].

Error conditions

Resource Errors
None.

Computational Errors
None.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. n > lda
4. lda ≤ 0
5. anorm < 0
6. anorm ≠ 0 and anorm > big or anorm < tiny

Where:
For SPOCON, SPPCON, CPOCON, and CPPCON

big and tiny have the following values:
big = 2127 × (1 - ULP)
tiny = 2-126 × 221

For DPOCON, DPPCON, ZPOCON, and ZPPCON
big and tiny have the following values:

big = 21023 × (1 - ULP)
tiny = 2-1022 × 250

Where ULP = unit in last place.

Note: To avoid this error, scale matrix A so that tiny ≤ anorm ≤ big.

Chapter 10. Linear Algebraic Equations 599

Examples

Example 1

This example estimates the reciprocal of the condition number of positive
definite real symmetric matrix A stored in lower storage mode. The input
matrix A to DLANSY and DPOTRF is the same as input matrix A in Example
1.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = DLANSY(’1’, ’L’, 9 , A , 9 , WORK)

UPLO N A LDA INFO
| | | | |

CALL DPOTRF(’L’, 9 , A , 9 , INFO)

UPLO N A LDA ANORM RCOND WORK IWORK INFO
| | | | | | | | |

CALL DPOCON(’L’, 9 , A , 9 , ANORM, RCOND, WORK, IWORK , INFO)

A = (same as output A in Example 1)

ANORM = (same as output ANORM in Example 1)

Output:

RCOND = 5.56 × 10-3

INFO = 0

Example 2

This example estimates the reciprocal of the condition number of positive
definite real symmetric matrix A stored in upper storage mode. The input
matrix A to DLANSY and DPOTRF is the same as input matrix A in Example
2.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = DLANSY(’1’, ’U’ ,9 , A , 9 , WORK)

UPLO N A LDA INFO
| | | | |

CALL DPOTRF(’U’, 9 , A , 9 , INFO)

UPLO N A LDA ANORM RCOND WORK IWORK INFO
| | | | | | | | |

CALL DPOCON(’U’, 9 , A , 9 , ANORM, RCOND, WORK, IWORK , INFO)

A = (same as output A in Example 2)

ANORM = (same as output ANORM in Example 2)

Output:

RCOND = 5.56 × 10-3

INFO = 0

Example 3

600 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example estimates the reciprocal of the condition number of positive
definite complex Hermitian matrix A stored in lower storage mode. The input
matrix A to ZLANHE and ZPOTRF is the same as input matrix A in Example
3.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = ZLANHE(’1’, ’L’, 3 , A , 3 , RWORK)

UPLO N A LDA INFO
| | | | |

CALL ZPOTRF(’L’, 3 , A , 3 , INFO)

UPLO N A LDA ANORM RCOND WORK RWORK INFO
| | | | | | | | |

CALL ZPOCON(’L’, 3 , A , 3 , ANORM, RCOND, WORK, RWORK, INFO)

A = (same as output A in Example 3)

ANORM = (same as output ANORM in Example 3)

Output:

RCOND = 1.85 × 10-1

INFO = 0

Example 4

This example estimates the reciprocal of the condition number of positive
definite complex Hermitian matrix A stored in upper storage mode. The input
matrix A to ZLANHE and ZPOTRF is the same as input matrix A in Example
4.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = ZLANHE(’1’, ’U’, 3 , A , 3 , RWORK)

UPLO N A LDA INFO
| | | | |

CALL ZPOTRF(’U’, 3 , A , 3 , INFO)

UPLO N A LDA ANORM RCOND WORK RWORK INFO
| | | | | | | | |

CALL ZPOCON(’U’, 3 , A , 3 , ANORM, RCOND, WORK, RWORK, INFO)

A = (same as output A in Example 3)

ANORM = (same as output ANORM in Example 4)

Output:

RCOND = 1.01 × 10-1

INFO = 0

Example 5

This example estimates the reciprocal of the condition number of positive
definite real symmetric matrix A stored in lower-packed storage mode. The
input matrix A to DLANSP and DPPTRF is the same as input matrix A in
Example 5.

Chapter 10. Linear Algebraic Equations 601

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = DLANSP(’1’, ’L’, 9 , AP , WORK)

UPLO N AP INFO
| | | |

CALL DPPTRF(’L’, 9 , AP , INFO)

UPLO N AP ANORM RCOND WORK IWORK INFO
| | | | | | | |

CALL DPPCON(’L’, 9 , AP, ANORM, RCOND, WORK, IWORK , INFO)

AP = (same as output AP in Example 5)

ANORM = (same as output ANORM in Example 5)

Output:

RCOND = 5.56 × 10-3

INFO = 0

Example 6

This example estimates the reciprocal of the condition number of positive
definite real symmetric matrix A stored in upper-packed storage mode. The
input matrix A to DLANSP and DPPTRF is the same as input matrix A in
Example 6.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = DLANSP(’1’, ’U’ , 9 , AP , WORK)

UPLO N AP INFO
| | | |

CALL DPPTRF(’U’, 9 , AP , INFO)

UPLO N AP ANORM RCOND WORK IWORK INFO
| | | | | | | |

CALL DPPCON(’U’, 9 , AP, ANORM, RCOND, WORK, IWORK , INFO)

AP = (same as output AP in Example 6)

ANORM = (same as output ANORM in Example 6)

Output:

RCOND = 5.56 × 10-3

INFO = 0

Example 7

This example estimates the reciprocal of the condition number of positive
definite complex Hermitian matrix A stored in lower-packed storage mode.
The input matrix A to ZLANHP and ZPPTRF is the same as input matrix A in
Example 7.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = ZLANHP(’1’, ’L’ , 3 , AP , RWORK)

602 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

UPLO N AP INFO
| | | |

CALL ZPPTRF(’L’ , 3 , AP , INFO)

UPLO N AP ANORM RCOND WORK RWORK INFO
| | | | | | | |

CALL ZPPCON(’L’, 3 , AP ,ANORM, RCOND, WORK, RWORK, INFO)

AP = (same as output AP in Example 7)

ANORM = (same as output ANORM in Example 7)

Output:

RCOND = 1.85 × 10-1

INFO = 0

Example 8

This example estimates the reciprocal of the condition number of positive
definite complex Hermitian matrix A stored in upper-packed storage mode.
The input matrix A to ZLANHP and ZPPTRF is the same as input matrix A in
Example 8.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = ZLANHP(’1’, ’U’ , 3 , AP , RWORK)

UPLO N AP INFO
| | | |

CALL ZPPTRF(’U’, 3 , AP , INFO)

UPLO N AP ANORM RCOND WORK RWORK INFO
| | | | | | | |

CALL ZPPCON(’U’, 3 , AP ,ANORM, RCOND, WORK, RWORK, INFO)

AP = (same as output AP in Example 8)

ANORM = (same as output ANORM in Example 8)

Output:

RCOND = 1.01 × 10-1

INFO = 0

Chapter 10. Linear Algebraic Equations 603

SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real
Symmetric Matrix Factorization, Condition Number Reciprocal, and
Determinant)

Purpose

The SPPFCD and DPPFCD subroutines factor positive definite symmetric matrix A,
stored in lower-packed storage mode, using Gaussian elimination (LDLT). The
reciprocal of the condition number and the determinant of matrix A can also be
computed. To solve the system of equations with one or more right-hand sides,
follow the call to these subroutines with one or more calls to SPPS or DPPS,
respectively.

The SPOFCD and DPOFCD subroutines factor positive definite symmetric matrix
A, stored in upper or lower storage mode, using Cholesky factorization (LLT or
UTU). The reciprocal of the condition number and the determinant of matrix A can
also be computed. To solve the system of equations with one or more right-hand
sides, follow the call to these subroutines with a call to SPOSM or DPOSM,
respectively. To find the inverse of matrix A, follow the call to these subroutines
with a call to SPOICD or DPOICD, respectively.

Table 141. Data Types

A, aux, rcond, det Subroutine

Short-precision real SPPFCD and SPOFCD

Long-precision real DPPFCD and DPOFCD

Note: The output factorization from SPPFCD and DPPFCD should be used only as
input to the solve subroutines SPPS and DPPS, respectively. The output from
SPOFCD and DPOFCD should be used only as input to the following subroutines
for performing a solve or inverse: SPOSM/SPOICD and DPOSM/DPOICD,
respectively.

Syntax

Fortran
CALL SPPFCD | DPPFCD (ap, n, iopt, rcond, det, aux, naux)

CALL SPOFCD | DPOFCD (uplo, a, lda, n, iopt, rcond, det, aux, naux)

C and C++ sppfcd | dppfcd (ap, n, iopt, rcond, det, aux, naux);

spofcd | dpofcd (uplo, a, lda, n, iopt, rcond, det, aux, naux);

On Entry

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is the array, referred to as AP, in which the matrix A, to be factored, is stored in
lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n+1)/2+n,
containing numbers of the data type indicated in Table 141.

604 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

a is the positive definite symmetric matrix A, to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 141 on page 604.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order n of matrix A.

Specified as: an integer, where:

For SPPFCD and DPPFCD, n ≥ 0.

For SPOFCD and DPOFCD, 0 ≤ n ≤ lda.

iopt
indicates the type of computation to be performed, where:

If iopt = 0, the matrix is factored.

If iopt = 1, the matrix is factored, and the reciprocal of the condition number is
computed.

If iopt = 2, the matrix is factored, and the determinant is computed.

If iopt = 3, the matrix is factored and the reciprocal of the condition number
and the determinant are computed.

Specified as: an integer; iopt = 0, 1, 2, or 3.

rcond
See On Return.

det
See On Return.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, is the storage work area used by these subroutines. Its size is
specified by naux. Specified as: an area of storage, containing numbers of the
data type indicated in Table 141 on page 604.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SPPFCD, DPPFCD, SPOFCD, and
DPOFCD dynamically allocate the work area used by the subroutine. The work
area is deallocated before control is returned to the calling program.

Otherwise, naux ≥ n.

On Return

ap is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 606. Returned as: a one-dimensional
array of (at least) length n(n+1)/2+n, containing numbers of the data type
indicated in Table 141 on page 604.

a is the transformed matrix A of order n, containing the results of the

Chapter 10. Linear Algebraic Equations 605

factorization. See “Function.” Returned as: a two-dimensional array, containing
numbers of the data type indicated in Table 141 on page 604.

rcond
is the estimate of the reciprocal of the condition number, rcond, of matrix A.
Returned as: a number of the data type indicated in Table 141 on page 604;
rcond ≥ 0.

det
is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing numbers of
the data type indicated in Table 141 on page 604.

Notes
1. All subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument rcond must be passed by reference.
3. When iopt = 0, SPPFCD and DPPFCD provide the same function as a call to

SPPF or DPPF, respectively. When iopt = 0, SPOFCD and DPOFCD provide the
same function as a call to SPOF or DPOF, respectively.

4. SPPFCD and DPPFCD in many cases utilize new algorithms based on recursive
packed storage format. As a result, on output, the array specified for AP may
be stored in this new format rather than the conventional lower packed format.
(See references [61 on page 1317], [77 on page 1318], and [79 on page 1318]).
The array specified for AP should not be altered between calls to the
factorization and solve subroutines; otherwise unpredictable results may occur.

5. See “Notes ” on page 594 for information on specifying a value for iopt in the
SPPS and DPPS subroutines after calling SPPFCD and DPPFCD, respectively.

6. In the input and output arrays specified for ap, the first n(n+1)/2 elements are
matrix elements. The additional n locations in the array are used for working
storage by this subroutine and should not be altered between calls to the
factorization and solve subroutines.

7. For a description of how a positive definite symmetric matrix is stored in
lower-packed storage mode in an array, see “Symmetric Matrix” on page 83.
For a description of how a positive definite symmetric matrix is stored in upper
or lower storage mode, see “Positive Definite or Negative Definite Symmetric
Matrix” on page 87.

8. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The functions for these subroutines are described.

For SPPFCD and DPPFCD

The positive definite symmetric matrix A, stored in lower-packed storage
mode, is factored using Gaussian elimination, where A is expressed as:

A = LDL T

606 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

L is a unit lower triangular matrix.
LT is the transpose of matrix L.
D is a diagonal matrix.

An estimate of the reciprocal of the condition number, rcond, and the
determinant, det, can also be computed by this subroutine. The estimate of the
condition number uses an enhanced version of the algorithm described in
references [81 on page 1318] and [82 on page 1318].

If n is 0, no computation is performed. See references [44 on page 1316] and
[46 on page 1316].

These subroutines call SPPF and DPPF, respectively, to perform the
factorization using Gaussian elimination (LDLT). If you want to use the
Cholesky factorization method, you must call SPPF and DPPF directly.

For SPOFCD and DPOFCD

The positive definite symmetric matrix A, stored in upper or lower storage
mode, is factored using Cholesky factorization, where A is expressed as:

A = LL T or A = UTU

where:

L is a lower triangular matrix.
LT is the transpose of matrix L.
U is an upper triangular matrix.
UT is the transpose of matrix U.

If specified, the estimate of the reciprocal of the condition number and the
determinant can also be computed. The estimate of the condition number uses
an enhanced version of the algorithm described in references [81 on page 1318]
and [82 on page 1318].

If n is 0, no computation is performed. See references [8 on page 1313] and [44
on page 1316].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
1. Matrix A is not positive definite (for SPPFCD and DPPFCD).
v If matrix A is singular (at least one of the diagonal elements are 0), then

rcond and det, if you requested them, are set to 0.
v If matrix A is nonsingular and nonpositive definite (none of the diagonal

elements are 0 and at least one diagonal element is negative), then rcond
and det, if you requested them, are computed.

v One or more elements of D contain values less than or equal to 0; all
elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message, issued by
SPPF or DPPF, respectively.

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2104 in the ESSL error option
table; otherwise, the default value causes your program to be terminated
by SPPF or DPPF, respectively, when this error occurs. If your program is

Chapter 10. Linear Algebraic Equations 607

not terminated by SPPF or DPPF, respectively, the return code is set to 2.
For details, see “What Can You Do about ESSL Computational Errors?”
on page 66.

2. Matrix A is not positive definite (for SPOFCD and DPOFCD).
v If matrix A is singular (at least one of the diagonal elements are 0), then

rcond and det, if you requested them, are set to 0.
v If matrix A is nonsingular and nonpositive definite (none of the diagonal

elements are 0 and at least one diagonal element is negative), then rcond
and det, if you requested them, are computed.

v Processing stops at the first occurrence of a nonpositive definite diagonal
element.

v The order i of the first minor encountered having a nonpositive
determinant is identified in the computational error message.

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2115 in the ESSL error option
table; otherwise, the default value causes your program to be terminated
by SPPF or DPPF, respectively, when this error occurs. If your program is
not terminated by SPPF or DPPF, respectively, the return code is set to 2.
For details, see “What Can You Do about ESSL Computational Errors?”
on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. lda ≤ 0
3. lda < n
4. n < 0
5. iopt ≠ 0, 1, 2, or 3
6. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example computes the factorization, reciprocal of the condition number,
and determinant of matrix A. The input is the same as used in Example 9 for
SPPF.

The values used to estimate the reciprocal of the condition number are
obtained with the following values:

{A{1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of {A{ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL DPPFCD(AP , 9 , 3 , RCOND , DET , AUX , 9)

AP =(same as input AP in
Example 9)

Output:

608 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

AP =(same as output AP in Example 9)
RCOND = 0.0055555
DET = (1.0, 0.0)

Example 2

This example computes the factorization, reciprocal of the condition number,
and determinant of matrix A. The input is the same as used in Example 1 for
SPOF.

The values used to estimate the reciprocal of the condition number are
obtained with the following values:

{A{1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of {A{ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOFCD(’L’, A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
Example 1)

Output:

A =(same as output A in Example 1)
RCOND = 0.0055555
DET = (1.0, 0.0)

Example 3

This example computes the factorization, reciprocal of the condition number,
and determinant of matrix A. The input is the same as used in Example 2 for
SPOF.

The values used to estimate the reciprocal of the condition number are
obtained with the following values:

{A{1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
Estimate of {A{ = 4.0

On output, the value in det, |A|, is equal to 1.

Call Statement and Input:
UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOFCD(’U’, A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

A =(same as input A in
Example 2)

Output:

A =(same as output A in Example 2)
RCOND = 0.0055555
DET = (1.0, 0.0)

Chapter 10. Linear Algebraic Equations 609

SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI,
DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
Symmetric or Complex Hermitian Matrix Inverse, Condition Number
Reciprocal, and Determinant)

Purpose

These subroutines find the inverse of a positive definite real symmetric or complex
Hermitian matrix A using Cholesky factorization, where:
v For SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, and DPOICD, A is stored in

upper or lower storage mode.
v For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI, A is stored in upper- or

lower-packed storage mode.
v For SPPICD and DPPICD, A is stored in lower-packed storage mode.

Subroutines SPOICD, DPOICD, SPPICD, and DPPICD also find the reciprocal of
the condition number and the determinant of matrix A.

Table 142. Data Types

A, aux, rcond, det Subroutine

Short-precision real SPOTRI⌂, SPOICD, SPPTRI⌂, and SPPICD

Long-precision real DPOTRI⌂, DPOICD, DPPTRI⌂, and DPPICD

Short-precision complex CPOTRI⌂ and CPPTRI⌂

Long-precision complex ZPOTRI⌂ and ZPPTRI⌂

⌂LAPACK

Note: For each of the _POTRI and _PPTRI subroutines, the input must be the
output from the corresponding _POTRF or _PPTRF Cholesky factorization
subroutine.

If you call the subroutines SPOICD, DPOICD, SPPICD, and DPPICD with iopt = 4,
the input must be the output from SPPF, DPPF, SPOF/SPOFCD, or
DPOF/DPOFCD, respectively, where Cholesky factorization was performed.

Syntax

Fortran
CALL SPOTRI | DPOTRI | CPOTRI | ZPOTRI (uplo, n, a, lda, info)
CALL SPOICD | DPOICD (uplo, a, lda, n, iopt, rcond, det, aux, naux)
CALL SPPTRI | DPPTRI | CPPTRI | ZPPTRI (uplo, n, ap, info)
CALL SPPICD | DPPICD (ap, n, iopt, rcond, det, aux, naux)

C and C++
spotri | dpotri | cpotri | zpotri (uplo, n, a, lda, info);
spoicd | dpoicd (uplo, a, lda, n, iopt, rcond, det, aux, naux);
spptri | dpptri | cpptri | zpptri (uplo, n, ap, info);
sppicd | dppicd (ap, n, iopt, rcond, det, aux, naux);

On Entry

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

If uplo = 'U', A is stored in upper storage mode.

610 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap is the array, referred to as AP, where:

For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI:

AP contains the transformed matrix A of order n, resulting from the
Cholesky factorization performed in a previous call to SPPTRF, DPPTRF,
CPPTRF, or ZPPTRF, respectively, whose inverse is computed.

For SPPICD and DPPICD:
If iopt = 0, 1, 2, or 3, then AP contains the positive definite real symmetric
matrix A, whose inverse, condition number reciprocal, and determinant are
computed, where matrix A is stored in lower-packed storage mode.

If iopt = 4, then AP contains the transformed matrix A of order n, resulting
from the Cholesky factorization performed in a previous call to SPPF or
DPPF, respectively, whose inverse is computed.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 142 on page 610.

a has the following meaning, where:

For SPOTRI, DPOTRI, CPOTRI, and ZPOTRI:

It is the transformed matrix A of order n, containing results of the
factorization from a previous call to SPOTRF, DPOTRF, CPOTRF, or
ZPOTRF, respectively, whose inverse is computed.

For SPOICD and DPOICD:

If iopt = 0, 1, 2, or 3, it is the positive definite real symmetric matrix A,
whose inverse, condition number reciprocal, and determinant are
computed, where matrix A is stored in upper or lower storage mode.

If iopt = 4, it is the transformed matrix A of order n, containing results of
the factorization from a previous call to SPOF/SPOFCD or
DPOF/DPOFCD, respectively, whose inverse is computed.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 142 on page 610.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

n is the order n of matrix A.

Specified as: an integer; n ≥ 0.

iopt
indicates the type of computation to be performed, where:

If iopt = 0, the inverse is computed for matrix A.

If iopt = 1, the inverse and the reciprocal of the condition number are
computed for matrix A.

If iopt = 2, the inverse and the determinant are computed for matrix A.

If iopt = 3, the inverse, the reciprocal of the condition number, and the
determinant are computed for matrix A.

Chapter 10. Linear Algebraic Equations 611

If iopt = 4, the inverse is computed for the Cholesky factored matrix A.

Specified as: an integer; iopt = 0, 1, 2, 3, or 4.

rcond
See On Return.

det
See On Return.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux. Specified as: an area of storage, containing numbers of the
data type indicated in Table 142 on page 610.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SPOICD, DPOICD, SPPICD, and
DPPICD dynamically allocate the work area used by the subroutine. The work
area is deallocated before control is returned to the calling program.

Otherwise, naux ≥ n.

info
See On Return.

On Return

ap is an array, referred to as AP, in which the transformed matrix A of order n,
containing the inverse of the matrix, is stored.

For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI:
The transformed matrix is stored in upper- or lower-packed storage mode.

For SPPICD and DPPICD:
The transformed matrix is stored in lower-packed storage mode.

Returned as: a one-dimensional array of at least length n(n+1)/2, containing
numbers of the data type indicated in Table 142 on page 610.

a is the transformed matrix A of order n, containing the inverse of the matrix in
upper or lower storage mode. Returned as: a two-dimensional array,
containing numbers of the data type indicated in Table 142 on page 610.

rcond
is the reciprocal of the condition number, rcond, of matrix A. Returned as: a
real number of the data type indicated in Table 142 on page 610; rcond ≥ 0.

det
is the vector det, containing the two components det1 and det2 of the
determinant of matrix A. The determinant is:

where 1 ≤ det1 < 10. Returned as: an array of length 2, containing numbers of
the data type indicated in Table 142 on page 610.

612 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

info
has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i where Aii is zero; the matrix is not
positive definite, and its inverse could not be completed.

Specified as: an integer; info ≥ 0.

Notes
1. In your C program, the arguments info and rcond must be passed by reference.
2. For SPOICD, DPOICD, SPPICD, and DPPICD, when you specify iopt = 4, you

must do the following:
v For SPOICD and DPOICD, specify the same storage mode for matrix A that

was specified in the previous call to SPOF/SPOFCD or DPOF/DPOFCD,
respectively.

v For SPPICD and DPPICD, use Cholesky factorization in the previous call to
SPPF or DPPF, respectively.

3. The scalar data specified for input arguments uplo, lda, and n for these
subroutines must be the same as the input arguments specified for the
corresponding factorization subroutines.

4. All subroutines accept lowercase letters for the uplo argument.
5. SPPICD and DPPICD in some cases utilize algorithms based on recursive

packed storage format. (See references [61 on page 1317], [77 on page 1318],
and [79 on page 1318]).

6. The way _POTRI and _PPTRI subroutines handle computational errors differs
from LAPACK. Like LAPACK, these subroutines use the info argument to
provide information about the computational error, but they also provide an
error message.

7. On both input and output, matrix A conforms to LAPACK format.
8. For a description of how a positive definite symmetric matrix is stored in

upper- or lower-packed storage mode in an array or in upper or lower storage
mode, see “Symmetric Matrix” on page 83.

9. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

These subroutines find the inverse of positive definite matrix A, where:
v A-1 is the inverse of matrix A, where AA-1 = A-1A = I.
v For positive definite real symmetric matrix A:

A = LLT or UTU

A-1 = L-TL-1 or U-1U-T

v For positive definite complex Hermitian matrix A:
A = LLH or UHU

A-1 = L-HL-1 or U-1U-H

Note: SPPICD and DPPICD only support a matrix in lower-packed storage mode.

Chapter 10. Linear Algebraic Equations 613

Additionally, the subroutines SPOICD, DPOICD, SPPICD, and DPPICD find the
reciprocal of the condition number and the determinant of positive definite
symmetric matrix A using Cholesky factorization, where:
v 1/({A{1)({A-1{1) is the reciprocal of the condition number, where {A{1 is

the one-norm of matrix A.
v |A| is the determinant of matrix A, where |A| is expressed as:

v The iopt argument is used to determine the combination of output items
produced: the inverse, the reciprocal of the condition number, and the
determinant.

If n is 0, no computation is performed. See references [44 on page 1316], [46 on
page 1316], and [52 on page 1316].

Error conditions

Resource Errors
v Unable to allocate internal work area.
v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors

Note: If the Cholesky factorization performed by one of the _POTRF and
_PPTRF subroutines failed because matrix A was not positive definite, the
results returned by the corresponding _POTRI or _PPTRI subroutine are
unpredictable.

If the Cholesky factorization performed by SPPF, DPPF, SPOF/SPOFCD, or
DPOF/DPOFCD failed because matrix A was not positive definite, the results
returned by SPOICD, DPOICD, SPPICD, or DPPICD, respectively, with iopt =
4, are unpredictable.

For SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPPTRI, DPPTRI, CPPTRI, and ZPPTRI:

The inverse of matrix A could not be computed.
v One or more of the diagonal elements of the factored matrix A are zero.

The first diagonal element that is found to be exactly zero is identified in
the computational error message and returned in info. If one or more of
the diagonal elements of the factored matrix A are negative, the results
are unpredictable.

v The computational error message may occur multiple times with
processing continuing after each error because the default for the
number of allowable errors for error code 2151 is set to be unlimited in
the ESSL error option table.

For SPOICD, DPOICD, SPPICD, and DPPICD:

Matrix A is not positive definite.
v These subroutines do not perform the inverse, determinant, and

reciprocal of the condition number computations.
v For iopt = 1, 2, or 3, the leading minor of order i has a nonpositive

determinant. The order i is identified in the computational error
message.

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change

614 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the number of allowable errors for error code 2115 in the error option
table; otherwise, the default value causes your program to terminate. If
your program is not terminated, the return code is set to 2. For details,
see “What Can You Do about ESSL Computational Errors?” on page 66.

The inverse of matrix A could not be computed.
v For iopt = 4, for _POICD and _PPICD, one or more of the diagonal

elements of the factored matrix A are zero. i is the first diagonal element
that is found to be exactly zero and is identified in the computational
error message. If one or more of the diagonal elements of the factored
matrix A are negative, the results are unpredictable.

v i can be determined at run time by using the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change
the number of allowable errors for error code 2150 in the error option
table; otherwise, the default value causes your program to terminate. If
your program is not terminated, the return code is set to 3. For details,
see “What Can You Do about ESSL Computational Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. lda ≤ 0
4. lda < n
5. iopt ≠ 0, 1, 2, 3, or 4
6. Error 2015 is recoverable or naux ≠ 0, and naux is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example uses SPOTRI to compute the inverse of matrix A, where iopt = 4,
and matrix A is the transformed matrix factored by SPOTRF in Example 9.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL SPOTRI(’U’ , 9 , A , 9 , INFO)

A =(same as output A in Example 2 for SPOTRF)

Output:

Example 2

┌ ┐
| 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |

A = | 2.0 -1.0 0.0 0.0 0.0 |
| 2.0 -1.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 |
| 1.0 |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 615

This example uses CPOTRI to compute the inverse of the matrix A, stored in
lower storage mode. Matrix A is the transformed matrix factored by CPOTRF
in Example 3.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL CPOTRI(’L’ , 3 , A , 3 , INFO)

A = (same as output A in Example 3 for CPOTRF)

Output:
┌ ┐
| (.05, .00) . . |

A = | (.00, -.01) (.02, .00) . |
| (-.01, .00) (.00, .00) (.02, .00) |
└ ┘

INFO = 0

Example 3

This example uses CPOTRI to compute the inverse of the matrix A, stored in
upper storage mode. Matrix A is the transformed matrix factored by CPOTRF
in Example 4.

Call Statement and Input:
UPLO N A LDA INFO
| | | | |

CALL CPOTRI(’U’ , 3 , A , 3 , INFO)

A = (same as output A in Example 4 for CPOTRF)

Output:
┌ ┐
| (.13, .00) (-.02, -.03) (.00, .01) |

A = | . (.07, .00) (-.01, .01) |
| . . (.03, .00) |
└ ┘

INFO = 0

Example 4

This example uses SPOICD to compute the inverse, reciprocal of the condition
number, and determinant of matrix A, stored in upper storage mode. Matrix A
is:

The values used to compute the reciprocal of the condition number in this
example are obtained with the following values:

{A{1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
{A-1{1 = 4.0

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
| 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

616 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

On output, the value in det, |A|, is equal to 1, and RCOND = 1/180.

Call Statement and Input:

Output:

Example 5

This example uses SPPTRI to compute the inverse of matrix A, where matrix A
is the transformed matrix factored in Example 5 by SPPTRF.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL SPPTRI(’L’ , 9 , AP , INFO)

AP =(same as output AP in Example 5 for SPPTRF)

Output:

UPLO A LDA N IOPT RCOND DET AUX NAUX
| | | | | | | | |

CALL SPOICD(’U’ , A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| . . . 4.0 4.0 4.0 4.0 4.0 4.0 |

A = | 5.0 5.0 5.0 5.0 5.0 |
| 6.0 6.0 6.0 6.0 |
| 7.0 7.0 7.0 |
| 8.0 8.0 |
| 9.0 |
└ ┘

┌ ┐
| 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |

A = | 2.0 -1.0 0.0 0.0 0.0 |
| 2.0 -1.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 |
| 1.0 |
└ ┘

RCOND = 0.005555556
DET = (1.0, 0.0)

Chapter 10. Linear Algebraic Equations 617

Example 6

This example uses SPPTRI to compute the inverse of matrix A, where matrix A
is the transformed matrix factored in Example 6 by SPPTRF.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in upper-packed storage mode.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL SPPTRI(’U’ , 9 , AP , INFO)

AP =(same as output AP in Example 6 for SPPTRF)

Output:

Example 7

This example uses ZPPTRI to compute the inverse of matrix A, where matrix
A, stored in lower-packed storage mode, is the transformed matrix factored in
Example 7 by ZPPTRF.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL ZPPTRI(’L’ , 3 , AP , INFO)

AP =(same as output AP in Example 7 for ZPPTRF)

Output:

Example 8

AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0,
2.0, -1.0, 0.0,
2.0, -1.0,
1.0)

INFO = 0

AP = (2.0,
-1.0, 2.0,

0.0, -1.0, 2.0,
0.0, 0.0, -1.0, 2.0,

0.0, 0.0, 0.0, -1.0, 2.0,
0.0, 0.0, 0.0, 0.0, -1.0, 2.0,

0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 2.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 2.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0)

INFO = 0

AP = ((0.05, 0.00) (0.00, -0.01) (-0.01, 0.00) (0.02, 0.00) (0.00, 0.00) (0.02, 0.00))

INFO = 0

618 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example uses ZPPTRI to compute the inverse of matrix A, where matrix
A, stored in upper-packed storage mode, is the transformed matrix factored in
Example 8 by ZPPTRF.

Call Statement and Input:
UPLO N AP INFO
| | | |

CALL ZPPTRI(’U’ , 3 , AP , INFO)

AP =(same as output AP in Example 8 for ZPPTRF)

Output:

Example 9

This example uses SPPICD to compute the inverse, reciprocal of the condition
number, and determinant of the same matrix A used in Example 4; however,
matrix A is stored in lower-packed storage mode in this example.

The values used to compute the reciprocal of the condition number in this
example are obtained with the following values:

{A{1 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
{A-1{1 = 4.0

On output, the value in det, |A|, is equal to 1, and RCOND = 1/180.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:

Output:

AP = ((0.13, 0.0) (-0.02, -0.03) (0.07, 0.00) (0.00, 0.01) (-0.01, 0.01) (0.03, 0.00))

INFO = 0

AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL SPPICD(AP , 9 , 3 , RCOND , DET , AUX , 9)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
5.0, 5.0, 5.0, 5.0, 5.0,
6.0, 6.0, 6.0, 6.0,
7.0, 7.0, 7.0,
8.0, 8.0,
9.0)

Chapter 10. Linear Algebraic Equations 619

Example 10

This example uses SPPICD to compute the inverse of matrix A, where iopt = 4,
and matrix A is the transformed matrix factored in Example 10 by SPPF.

Note: The AP arrays are formatted in a triangular arrangement for readability;
however, they are stored in lower-packed storage mode.

Call Statement and Input:
AP N IOPT RCOND DET AUX NAUX
| | | | | | |

CALL SPPICD(AP , 9 , 4 , RCOND , DET , AUX , 9)

AP =(same as output AP in Example 10 for SPPF)

Output:

AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0,
2.0, -1.0, 0.0,
2.0, -1.0,
1.0)

RCOND = 0.005556
DET = (1.0, 0.0)

AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0, 0.0,
2.0, -1.0, 0.0, 0.0,
2.0, -1.0, 0.0,
2.0, -1.0,
1.0)

620 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and
ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

Purpose

These subprograms compute the norm of matrix A as explained below:

SLANSY, DLANSY, CLANHE, and ZLANHE

These subprograms compute the norm of matrix A, stored in upper or lower
storage mode, where:
v For SLANSY and DLANSY, A is a positive definite real symmetric matrix.
v For CLANHE and ZLANHE, A is a positive definite complex Hermitian

matrix.

SLANSP, DLANSP, CLANHP, and ZLANHP

These subroutines compute the norm of matrix A, stored in upper-packed or
lower-packed storage mode, where:
v For SLANSP and DLANSP, A is a positive definite real symmetric matrix.
v For CLANHP and ZLANHP, A is a positive definite complex Hermitian

matrix.

Table 143. Data Types

A work, Result Subprogram

Short-precision real Short-precision real SLANSY⌂, SLANSP⌂

Long-precision real Long-precision real DLANSY⌂, DLANSP⌂

Short-precision complex Short-precision real CLANHE⌂, CLANHP⌂

Long-precision complex Long-precision real ZLANHE⌂, ZLANHP⌂

Syntax

Fortran SLANSY | DLANSY | CLANHE | ZLANHE(norm, uplo, n, a, lda, work)
SLANSP | DLANSP | CLANHP | ZLANHP (norm, uplo, n, ap, work)

C and C++
slansy | dlansy | clanhe | zlanhe (norm, uplo, n, a, lda, work);
slansp | dlansp | clanhp | zlanhp (norm, uplo, n, ap, work);

On Entry

norm
specifies the type of computation, where:

If norm = 'O' or '1', the one norm of A is computed.

If norm = 'I', the infinity norm of A is computed.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is computed.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

Specified as: a single character; norm = 'O', '1', 'I', 'F', 'E', or 'M'.

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

Chapter 10. Linear Algebraic Equations 621

If uplo = 'U', A is stored in upper storage mode.

If uplo = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order of matrix A.

Specified as: an integer; n ≥ 0.

ap is the matrix A, stored in upper-packed or lower-packed storage mode.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 143 on page 621.

a is the matrix A, stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 143 on page 621.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda > 0 and lda ≥ n.

work
is the work area used by this subroutine, where:
v When norm = 'O', '1', or 'I', the size of work is (at least) of length n.
v Otherwise, work is not referenced.

Specified as: an area of storage containing numbers of data type indicated in
Table 143 on page 621.

On Return

Function value
is the result of the norm computation, returned as a number of the data type
indicated in Table 143 on page 621.

If norm = 'O' or '1', the one norm of A is returned.

If norm = 'I', the infinity norm of A is returned.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is returned.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

If n = 0, the function returns zero.

Notes
1. Declare this function in your program as returning a value of the data type

indicated in Table 143 on page 621.
2. This function accepts lowercase letters for the norm and uplo arguments.
3. For real symmetric and complex Hermitian matrices, the one norm and the

infinity norm are identical.

Function

One of the following computations is performed on matrix A, depending on the
value specified for norm:

Value specified for norm Type of computation performed

'O' or '1' one norm

622 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Value specified for norm Type of computation performed

'I' infinity norm

'F' or 'E' Frobenius or Euclidean norm

'M' absolute value of the matrix element having
the largest absolute value, i.e., max (|A|)

If n = 0, the function returns zero.

Error conditions

Resource Errors
None.

Computational Errors
None.

Input-Argument Errors
1. norm ≠ 'O', '1', 'I', 'F', 'E', or 'M'
2. uplo ≠ 'U' or 'L'
3. n < 0
4. n > lda
5. lda ≤ 0

Examples

Example 1

This example computes the one norm of positive definite real symmetric
matrix A stored in lower storage mode.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = DLANSY(’1’, ’L’, 9 , A , 9 , WORK)

A = (same as input matrix A in Example 1)

Output:

ANORM = 45.0

Example 2

This example computes the one norm of positive definite real symmetric
matrix A stored in upper storage mode.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = DLANSY(’1’, ’U’, 9 , A , 9 , WORK)

A = (same as input matrix A in Example 2)

Output:

ANORM = 45.0

Example 3

This example computes the one norm of positive definite complex Hermitian
matrix A stored in lower storage mode.

Chapter 10. Linear Algebraic Equations 623

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = ZLANHE(’1’, ’L’, 3 , A , 3 , WORK)

A = (same as input matrix A in Example 3)

Output:

ANORM = 89.39

Example 4

This example computes the one norm of positive definite complex Hermitian
matrix A stored in upper storage mode.

Call Statements and Input:
NORM UPLO N A LDA WORK
| | | | | |

ANORM = ZLANHE(’1’, ’U’, 3 , A , 3 , WORK)

A = (same as input matrix A in Example 4)

Output:

ANORM = 57.24

Example 5

This example computes the one norm of positive definite real symmetric
matrix A stored in lower-packed storage mode.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = DLANSP(’1’, ’L’, 9 , AP , WORK)

AP = (same as input matrix AP in Example 5)

Output:

ANORM = 45.0

Example 6

This example computes the one norm of positive definite real symmetric
matrix A stored in upper-packed storage mode.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = DLANSP(’1’, ’U’, 9 , AP , WORK)

AP = (same as input matrix AP in Example 6)

Output:

ANORM = 45.0

Example 7

This example computes the one norm of positive definite complex Hermitian
matrix A stored in lower-packed storage mode.

Call Statements and Input:

624 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

NORM UPLO N AP WORK
| | | | |

ANORM = ZLANHP(’1’, ’L’ , 3 , AP , WORK)

AP = (same as input matrix AP in Example 7)

Output:

ANORM = 89.39

Example 8

This example computes the one norm of positive definite complex Hermitian
matrix A stored in upper-packed storage mode.

Call Statements and Input:
NORM UPLO N AP WORK
| | | | |

ANORM = ZLANHP(’1’, ’U’ , 3 , AP , WORK)

AP = (same as input matrix AP in Example 8)

Output:

ANORM = 57.24

Chapter 10. Linear Algebraic Equations 625

SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV,
CSPSV, ZSPSV, CHPSV, ZHPSV (Indefinite Real or Complex Symmetric
or Complex Hermitian Matrix Factorization and Multiple Right-Hand
Side Solve)

Purpose

These subroutines solve the system AX = B for X, where A is an indefinite real or
complex symmetric or complex Hermitian matrix and X and B are general
matrices.

Table 144. Data Types

A, B, work Subroutine

Short-precision real SSYSV∆, SSPSV∆

Long-precision real DSYSV∆, DSPSV∆

Short-precision complex CSYSV∆, CHESV∆, CSPSV∆, CHPSV∆

Long-precision complex ZSYSV∆, ZHESV∆, ZSPSV∆, ZHPSV∆

∆LAPACK

Syntax

Fortran
CALL SSYSV | DSYSV | CSYSV | ZSYSV | CHESV | ZHESV (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CALL SSPSV | DSPSV | CSPSV | ZSPSV | CHPSV | ZHPSV (uplo, n, nrhs, ap, ipiv, b, ldb, info)

C and C++ ssysv | dsysv | csysv | zsysv | chesv | zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info);
sspsv | dspsv | cspsv | zspsv | chpsv | zhpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info);

On Entry

uplo
indicates whether the upper or lower triangular part of the matrix A is
referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns in matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the indefinite real symmetric, complex symmetric, or complex Hermitian
matrix A of order n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 144.

ap is the indefinite real symmetric, complex symmetric, or complex Hermitian
matrix A of order n. It is stored in an array, referred to as AP, where:

626 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 144 on page 626.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

ipiv
See On Return.

b is the general matrix B containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by nrhs array, containing numbers of the data type
indicated in Table 144 on page 626.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

work
is a work area used by these subroutines, where:

If lwork = 0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork = -1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of the data type indicated
in Table 144 on page 626.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The work area is deallocated before control is
returned to the calling program.

v If lwork = -1, subroutine performs a workspace query and returns the
optimal required size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise, lwork ≥ 1. It is suggested that the user specify lwork ≥ 8n.

info
See On Return.

On Return

a is the transformed matrix A containing the results of the factorization. See
“Function” on page 638.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 144 on page 626.

ap is the transformed matrix A containing the results of the factorization. See
“Function” on page 638.

Chapter 10. Linear Algebraic Equations 627

Returned as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 144 on page 626.

ipiv
If info = 0, ipiv contains the pivot indices.

If ipivk > 0, then rows and columns k and ipivk were interchanged and Dk,k is a
1 × 1 diagonal block.

If uplo = 'U' and ipivk = ipivk-1 < 0, then rows and columns k-1 and -ipivk were
interchanged and Dk-1:k,k-1:k is a 2 × 2 diagonal block.

If uplo = 'L' and ipivk = ipivk+1 < 0, then rows and columns k+1 and -ipivk were
interchanged and Dk:k+1,k:k+1 is a 2 × 2 diagonal block.

Returned as: a one-dimensional integer array of (at least) length n, containing
integers.

b If info = 0, b is the matrix X, containing the nrhs solutions to the system. The
solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 144 on page 626.

work
is a work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and all
other elements of work are overwritten.

info
has the following meaning:
v If info = 0, the factorization completed successfully.
v If info > 0, the factorization was unsuccessful and info is set to i where dii is

exactly zero.

Specified as: an integer; info ≥ 0.

Notes
1. These subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. a, ap, b, ipiv, and work must have no common elements; otherwise, results are

unpredictable.
4. For a description of how real and complex symmetric matrices are stored in

lower or upper storage mode, see “Lower Storage Mode” on page 86 or “Upper
Storage Mode” on page 87, respectively.
For a description of how complex Hermitian matrices are stored in lower or
upper storage mode, see “Complex Hermitian Matrix” on page 88.

5. For a description of how real and complex symmetric matrices are stored in
lower- or upper-packed storage mode, see “Lower-Packed Storage Mode” on
page 83 or “Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

628 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

6. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

7. For best performance, specify lwork = 0.

Function

These subroutines solve the system AX = B for X, where A is an indefinite real or
complex symmetric or complex Hermitian indefinite matrix and X and B are
general matrices.

For SSYSV, DSYSV, CSYSV, ZSYSV, SSPSV, DSPSV, CSPSV, and ZSPSV:

The indefinite real or complex symmetric indefinite matrix A is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as one of the
following:

A = UDUT

A = LDLT

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

Matrix A is stored as follows:
v For SSYSV, DSYSV, CSYSV, and ZSYSV, matrix A is stored in upper or lower

storage mode.
v For SSPSV, DSPSV, CSPSV, and ZSPSV, matrix A is stored in upper- or

lower-packed storage mode.

For CHESV, ZHESV, CHPSV, and ZHPSV:

The indefinite complex Hermitian indefinite matrix A is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as one of the
following:

A = UDUH

A = LDLH

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a complex Hermitian block diagonal matrix, consisting of 1 × 1 and 2 × 2
diagonal blocks.

Chapter 10. Linear Algebraic Equations 629

Matrix A is stored as follows:
v For CHESV and ZHESV, matrix A is stored in upper or lower storage mode.
v For CHPSV and ZHPSV, matrix A is stored in upper- or lower-packed storage

mode.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix. See references [8 on page 1313] and
[18 on page 1314].

Error conditions

Resource Errors
lwork = 0 and unable to allocate work area

Computational Errors
Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly

singular. info is set to i, where dii is exactly zero. This diagonal element is
identified in the computational error message.

v The computational error message may occur multiple times with
processing continuing after each error, because the default for the
number of allowable errors for error code 2147 is set to be unlimited in
the ESSL error option table. For details, see “What Can You Do about
ESSL Computational Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. lda ≤ 0
5. n > lda
6. ldb ≤ 0
7. n > ldb
8. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value

Examples

Example 1

This example shows how to solve the system AX = B, for three right-hand
sides, where indefinite real symmetric matrix A is the same matrix factored in
the Example 1 for DSYTRF.

Note: Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
| | | | | | | | | | |

CALL DSYSV(’L’ , 8 , 3 , A , 8 , IPIV , B , 8 , WORK, 0 , INFO)

A = (same as input A in Example 1)
B = (same as input B in Example 1)

Output:
┌ ┐
| 3.0 |
| 5.0 3.0 |
| 1.0 -1.0 4.0 |

630 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = | -1.0 1.0 -1.0 8.0 |
| 1.0 0.0 0.0 -1.0 1.0 . . . |
| 0.0 -1.0 1.0 -1.0 3.0 1.0 . . |
| 1.0 -1.0 1.0 -1.0 -1.0 1.0 2.0 . |
| -1.0 0.0 1.0 -1.0 1.0 0.0 1.0 16.0 |
└ ┘

IPIV = (-2 -2 3 4 -6 -6 7 8)

┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B for three right-hand
sides, where indefinite complex symmetric matrix A is the same matrix
factored in the Example 2 for ZSYTRF.

Note: Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
| | | | | | | | | | |

CALL ZSYSV(’L’ , 4 , 3 , A , 4 , IPIV , B , 4 , WORK, 0 , INFO)

A = (same as input A in Example 2)
B = (same as input B in Example 2)

Output:
┌ ┐
| (0.368,-0.319) . . . |

A = | (-0.062, 0.006) (0.258,-0.147) . . |
| (0.625, 0.257) (1.085,-0.335) (0.333, 0.315) . |
| (-0.462, 0.314) (-0.444, 1.248) (-0.437,-1.386) (0.841, 0.431) |
└ ┘

IPIV = (1 2 4 4)

┌ ┐
| (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |

B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
| (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
| (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B for three right-hand
sides, where indefinite complex Hermitian matrix A is the same matrix
factored in the Example 3 for ZHETRF.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.

Chapter 10. Linear Algebraic Equations 631

2. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
| | | | | | | | | | |

CALL ZHESV(’L’ , 4 , 3 , A , 4 , IPIV , B , 4 , WORK, 0 , INFO)

A = (same as input A in Example 3)
B = (same as input B in Example 3)

Output:
┌ ┐
| (-0.550, 0.000) . . . |

A = | (-0.027, 0.476) (-0.483, 0.000) . . |
| (0.062, 0.244) (-0.002, -0.269) (-0.490, 0.000) . |
| (-0.249, 0.022) (0.152, -0.091) (0.244, -0.002) (-0.479, 0.000) |
└ ┘

IPIV = (1 2 3 4)

┌ ┐
| (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |

B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
| (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
| (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX = B for three right-hand
sides, where indefinite real symmetric matrix A is the same matrix factored in
the Example 1 for DSYTRF.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL DSPSV(’L’ , 8 , 3 , AP , IPIV , B , 8 , INFO)

AP = (same as input AP in Example 4)
B = (same as input B in Example 4)

Output:
AP = (3.0 5.0 1.0 -1.0 1.0 0.0 1.0 -1.0,

3.0 -1.0 1.0 0.0 -1.0 -1.0 0.0,
4.0 -1.0 0.0 1.0 1.0 1.0,

8.0 -1.0 -1.0 -1.0 -1.0,
1.0 3.0 -1.0 1.0,

1.0 1.0 0.0,
2.0 1.0,

16.0)

IPIV = (1 2 -2 -2 5 6 7 8)

┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

632 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

INFO = 0

Example 5

This example shows how to solve the system AX = B for three right-hand
sides, where indefinite complex symmetric matrix A is the same matrix
factored in the Example 2 for ZSYTRF.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL ZSPSV(’L’ , 4 , 3 , AP , IPIV , B , 4 , INFO)

AP = (same as input AP in Example 5)
B = (same as input B in Example 5)

Output:

AP = ((0.368, -0.319), (-0.062, 0.006), (0.625, 0.257), (-0.462, 0.314),
(0.258,-0.147), (1.085, -0.335), (-0.444, 1.248),

(0.333, 0.315), (-0.437, -1.386),
(0.841, 0.431))

IPIV = (1 2 4 4)

┌ ┐
| (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |

B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
| (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
| (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
└ ┘

INFO = 0

Example 6

This example shows how to solve the system AX = B for three right-hand
sides, where indefinite complex Hermitian matrix A is the same matrix
factored in the Example 3 for ZHETRF.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL ZHPSV(’L’ , 4 , 3 , AP , IPIV , B , 4 , INFO)

AP = (same as input AP in Example 6)
B = (same as input B in Example 6)

Output:
AP = ((-0.550, 0.000), (-0.027, 0.476), (0.062, 0.244), (-0.249, 0.022),

(-0.484, 0.000), (-0.002, -0.269), (0.152, -0.091),
(-0.490, 0.000), (0.245, -0.002),

(-0.479, 0.000))

IPIV = (1 2 3 4)

┌ ┐
| (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |

B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |

Chapter 10. Linear Algebraic Equations 633

| (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
| (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
└ ┘

INFO = 0

634 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF,
DSPTRF, CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or
Complex Symmetric or Complex Hermitian Matrix Factorization)

Purpose

These subroutines factor an indefinite real or complex symmetric or complex
Hermitian matrix A. The matrix A is factored using the Bunch-Kaufman diagonal
pivoting method.

To solve the system of equations with one or more right-hand sides, follow the call
to SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, or ZHETRF with a call to
SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, or ZHETRS respectively.

To solve the system of equations with one or more right-hand sides, follow the call
to SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF with a call to SSPTRS,
DSPTRS, CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS respectively.

Table 145. Data Types

A, B, work Subroutine

Short-precision real SSYTRF∆, SSPTRF∆

Long-precision real DSYTRF∆, DSPTRF∆

Short-precision complex CSYTRF∆, CHETRF∆, CSPTRF∆, CHPTRF∆

Long-precision complex ZSYTRF∆, ZHETRF∆, ZSPTRF∆, ZHPTRF∆

∆LAPACK

Syntax

Fortran
CALL SSYTRF | DSYTRF | CSYTRF | ZSYTRF | CHETRF | ZHETRF (uplo, n, a, lda, ipiv, work, lwork, info)
CALL SSPTRF | DSPTRF | CSPTRF | ZSPTRF | CHPTRF | ZHPTRF (uplo, n, ap, ipiv, info)

C and C++ ssytrf | dsytrf | csytrf | zsytrf | chetrf | zhetrf (uplo, n, a, lda, ipiv, work, lwork, info);
ssptrf | dsptrf | csptrf | zsptrf | chptrf | zhptrf (uplo, n, ap, ipiv, info);

Note:

v The output from the SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, or ZHETRF
factorization routines should only be used as input to SSYTRS, DSYTRS,
CSYTRS, ZSYTRS, CHETRS, or ZHETRS respectively.

v The output from the SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF
factorization routines should only be used as input to SSPTRS, DSPTRS,
CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS respectively.

On Entry

uplo
indicates whether the upper or lower triangular part of the matrix A is
referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrix A used in the computation.

Specified as: an integer; n ≥ 0.

Chapter 10. Linear Algebraic Equations 635

a is the indefinite real symmetric, complex symmetric, or complex Hermitian
matrix A of order n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 145 on page 635.

ap is the indefinite real symmetric, complex symmetric, or complex Hermitian
matrix A of order n. It is stored in an array, referred to as AP, where:

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 145 on page 635.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

ipiv
See On Return.

work
is a work area used by these subroutines, where:

If lwork = 0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork = -1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of the data type indicated
in Table 145 on page 635.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The work area is deallocated before control is
returned to the calling program.

v If lwork = -1, subroutine performs a workspace query and returns the
optimal required size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise, lwork ≥ 1. It is suggested that the user specify lwork ≥ 8n.

info
See On Return.

On Return

a is the transformed matrix A containing the results of the factorization. See
“Function” on page 638.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 145 on page 635.

ap is the transformed matrix A containing the results of the factorization. See
“Function” on page 638.

636 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Returned as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 145 on page 635.

ipiv
If info = 0, ipiv contains the pivot indices.

If ipivk > 0, then rows and columns k and ipivk were interchanged and Dk,k is a
1 × 1 diagonal block.

If uplo = 'U' and ipivk = ipivk-1 < 0, then rows and columns k-1 and -ipivk were
interchanged and Dk-1:k,k-1:k is a 2 × 2 diagonal block.

If uplo = 'L' and ipivk = ipivk+1 < 0, then rows and columns k+1 and -ipivk were
interchanged and Dk:k+1,k:k+1 is a 2 × 2 diagonal block.

Returned as: a one-dimensional integer array of (at least) length n, containing
integers.

work
is a work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and all
other elements of work are overwritten.

info
has the following meaning:
v If info = 0, the factorization completed successfully.
v If info > 0, the factorization was unsuccessful and info is set to i where dii is

exactly zero.

Specified as: an integer; info ≥ 0.

Notes
1. These subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. a, ap, ipiv, and work must have no common elements; otherwise, results are

unpredictable.
4. For a description of how real and complex symmetric matrices are stored in

lower or upper storage mode, see “Lower Storage Mode” on page 86 or “Upper
Storage Mode” on page 87, respectively.
For a description of how complex Hermitian matrices are stored in lower or
upper storage mode, see “Complex Hermitian Matrix” on page 88.

5. For a description of how real and complex symmetric matrices are stored in
lower- or upper-packed storage mode, see “Lower-Packed Storage Mode” on
page 83 or “Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

6. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

7. For best performance, specify lwork = 0.

Chapter 10. Linear Algebraic Equations 637

Function

For SSYTRF, DSYTRF, CSYTRF, ZSYTRF, SSPTRF, DSPTRF, CSPTRF, and
ZSPTRF:

The indefinite real or complex symmetric matrix A is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as one of the
following:

A = UDUT

A = LDLT

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

Matrix A is stored as follows:
v For SSYTRF, DSYTRF, CSYTRF, and ZSYTRF, matrix A is stored in upper or

lower storage mode.
v For SSPTRF, DSPTRF, CSPTRF, and ZSPTRF, matrix A is stored in upper- or

lower-packed storage mode.

For CHETRF, ZHETRF, CHPTRF, and ZHPTRF:

The indefinite complex Hermitian matrix A is factored using the Bunch-Kaufman
diagonal pivoting method, where A is expressed as one of the following:

A = UDUH

A = LDLH

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a complex Hermitian block diagonal matrix, consisting of 1 × 1 and 2 × 2
diagonal blocks.

Matrix A is stored as follows:
v For CHETRF and ZHETRF, matrix A is stored in upper or lower storage mode.
v For CHPTRF and ZHPTRF, matrix A is stored in upper- or lower-packed storage

mode.

If n is 0, no computation is performed. See references [8 on page 1313] and [18 on
page 1314].

638 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
lwork = 0 and unable to allocate work area

Computational Errors
Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly

singular. info is set to i, where dii is exactly zero. This diagonal element is
identified in the computational error message.

v The computational error message may occur multiple times with
processing continuing after each error, because the default for the
number of allowable errors for error code 2147 is set to be unlimited in
the ESSL error option table. For details, see “What Can You Do about
ESSL Computational Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. lda ≤ 0
4. n > lda
5. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value

Examples

Example 1

This example shows a factorization of the indefinite real symmetric matrix A of
order 8.

Matrix A is the same matrix factored in the Example 1 for DBSTRF.

Note: Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
UPLO N A LDA IPIV WORK LWORK INFO
| | | | | | | |

CALL DSYTRF(’L’ , 8 , A , 8 , IPIV , WORK, 0 , INFO)

┌ ┐
| 3.0 |
| 5.0 3.0 |
| -2.0 2.0 0.0 |

A = | 2.0 -2.0 0.0 8.0 |
| 3.0 5.0 -2.0 -6.0 12.0 . . . |
| -5.0 -3.0 2.0 -10.0 6.0 16.0 . . |
| -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 . |
| -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
└ ┘

Output:
┌ ┐
| 3.0 |
| 5.0 3.0 |
| 1.0 -1.0 4.0 |

A = | -1.0 1.0 -1.0 8.0 |
| 1.0 0.0 0.0 -1.0 1.0 . . . |
| 0.0 -1.0 1.0 -1.0 3.0 1.0 . . |
| 1.0 -1.0 1.0 -1.0 -1.0 1.0 2.0 . |
| -1.0 0.0 1.0 -1.0 1.0 0.0 1.0 16.0 |
└ ┘

IPIV = (-2 -2 3 4 -6 -6 7 8)

Chapter 10. Linear Algebraic Equations 639

INFO = 0

Example 2

This example shows a factorization of the indefinite complex symmetric matrix
A of order 4.

Matrix A is:
┌ ┐
| (0.368,-0.319) (-0.021, 0.022) (0.312,-0.105) (-0.070, 0.263) |
| (-0.021, 0.022) (0.259,-0.148) (0.212,-0.237) (0.071, 0.370) |
| (0.312,-0.105) (0.212,-0.237) (0.273,-0.041) (0.384,-0.056) |
| (-0.070, 0.263) (0.071, 0.370) (0.384,-0.056) (-0.230, 0.085) |
└ ┘

Note: Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
UPLO N A LDA IPIV WORK LWORK INFO
| | | | | | | |

CALL ZSYTRF(’L’ , 4 , A , 4 , IPIV , WORK, 0 , INFO)

┌ ┐
| (0.368,-0.319) . . . |

A = | (-0.021, 0.022) (0.259,-0.148) . . |
| (0.312,-0.105) (0.212,-0.237) (0.273,-0.041) . |
| (-0.070, 0.263) (0.071, 0.370) (0.384,-0.056) (-0.230, 0.085) |
└ ┘

Output:
┌ ┐
| (0.368,-0.319) . . . |

A = | (-0.062, 0.006) (0.258,-0.147) . . |
| (0.625, 0.257) (1.085,-0.335) (0.333, 0.315) . |
| (-0.462, 0.314) (-0.444, 1.248) (-0.437,-1.386) (0.841, 0.431) |
└ ┘

IPIV = (1 2 4 4)

INFO = 0

Example 3

This example shows a factorization of the indefinite complex Hermitian matrix
A of order 4.

Matrix A is:
┌ ┐
| (-0.550, 0.000) (0.015, 0.262) (-0.034, 0.134) (0.137, 0.012) |
| (0.015,-0.262) (-0.609, 0.000) (-0.062,-0.150) (-0.083, 0.021) |
| (-0.034,-0.134) (-0.062, 0.150) (-0.560, 0.000) (-0.126, 0.053) |
| (0.137,-0.012) (-0.083,-0.021) (-0.126,-0.053) (-0.558, 0.000) |
└ ┘

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N A LDA IPIV WORK LWORK INFO
| | | | | | | |

CALL ZHETRF(’L’ , 4 , A , 4 , IPIV , WORK, 0 , INFO)

640 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (-0.550, .) . . . |

A = | (0.015,-0.262) (-0.609, .) . . |
| (-0.034,-0.134) (-0.062, 0.150) (-0.560, .) . |
| (0.137,-0.012) (-0.083,-0.021) (-0.126,-0.053) (-0.558, .) |
└ ┘

Output:
┌ ┐
| (-0.550, 0.000) . . . |

A = | (-0.027, 0.476) (-0.483, 0.000) . . |
| (0.062, 0.244) (-0.002,-0.269) (-0.490, 0.000) . |
| (-0.249, 0.022) (0.152,-0.091) (0.244,-0.002) (-0.479, 0.000) |
└ ┘

IPIV = (1 2 4 4)

INFO = 0

Example 4

This example shows a factorization of the indefinite real symmetric matrix A of
order 8.

Matrix A is the same matrix factored in the Example 1 for DBSTRF.

Call Statement and Input:
UPLO N AP IPIV INFO
| | | | |

CALL DSPTRF(’L’ , 8 , AP , IPIV , INFO)

AP = (3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0,
3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0,

0.0 0.0 -2.0 2.0 0.0 6.0,
8.0 -6.0-10.0 -8.0-14.0,

12.0 6.0 8.0 6.0,
16.0 8.0 20.0,

6.0 18.0,
34.0)

Output:
AP = (3.0 5.0 1.0 -1.0 1.0 0.0 1.0 -1.0,

3.0 -1.0 1.0 0.0 -1.0 -1.0 0.0,
4.0 -1.0 0.0 1.0 1.0 1.0,

8.0 -1.0 -1.0 -1.0 -1.0,
1.0 3.0 -1.0 1.0,

1.0 1.0 0.0,
2.0 1.0,

16.0)

IPIV = (-2 -2 3 4 -6 -6 7 8)

INFO = 0

Example 5

This example shows a factorization of the indefinite complex symmetric matrix
A of order 4.

Matrix A is the same matrix factored in the Example 2 for ZSYTRF.

Call Statement and Input:
UPLO N AP IPIV INFO
| | | | |

CALL ZSPTRF(’L’ , 4 , AP , IPIV , INFO)

Chapter 10. Linear Algebraic Equations 641

AP = ((0.368, -0.319), (-0.021, 0.022), (0.312, -0.105),(-0.070, 0.263),
(0.259, -0.148), (0.212, -0.237),(0.071, 0.370),

(0.273, -0.041),(0.384, -0.056),
(-0.230, 0.085))

Output:

AP = ((0.368, -0.319), (-0.062, 0.006), (0.625, 0.257), (-0.462, 0.314),
(0.258,-0.147), (1.085, -0.335), (-0.444, 1.248),

(0.333, 0.315), (-0.437, -1.386),
(0.841, 0.431))

IPIV = (1 2 4 4)

INFO = 0

Example 6

This example shows a factorization of the indefinite complex Hermitian matrix
A of order 4.

Matrix A is the same matrix factored in the Example 3 for ZHETRF.

Note: On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

Call Statement and Input:
UPLO N AP IPIV INFO
| | | | |

CALL ZHPTRF(’L’ , 4 , AP , IPIV , INFO)

AP = ((-0.550, .), (0.015,-0.262), (-0.034,-0.134), (0.137,-0.012),
(-0.609, .), (-0.062, 0.150), (-0.083,-0.021),

(-0.560, .), (-0.126,-0.053),
(-0.558, .))

Output:
AP = ((-0.550, 0.000), (-0.027, 0.476), (0.062, 0.244), (-0.249, 0.022),

(-0.484, 0.000), (-0.002, -0.269), (0.152, -0.091),
(-0.490, 0.000), (0.245, -0.002),

(-0.479, 0.000))

IPIV = (1 2 3 4)

INFO = 0

642 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS,
DSPTRS, CSPTRS, ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or
Complex Symmetric or Complex Hermitian Matrix Multiple Right-Hand
Side Solve)

Purpose

These subroutines solve the system AX = B for X, where A is an indefinite real or
complex symmetric or complex Hermitian matrix and X and B are general
matrices.

SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, or ZHETRS use the results of the
factorization of matrix A, produced by a preceding call to SSYTRF, DSYTRF,
CSYTRF, ZSYTRF, CHETRF, or ZHETRF, respectively.

SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS use the results of the
factorization of matrix A, produced by a preceding call to SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.

Table 146. Data Types

A, B Subroutine

Short-precision real SSYTRS∆, SSPTRS∆

Long-precision real DSYTRS∆, DSPTRS∆

Short-precision complex CSYTRS∆, CHETRS∆, CSPTRS∆, CHPTRS∆

Long-precision complex ZSYTRS∆, ZHETRS∆, ZSPTRS∆, ZHPTRS∆

∆LAPACK

Syntax

Fortran
CALL SSYTRS | DSYTRS | CSYTRS | ZSYTRS | CHETRS | ZHETRS (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CALL SSPTRS | DSPTRS | CSPTRS | ZSPTRS | CHPTRS | ZHPTRS (uplo, n, nrhs, ap, ipiv, b, ldb, info)

C and C++ ssytrs | dsytrs | csytrs | zsytrs | chetrs | zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info);
ssptrs | dsptrs | csptrs | zsptrs | chptrs | zhptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info);

On Entry

uplo
indicates whether the upper or lower triangular part of the matrix A is
referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrix A used in the computation.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the factorization of indefinite real symmetric, complex symmetric, or

Chapter 10. Linear Algebraic Equations 643

complex Hermitian matrix A of order n produced by a preceding call to
SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, or ZHETRF, respectively.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 146 on page 643.

ap is the factorization of indefinite real symmetric, complex symmetric, or
complex Hermitian matrix A of order n, produced by a preceding call to
SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 146 on page 643.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

ipiv
is the array containing the pivot indices produced by a preceding call to
SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.

Specified as: a one-dimensional integer array of (at least) length n, containing
integers.

b is the general matrix B containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by nrhs array, containing numbers of the data type
indicated in Table 146 on page 643.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb>0 and ldb ≥ n.

info
See On Return.

On Return

b is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 146 on page 643.

info
has the following meaning:

If info=0, the factorization completed successfully.

Specified as: an integer; info = 0.

Notes
1. These subroutines accept lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.

644 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

3. a, ap, b and ipiv must have no common elements; otherwise, results are
unpredictable.

4. For a description of how real and complex symmetric matrices are stored in
lower or upper storage mode, see “Lower Storage Mode” on page 86 or “Upper
Storage Mode” on page 87, respectively.
For a description of how complex Hermitian matrices are stored in lower or
upper storage mode, see “Complex Hermitian Matrix” on page 88.

5. For a description of how real and complex symmetric matrices are stored in
lower- or upper-packed storage mode, see “Lower-Packed Storage Mode” on
page 83 or “Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

Function

These subroutines solve the system AX = B for X, where A is a real or complex
symmetric or complex Hermitian matrix and X and B are general matrices.

SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, or ZHETRS use the results of the
factorization of matrix A, produced by a preceding call to SSYTRF, DSYTRF,
CSYTRF, ZSYTRF, CHETRF, or ZHETRF, respectively.

SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS use the results of the
factorization of matrix A, produced by a preceding call to SSPTRF, DSPTRF,
CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.

If n is 0 or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking. See references [8 on page 1313] and [18 on page
1314].

Error conditions

Computational Errors
None

Note: If the factorization performed by SSYTRF, DSYTRF, CSYTRF,
ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF,
or ZHPTRF failed because matrix A is singular, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. lda ≤ 0
5. n > lda
6. ldb ≤ 0
7. n > ldb

Examples

Example 1

This example shows how to solve the system AX=B, for three right-hand sides,
where indefinite real symmetric matrix A is the same matrix factored in the
Example 1 for DSYTRF.

Chapter 10. Linear Algebraic Equations 645

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB INFO
| | | | | | | | |

CALL DSYTRS(’L’ , 8 , 3 , A , 8 , IPIV , B , 8 , INFO)

A = (same as output A in Example 1)

IPIV = (same as output IPIV in Example 1)
┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |
| 6.0 52.0 2.0 |

B = | -30.0 -228.0 -42.0 |
| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX=B for three right-hand sides,
where indefinite complex symmetric matrix A is the same matrix factored in
the Example 2 for ZSYTRF.

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB INFO
| | | | | | | | |

CALL ZSYTRS(’L’ , 4 , 3 , A , 4 , IPIV , B , 4 , INFO)

A = (same as output A in Example 2)
IPIV = (same as output IPIV in Example 2)

┌ ┐
| (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |

B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
└ ┘

Output:
┌ ┐
| (0.409, -0.663) (-0.582,-1.410) (2.484, 2.216) |

B = | (-1.664, -0.552) (-1.503,-4.837) (-3.577, 2.575) |
| (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
| (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
└ ┘

INFO = 0

Example 3

646 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how to solve the system AX=B for three right-hand sides,
where indefinite complex Hermitian matrix A is the same matrix factored in
the Example 3 for ZHETRF.

Call Statement and Input:
UPLO N NRHS A LDA IPIV B LDB INFO
| | | | | | | | |

CALL ZHETRS(’L’ , 4 , 3 , A , 4 , IPIV , B , 4 , INFO)

A = (same as output A in Example 3)

IPIV = (same as output IPIV in Example 3)
┌ ┐
| (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |

B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
└ ┘

Output:
┌ ┐
| (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |

B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
| (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
| (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX=B for three right-hand sides,
where indefinite real symmetric matrix A is the same matrix factored in the
Example 1 for DSYTRF.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL DSPTRS(’L’ , 8 , 3 , AP , IPIV , B , 8 , INFO)

AP = (same as output AP in Example 4)

IPIV = (same as output IPIV in Example 4)
┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |
| 6.0 52.0 2.0 |

B = | -30.0 -228.0 -42.0 |
| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

B = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

Chapter 10. Linear Algebraic Equations 647

INFO = 0

Example 5

This example shows how to solve the system AX=B for three right-hand sides,
where indefinite complex symmetric matrix A is the same matrix factored in
the Example 2 for ZSYTRF.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL ZSPTRS(’L’ , 4 , 3 , AP , IPIV , B , 4 , INFO)

AP = (same as output AP in Example 5)

IPIV = (same as output IPIV in Example 5)
┌ ┐
| (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |

B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
└ ┘

Output:
┌ ┐
| (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |

B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
| (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
| (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
└ ┘

INFO = 0

Example 6

This example shows how to solve the system AX=B for three right-hand sides,
where indefinite complex Hermitian matrix A is the same matrix factored in
the Example 3 for ZHETRF.

Call Statement and Input:
UPLO N NRHS AP IPIV B LDB INFO
| | | | | | | |

CALL ZHPTRS(’L’ , 4 , 3 , AP , IPIV , B , 4 , INFO)

AP = (same as output AP in Example 6)

IPIV = (same as output IPIV in Example 6)
┌ ┐
| (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |

B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
| (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
└ ┘

Output:
┌ ┐
| (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |

B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
| (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
| (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
└ ┘

INFO = 0

648 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DBSSV (Symmetric Indefinite Matrix Factorization and Multiple
Right-Hand Side Solve)

Purpose

The DBSSV subroutine solves a system of linear equations AX = B for X, where A
is a real symmetric indefinite matrix, and X and B are real general matrices.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

Table 147. Data Types

A, B ipvt Subroutine

Long-precision real Integer DBSSV

Syntax

Fortran CALL DBSSV (uplo, n, nrhs, ap, ipvt, bx, ldb, nsinfo)

C and C++ dbssv (uplo, n, nrhs, ap, ipvt, bx, ldb, nsinfo);

On Entry

uplo
indicates whether matrix A is stored in upper- or lower-packed storage mode,
where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

ap is array, referred to as AP, in which matrix A, to be factored, is stored in upper-
or lower-packed storage mode.

Specified as: a one-dimensional array of length nsinfo, containing numbers of
the data type indicated in Table 147. See “Notes ” on page 651.

Chapter 10. Linear Algebraic Equations 649

ipvt
See On Return.

bx is the matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 147 on page 649.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

nsinfo
is the number of elements in array, AP.

If n ≤ nco, nsinfo = n(n + 1) / 2

Where:
ics is the size in doublewords of the data cache. The data cache size can be

obtained by utilizing the following C language code fragment:
#include <sys/systemcfg.h>
int ics;

.

.

.
ics=_system_configuration.dcache_size/8;

Otherwise, to determine a sufficient amount of storage, use the following
processor-independent formula:

n0 = 100
ns = (n + n0) (n + n0 + 1) / 2 + n(n0)
For uplo = 'L',
nsinfo ≥ ns
For uplo = 'U',
n1 = (n + 1) / 2
nt = n((n + 1) / 2)
nt1 = n1(n1 + 1)
ns1 = nt + nt1
nsinfo ≥ max(ns, ns1)

To determine the minimal amount of storage see “Notes ” on page 651.

Specified as: an integer; nsinfo > 0.

On Return

ap is the transformed matrix A of order n, containing the results of the
factorization.

If nsinfo ≥ 0 and n > nco, additional information that can be used to obtain a
minimum nsinfo is stored in AP(1). See “Notes ” on page 651 and “Function” on
page 651.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 147 on page 649.

650 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ipvt
is an integer vector of length n, containing the pivot information necessary to
construct the factored form of A.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 147 on page 649.

bx is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 147 on page 649.

nsinfo
indicates the result of the computation.
v If nsinfo = 0, the subroutine completed successfully.
v If nsinfo > 0, factorization was unsuccessful and array B was not updated.

nsinfo is set to i where dii is exactly zero.
v If nsinfo < 0, factorization did not take place and the arrays, AP and B, remain

unchanged. |nsinfo| is the minimal storage required for factorization to take
place. Error message 2200 is issued and execution terminates, unless you
have used ERRSET to make error code 2200 recoverable. See “What Can You
Do about ESSL Input-Argument Errors?” on page 65.

Specified as: an integer.

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument nsinfo must be passed by reference.
3. In the input array specified for ap, the first n(n+1)/2 elements are matrix

elements. The additional locations, required in the array, are used for working
storage.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. On return, if nsinfo ≥ 0 and n > nco, ap contains additional information in AP(1)
that can be used to obtain the minimal required nsinfo. This information can be
accessed using the following code fragment:
REAL*8 AP(NSINFO)
INTEGER API(2)
EQUIVALENCE(API, AP)

.

.

.
NSINFOMIN = API(2)

6. For a description of how a symmetric matrix is stored in upper- or
lower-packed storage mode in an array, see “Symmetric Matrix” on page 83.

Function

The system AX = B is solved for X, where A is a real symmetric indefinite matrix,
and X and B are real general matrices.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the
Bunch-Kaufman diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

Chapter 10. Linear Algebraic Equations 651

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix.

See references [8 on page 1313] and [76 on page 1318].

Error conditions

Resource Errors
None.

Computational Errors
Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly

singular. nsinfo is set to i, where dii is exactly zero. This diagonal element is
identified in the computational error message.

v The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2147 is set to be unlimited in the ESSL error option
table. For details, see “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. n > ldb
4. ldb ≤ 0
5. nrhs < 0
6. nsinfo < (minimum value).
v For the minimum value, see the nsinfo argument description.
v Return code 1 is returned if error 2200 is recoverable.

Examples

Example 1

This example shows how to solve the system AX = B, for three right-hand
sides, where matrix A is a real symmetric indefinite matrix of order 8, stored in
lower-packed storage mode, and X and B are real general matrices.

On input, matrix A is:
┌ ┐
| 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
| 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
| -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |

A = | 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
| 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
| -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |

652 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
| -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
└

┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in lower-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP IPVT BX LDB NSINFO
| | | | | | | |

CALL DBSSV (’L’, 8, 3, AP, IPVT, BX, 8, 36)

AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
8.0, -6.0,-10.0, -8.0,-14.0,
12.0, 6.0, 8.0, 6.0,
16.0, 8.0, 20.0,
6.0, 18.0,
34.0)

┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |
| 6.0 52.0 2.0 |

BX = | -30.0 -228.0 -42.0 |
| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

BX = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

NSINFO = 0

Note: AP and IPVT are stored in an internal format.

Example 2

This example shows how to solve the system AX = B, for three right-hand
sides, where matrix A is a real symmetric indefinite matrix of order 8, stored in
upper-packed storage mode, and X and B are real general matrices.

On input, matrix A is:
┌ ┐
| 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
| 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
| 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
| 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
|-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
| 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
| -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
| -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
└ ┘

Chapter 10. Linear Algebraic Equations 653

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in upper-packed storage mode.

Call Statement and Input:
UPLO N NRHS AP IPVT BX LDB NSINFO
| | | | | | | |

CALL DBSSV (’U’, 8, 3, AP, IPVT, BX, 8, 36)

AP = (34.0,
18.0, 6.0,
17.0, 6.0, 9.0,
6.0, 8.0, 9.0, 12.0,

-14.0, -8.0, -8.0, -6.0, 8.0,
6.0, 0.0, 0.0, -2.0, 0.0, 0.0,

-5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
-3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

┌ ┐
| 59.0 52.0 479.0 |
| 30.0 38.0 232.0 |
| 33.0 50.0 247.0 |

BX = | 35.0 114.0 201.0 |
| -28.0 -36.0 -216.0 |
| 4.0 -4.0 40.0 |
| 12.0 88.0 20.0 |
| 4.0 56.0 -20.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

BX = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

NSINFO = 0

Note: AP and IPVT are stored in an internal format.

654 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DBSTRF (Symmetric Indefinite Matrix Factorization)
Purpose

DBSTRF factors a real symmetric indefinite matrix A. The matrix A, stored in
upper- or lower-packed storage mode, is factored using the Bunch-Kaufman
diagonal pivoting method, where A is expressed as:

A = UDUT or
A = LDLT

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

To solve a system of equations with one or more right-hand sides, follow the call
to this subroutine with one or more calls to DBSTRS.

Table 148. Data Types

A ipvt Subroutine

Long-precision real Integer DBSTRF

Note: The output from DBSTRF should be used only as input to DBSTRS, for
performing a solve.

Syntax

Fortran CALL DBSTRF (uplo, n, ap, ipvt, nsinfo)

C and C++ dbstrf (uplo, n, ap, ipvt, nsinfo);

On Entry

uplo
indicates whether matrix A is stored in upper- or lower-packed storage mode,
where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A.

Specified as: an integer; n ≥ 0.

ap is array, referred to as AP, in which matrix A, to be factored, is stored in upper-
or lower-packed storage mode.

Specified as: a one-dimensional array of length nsinfo, containing numbers of
the data type indicated in Table 148. See “Notes ” on page 657.

ipvt
See On Return.

Chapter 10. Linear Algebraic Equations 655

nsinfo
is the number of elements in array, AP.

If n ≤ nco, nsinfo = n(n + 1) / 2

Where:

ics is the size in doublewords of the data cache. The data cache size can be
obtained by utilizing the following C language code fragment:
#include <sys/systemcfg.h>
int ics;

.

.

.
ics=_system_configuration.dcache_size/8;

ics is the size in doublewords of the data cache. The data cache size can be
obtained by utilizing the following C language code fragment:
#include <sys/systemcfg.h>
int ics;

.

.

.
ics=_system_configuration.dcache_size/8;

Otherwise, to determine a sufficient amount of storage, use the following
processor-independent formula:

n0 = 100
ns = (n + n0) (n + n0 + 1) / 2 + n(n0)

For uplo = 'L',
nsinfo ≥ ns

For uplo = 'U',
n1 = (n + 1) / 2
nt = n((n + 1) / 2)
nt1 = n1(n1 + 1)
ns1 = nt + nt1
nsinfo ≥ max(ns, ns1)

To determine the minimal amount of storage see “Notes ” on page 657.

Specified as: an integer; nsinfo > 0.

On Return

ap is the transformed matrix A of order n, containing the results of the
factorization.

If nsinfo ≥ 0 and n > nco, additional information that can be used to obtain a
minimum nsinfo is stored in AP(1). See “Notes ” on page 657 and “Function” on
page 657.

Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 148 on page 655.

656 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ipvt
is an integer vector of length n, containing the pivot information necessary to
construct the factored form of A.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 148 on page 655.

nsinfo
indicates the result of the computation.
v If nsinfo = 0, the factorization completed successfully.
v If nsinfo > 0, factorization was unsuccessful and nsinfo is set toi where dii is

exactly zero.
v If nsinfo < 0, factorization did not take place and the array AP remains

unchanged. |nsinfo| is the minimal storage required for factorization to take
place. Error message 2200 is issued and execution terminates, unless you
have used ERRSET to make error code 2200 recoverable. See “What Can You
Do about ESSL Input-Argument Errors?” on page 65.

Specified as: an integer.

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument nsinfo must be passed by reference.
3. In the input array specified for ap, the first n(n+1)/2 elements are matrix

elements. The additional locations, required in the array, are used for working
storage.

4. The array specified for ap should not be altered between calls to the
factorization and solve subroutines; otherwise, unpredictable results may occur.

5. On return, if nsinfo ≥ 0 and n > nco, ap contains additional information in AP(1)
that can be used to obtain the minimal required nsinfo. This information can be
accessed using the following code fragment:
REAL*8 AP(NSINFO)
INTEGER API(2)
EQUIVALENCE(API, AP)

.

.

.
NSINFOMIN = API(2)

6. For a description of how a symmetric matrix is stored in upper- or
lower-packed storage mode in an array, see “Symmetric Matrix” on page 83.

Function

where:

U is a product of permutation and unit upper triangular matrices.

L is a product of permutation and unit lower triangular matrices.

D is a symmetric block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal
blocks.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking.

See references [8 on page 1313] and [76 on page 1318].

Chapter 10. Linear Algebraic Equations 657

Error conditions

Resource Errors
None.

Computational Errors
Matrix A is singular.
v The factorization completed but the block diagonal matrix D is exactly

singular. nsinfo is set to i, where dii is exactly zero. This diagonal element is
identified in the computational error message.

v The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2147 is set to be unlimited in the ESSL error option
table. For details, see “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nsinfo < (minimum value).
v For the minimum value, see the nsinfo argument description.
v Return code 1 is returned if error 2200 is recoverable.

Examples

Example 1

This example shows a factorization of a symmetric indefinite matrix A of order
8, stored in lower-packed storage mode, where on input matrix A is:

┌ ┐
| 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
| 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
| -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |
| 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
| 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
| -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |
| -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
| -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in lower-packed storage mode.

Call Statement and Input:
UPLO N AP IPVT NSINFO
| | | | |

CALL DBSTRF (’L’, 8, AP, IPVT, 36)

AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
8.0, -6.0,-10.0, -8.0,-14.0,
12.0, 6.0, 8.0, 6.0,
16.0, 8.0, 20.0,
6.0, 18.0,
34.0)

Output:

NSINFO = 0

Note: AP and IPVT are stored in an internal format and must be passed
unchanged to the solve subroutine.

658 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 2

This example shows a factorization of a symmetric indefinite matrix A of order
8, stored in upper-packed storage mode, where on input matrix A is:

┌ ┐
| 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
| 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
| 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
| 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
|-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
| 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
| -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
| -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
└ ┘

Note: The AP array is formatted in a triangular arrangement for readability;
however, it is stored in upper-packed storage mode.

Call Statement and Input:
UPLO N AP IPVT NSINFO
| | | | |

CALL DBSTRF (’U’, 8, AP, IPVT, 36)

AP = (34.0,
18.0, 6.0,
17.0, 6.0, 9.0,
6.0, 8.0, 9.0, 12.0,

-14.0, -8.0, -8.0, -6.0, 8.0,
6.0, 0.0, 0.0, -2.0, 0.0, 0.0,

-5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
-3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

Output:

NSINFO = 0

Note: AP and IPVT are stored in an internal format and must be passed
unchanged to the solve subroutine.

Chapter 10. Linear Algebraic Equations 659

DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)
Purpose

The DBSTRS subroutine solves a system of linear equations AX = B for X, where A
is a real symmetric indefinite matrix, and X and B are real general matrices. This
subroutine uses the results of the factorization of matrix A, produced by a
preceding call to DBSTRF.

Table 149. Data Types

A, B ipvt Subroutine

Long-precision real Integer DBSTRS

Note: The input to this solve subroutine must be the output from the factorization
subroutine DBSTRF.

Syntax

Fortran CALL DBSTRS (uplo, n, nrhs, ap, ipvt, bx, ldb, info)

C and C++ dbstrs (uplo, n, nrhs, ap, ipvt, bx, ldb, info);

On Entry

uplo
indicates whether original matrix A is stored in upper- or lower-packed storage
mode, where:

If uplo = 'U', A is stored in upper-packed storage mode.

If uplo = 'L', A is stored in lower-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of factored matrix A and the number of rows of matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

ap is the factored matrix A produced by a preceding call to DBSTRF.

Specified as: a one-dimensional array of length nsinfo, containing numbers of
the data type indicated in Table 149. See “Notes ” on page 661 and “DBSTRF
(Symmetric Indefinite Matrix Factorization)” on page 655.

ipvt
is an integer vector of length n, containing the pivot information necessary to
construct the factored form of A, produced by a preceding call to DBSTRF.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 149. See “Notes ” on page 661.

bx is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 149.

660 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See On Return.

On Return

bx is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 149 on page 660.

info
indicates the result of the computation.
v If info = 0, the subroutine completed successfully.

Returned as: an integer.

Notes
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. The array data specified for input arguments ap and ipvt for this subroutine

must be the same as the corresponding output arguments for DBSTRF.
4. The scalar data specified for input arguments uplo and n must be the same as

that specified for DBSTRF.
5. The vectors and matrices used in this computation must have no common

elements; otherwise, results are unpredictable. See “Concepts” on page 73.
6. For a description of how a symmetric matrix is stored in upper- or

lower-packed storage mode in an array, see “Symmetric Matrix” on page 83.
7. To solve AX = B for X, where B and X are n by nrhs matrices, precede the call

to DBSTRS with a call to DBSTRF.

Function

The system AX = B is solved for X, where A is a real symmetric indefinite matrix,
and X and B are real general matrices. This subroutine uses the results of the
factorization of matrix A, produced by a preceding call to DBSTRF.

If n or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See references [8 on page 1313] and [76 on page 1318].

Error conditions

Resource Errors
None.

Computational Errors
None.

Note: If the factorization performed by DBSTRF failed because matrix A is
singular, the results returned by this subroutine are unpredictable, and there
may be a divide-by-zero program exception message.

Chapter 10. Linear Algebraic Equations 661

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. n > ldb
5. ldb ≤ 0

Examples

Example 1

This example shows how to solve the system AX = B, for three right-hand
sides, where matrix A is the same matrix factored in the Example 1 for
DBSTRF.

Call Statement and Input:
UPLO N NRHS AP IPVT BX LDB INFO
| | | | | | | |

CALL DBSTRS (’L’, 8, 3, AP, IPVT, BX, 8, INFO)

AP = (for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See Example 1 for DBSTRF.)

IPVT = (for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See Example 1 for DBSTRF.)

┌ ┐
| 1.0 -38.0 47.0 |
| 7.0 -10.0 73.0 |
| 6.0 52.0 2.0 |

BX = | -30.0 -228.0 -42.0 |
| 32.0 183.0 105.0 |
| 34.0 297.0 9.0 |
| 32.0 244.0 44.0 |
| 62.0 497.0 61.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

BX = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B, for three right-hand
sides, where matrix A is the same matrix factored in the Example 2 for
DBSTRF.

Call Statement and Input:
UPLO N NRHS AP IPVT BX LDB INFO
| | | | | | | |

CALL DBSTRS (’U’, 8, 3, AP, IPVT, BX, 8, INFO)

662 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

AP =(for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See Example 2 for DBSTRF.)

IPVT =(for this subroutine must be the same
as the corresponding output argument for DBSTRF.
See Example 2 for DBSTRF.)

┌ ┐
| 59.0 52.0 479.0 |
| 30.0 38.0 232.0 |
| 33.0 50.0 247.0 |

BX = | 35.0 114.0 201.0 |
| -28.0 -36.0 -216.0 |
| 4.0 -4.0 40.0 |
| 12.0 88.0 20.0 |
| 4.0 56.0 -20.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 8.0 |
| 1.0 2.0 7.0 |
| 1.0 3.0 6.0 |

BX = | 1.0 4.0 5.0 |
| 1.0 5.0 4.0 |
| 1.0 6.0 3.0 |
| 1.0 7.0 2.0 |
| 1.0 8.0 1.0 |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 663

STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and
ZTPTRI (Triangular Matrix Inverse)

Purpose

These subroutines find the inverse of triangular matrix A:

A←A-1

Matrix A can be either upper or lower triangular, where:
v For STRTRI, DTRTRI, CTRTRI, and ZTRTRI, it is stored in upper- or

lower-triangular storage mode.
v For STPTRI, DTPTRI, CTPTRI, and ZTPTRI, it is stored in upper- or

lower-triangular-packed storage mode.

Table 150. Data Types

A Subroutine

Short-precision real STRTRI⌂ and STPTRI⌂

Long-precision real DTRTRI⌂ and DTPTRI⌂

Short-precision complex CTRTRI⌂ and CTPTRI⌂

Long-precision complex ZTRTRI⌂ and ZTPTRI⌂

⌂LAPACK

Syntax

Fortran
CALL STRTRI | DTRTRI | CTRTRI | ZTRTRI (uplo, diag, n, a, lda, info)

CALL STPTRI | DTPTRI | CTPTRI | ZTPTRI (uplo, diag, n, ap, info)

C and C++
strtri | dtrtri | ctrtri | ztrtri (uplo, diag, n, a, lda, info);

stptri | dtptri | ctptri | ztptri (uplo, diag, n, ap, info);

On Entry

uplo
indicates whether matrix A is an upper or lower triangular matrix, where:

If uplo = 'U', A is an upper triangular matrix.

If uplo = 'L', A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

diag
indicates the characteristics of the diagonal of matrix A, where:

If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

a is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular storage mode, respectively. Specified as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 150.

664 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lda
is the leading dimension of the arrays specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

ap is the upper or lower triangular matrix A of order n, stored in upper- or
lower-triangular-packed storage mode, respectively.

Specified as: a one-dimensional array of (at least) length n(n+1)/2, containing
numbers of the data type indicated in Table 150 on page 664.

n is the order of matrix A.

Specified as: an integer; n ≥ 0.

info
See On Return.

On Return

a is the inverse of the upper or lower triangular matrix A of order n, stored in
upper- or lower-triangular storage mode, respectively. Returned as: an lda by
(at least) n array, containing numbers of the data type indicated in Table 150 on
page 664.

ap is the inverse of the upper or lower triangular matrix A of order n, stored in
upper- or lower-triangular-packed storage mode, respectively. Returned as: a
one-dimensional array of (at least) length n(n+1)/2, containing numbers of the
data type indicated in Table 150 on page 664.

info
has the following meaning:

If info = 0, the inverse completed successfully.

If info > 0, info is set equal to the first i where Aii is zero. Matrix A is singular
and its inverse could not be computed.

Specified as: an integer; info ≥ 0.

Notes
1. In C programs, the argument info must be passed by reference.
2. These subroutines accept lowercase letters for the uplo and diag arguments.
3. If matrix A is upper triangular (uplo = 'U'), these subroutines refer to only the

upper triangular portion of the matrix. If matrix A is lower triangular, (uplo =
'L'), these subroutines refer to only the lower triangular portion of the matrix.
The unreferenced elements are assumed to be zero.

4. The elements of the diagonal of a unit triangular matrix are always one, so you
do not need to set these values.

5. The way _TRTRI and _TPTRI subroutines handle computational errors differs
from LAPACK. Like LAPACK, these subroutines use the info argument to
provide information about the computational error, but they also provide an
error message.

6. On both input and output, matrix A conforms to LAPACK format.
7. For a description of triangular matrices and how they are stored in upper- and

lower-triangular storage mode and in upper- and lower-triangular-packed
storage mode, see “Triangular Matrix” on page 91.

Chapter 10. Linear Algebraic Equations 665

Function

These subroutines find the inverse of triangular matrix A, where A is either upper
or lower triangular:

A←A-1

where:

A is the triangular matrix of order n.
A-1 is the inverse of the triangular matrix of order n.

If n is 0, no computation is performed. See references [8 on page 1313] and [44 on
page 1316].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is singular.
v One or more of the diagonal elements of matrix A are zero. The first column,

i, of matrix A, in which a zero diagonal element is found, is identified in the
computational error message and returned in the argument info.

v The computational error message may occur multiple times with processing
continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. diag ≠ 'U' or 'N'
3. n < 0
4. lda ≤ 0
5. lda < n

Examples

Example 1

This example shows how the inverse of matrix A is computed, where A is a 5
by 5 upper triangular matrix that is not unit triangular and is stored in
upper-triangular storage mode.

Matrix A is:
┌ ┐
| 1.00 3.00 4.00 5.00 6.00 |
| 0.00 2.00 8.00 9.00 1.00 |
| 0.00 0.00 4.00 8.00 4.00 |
| 0.00 0.00 0.00 -2.00 6.00 |
| 0.00 0.00 0.00 0.00 -1.00 |
└ ┘

Matrix A-1 is:
┌ ┐
| 1.00 -1.50 2.00 3.75 35.00 |
| 0.00 0.50 -1.00 -1.75 -14.00 |
| 0.00 0.00 0.25 1.00 7.00 |

666 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 0.00 0.00 0.00 -0.50 -3.00 |
| 0.00 0.00 0.00 0.00 -1.00 |
└ ┘

Call Statement and Input:
UPLO DIAG N A LDA INFO
| | | | | |

CALL STRTRI(’U’ , ’N’ , 5 , A, 5, INFO)

┌ ┐
| 1.00 3.00 4.00 5.00 6.00 |
| . 2.00 8.00 9.00 1.00 |

A = | . . 4.00 8.00 4.00 |
| . . . -2.00 6.00 |
| -1.00 |
└ ┘

Output:
┌ ┐
| 1.00 -1.50 2.00 3.75 35.00 |
| . 0.50 -1.00 -1.75 -14.00 |

A = | . . 0.25 1.00 7.00 |
| . . . -0.50 -3.00 |
| -1.00 |
└ ┘

INFO = 0

Example 2

This example shows how the inverse of matrix A is computed, where A is a 5
by 5 lower triangular matrix that is unit triangular and is stored in
lower-triangular storage mode.

Matrix A is:
┌ ┐
| 1.0 0.0 0.0 0.0 0.0 |
| 3.0 1.0 0.0 0.0 0.0 |
| 4.0 8.0 1.0 0.0 0.0 |
| 5.0 9.0 8.0 1.0 0.0 |
| 6.0 1.0 4.0 6.0 1.0 |
└ ┘

Matrix A-1 is:
┌ ┐
| 1.0 0.0 0.0 0.0 0.0 |
| -3.0 1.0 0.0 0.0 0.0 |
| 20.0 -8.0 1.0 0.0 0.0 |
| -138.0 55.0 -8.0 1.0 0.0 |
| 745.0 -299.0 44.0 -6.0 1.0 |
└ ┘

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of one for the diagonal elements.

Call Statement and Input:
UPLO DIAG N A LDA INFO
| | | | | |

CALL STRTRI(’L’ , ’U’ , 5 , A, 5, INFO)

┌ ┐
| |
| 3.0 |

A = | 4.0 8.0 . . . |
| 5.0 9.0 8.0 . . |
| 6.0 1.0 4.0 6.0 . |
└ ┘

Chapter 10. Linear Algebraic Equations 667

Output:
┌ ┐
| |
| -3.0 |

A = | 20.0 -8.0 . . . |
| -138.0 55.0 -8.0 . . |
| 745.0 -299.0 44.0 -6.0 . |
└ ┘

INFO = 0

Example 3

This example shows how the inverse of matrix A is computed, where A is a 5
by 5 upper triangular matrix that is not unit triangular and is stored in
upper-triangular storage mode.

Matrix A is:

Matrix A-1 is:

Call Statement and Input:
UPLO DIAG N A LDA INFO
| | | | | |

CALL ZTRTRI(’U’ , ’N’ , 5 , A, 5, INFO)

Output:

INFO = 0

Example 4

┌ ┐
| (-4.00, 1.00) (4.00, -3.00) (-1.00, 3.00) (0.00, 0.00) (-1.00, 0.00) |
| (0.00, 0.00) (-2.00, 0.00) (-3.00, -1.00) (-2.00, -1.00) (4.00, 3.00) |
| (0.00, 0.00) (0.00, 0.00) (-5.00, 3.00) (-3.00, -3.00) (-5.00, -5.00) |
| (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (4.00, -4.00) (2.00, 0.00) |
| (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (2.00, -1.00) |
└ ┘

┌ ┐
| (-0.24, -0.06) (-0.56, 0.24) (0.41, 0.09) (-0.22, 0.13) (1.32, 2.12) |
| (0.00, 0.00) (-0.50, 0.00) (0.18, 0.21) (-0.22, -0.06) (0.21, 1.87) |
| (0.00, 0.00) (0.00, 0.00) (-0.15, -0.09) (0.07, -0.11) (0.02, -0.47) |
| (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.12, 0.12) (-0.05, -0.15) |
| (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.40, 0.20) |
└ ┘

┌ ┐
| (-4.00, 1.00) (4.00, -3.00) (-1.00, 3.00) (0.00, 0.00) (-1.00, 0.00) |
| . (-2.00, 0.00) (-3.00, -1.00) (-2.00, -1.00) (4.00, 3.00) |

A = | . . (-5.00, 3.00) (-3.00, -3.00) (-5.00, -5.00) |
| . . . (4.00, -4.00) (2.00, 0.00) |
| (2.00, -1.00) |
└ ┘

┌ ┐
| (-0.24, -0.06) (-0.56, 0.24) (0.41, 0.09) (-0.22, 0.13) (1.32, 2.12) |
| . (-0.50, 0.00) (0.18, 0.21) (-0.22, -0.06) (0.21, 1.87) |

A = | . . (-0.15, -0.09) (0.07, -0.11) (0.02, -0.47) |
| . . . (0.12, 0.12) (-0.05, -0.15) |
| (0.40, 0.20) |
└ ┘

668 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how the inverse of matrix A is computed, where A is a 5
by 5 lower triangular matrix that is unit triangular and is stored in
lower-triangular storage mode.

Matrix A is:

Matrix A-1 is:

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of one for the diagonal elements.

Call Statement and Input:
UPLO DIAG N A LDA INFO
| | | | | |

CALL ZTRTRI(’L’ , ’U’ , 5 , A, 5, INFO)

Output:

INFO = 0

Example 5

This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 1 and is stored in upper-triangular-packed
storage mode. The inverse matrix computed here is the same as the inverse
matrix shown in Example 1 and is stored in upper-triangular-packed storage
mode.

Call Statement and Input:

┌ ┐
| (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (4.00, -3.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (-1.00, 3.00) (-3.00, -1.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (0.00, 0.00) (-2.00, -1.00) (-3.00, -3.00) (1.00, 0.00) (0.00, 0.00) |
| (-1.00, 0.00) (4.00, 3.00) (-5.00, -5.00) (2.00, 0.00) (1.00, 0.00) |
└ ┘

┌ ┐
| (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (-4.00, 3.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (-14.00, 2.00) (3.00, 1.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
| (-59.00, -34.00) (8.00, 13.00) (3.00, 3.00) (1.00, 0.00) (0.00, 0.00) |
| (64.00, 8.00) (-10.00, -9.00) (-1.00, -1.00) (-2.00, 0.00) (1.00, 0.00) |
└ ┘

┌ ┐
| |
| (4.00, -3.00) |
| (-1.00, 3.00) (-3.00, 1.00) . . . |

A = | (0.00, 0.00) (-2.00, -1.00) (-3.00, -3.00) . . |
| (-1.00, 0.00) (4.00, 3.00) (-5.00, -5.00) (2.00, 0.00) . |
└ ┘

┌ ┐
| |
| (-4.00, 3.00) |
| (-14.00, 2.00) (3.00, 1.00) . . . |

A = | (-59.00, -34.00) (8.00, 13.00) (3.00, 3.00) . . |
| (64.00, 8.00) (-10.00, -9.00) (-1.00, -1.00) (-2.00, 0.00) . |
└ ┘

Chapter 10. Linear Algebraic Equations 669

UPLO DIAG N AP INFO
| | | | |

CALL STPTRI(’U’ , ’N’ , 5 , AP, INFO)

AP = (1.00, 3.00, 2.00, 4.00, 8.00, 4.00, 5.00, 9.00, 8.00,
-2.00, 6.00, 1.00, 4.00, 6.00, -1.00)

Output:
AP = (1.00, -1.50, 0.50, 2.00, -1.00, 0.25, 3.75, -1.75, 1.00,

-0.50, 35.00, -14.00, 7.00, -3.00, -1.00)

INFO = 0

Example 6

This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 2 and is stored in lower-triangular-packed
storage mode. The inverse matrix computed here is the same as the inverse
matrix shown in Example 2 and is stored in lower-triangular-packed storage
mode.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of one for the diagonal elements.

Call Statement and Input:
UPLO DIAG N AP INFO
| | | | |

CALL STPTRI(’L’ , ’U’ , N , AP, INFO)

AP = (. , 3.0, 4.0, 5.0, 6.0, . , 8.0, 9.0, 1.0, . , 8.0, 4.0,
. , 6.0, .)

Output:
AP = (. , -3.0, 20.0, -138.0, 745.0, . , -8.0, 55.0, -299.0,

. , -8.0, 44.0, . , -6.0, .)

INFO = 0

Example 7

This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 3 and is stored in upper-triangular-packed
storage mode. The inverse matrix computed here is the same as the inverse
matrix shown in Example 3 and is stored in upper-triangular-packed storage
mode.

Call Statement and Input:
UPLO DIAG N AP INFO
| | | | |

CALL ZTPTRI(’U’ , ’N’ , 5 , AP, INFO)

Output:

AP = ((-4.00, 1.00),
(4.00, -3.00), (-2.00, 0.00),
(-1.00, 3.00), (-3.00, -1.00), (-5.00, 3.00),
(0.00, 0.00), (-2.00, -1.00), (-3.00, -3.00), (4.00, -4.00),
(-1.00, 0.00), (4.00, 3.00), (-5.00, -5.00), (2.00, 0.00), (2.00, -1.00))

AP = ((-0.24, -0.06),
(-0.56, 0.24), (-0.50, 0.00),
(0.41, 0.09), (0.18, 0.21), (-0.15, -0.09),
(-0.22, 0.13), (-0.22, -0.06), (0.07, -0.11), (0.12, 0.12),
(1.32, 2.12), (0.21, 1.87), (0.02, -0.47), (-0.05, -0.15), (0.40, 0.20))

670 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

INFO = 0

Example 8

This example shows how the inverse of matrix A is computed, where A is the
same matrix shown in Example 4 and is stored in lower-triangular-packed
storage mode. The inverse matrix computed here is the same as the inverse
matrix shown in Example 4 and is stored in lower-triangular-packed storage
mode.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. ESSL assumes a value of one for the diagonal elements.

Call Statement and Input:
UPLO DIAG N AP INFO
| | | | |

CALL ZTPTRI(’L’ , ’U’ , 5 , AP, INFO)

Output:

INFO = 0

AP = (., (4.00, -3.00), (-1.00, 3.00), (0.00, 0.00), (-1.00, 0.00),
., (-3.00, -1.00), (-2.00, -1.00), (4.00, 3.00),
., (-3.00, -3.00), (-5.00, -5.00),
., (2.00, 0.00),
.)

AP = (., (-4.00, 3.00), (-14.00, 2.00), (-59.00, -34.00), (64.00, 8.00),
., (3.00, 1.00), (8.00, 13.00), (-10.00, -9.00),
., (3.00, 3.00), (-1.00, -1.00),
., (-2.00, 0.00),
.)

Chapter 10. Linear Algebraic Equations 671

SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and
ZLANTP (Trapezoidal or Triangular Matrix Norm)

Purpose

These subprograms compute the norm of matrix A as explained below:

SLANTR, DLANTR, CLANTR, and ZLANTR

These subprograms compute the norm of trapezoidal matrix A stored in upper-
or lower-trapezoidal storage mode.

SLANTP, DLANTP, CLANTP, and ZLANTP

These subroutines compute the norm of triangular matrix A, stored in upper-
or lower-triangular-packed storage mode.

Table 151. Data Types

A work, Result Subprogram

Short-precision real Short-precision real SLANTR∆, SLANTP∆

Long-precision real Long-precision real DLANTR∆, DLANTP∆

Short-precision complex Short-precision real CLANTR∆, CLANTP∆

Long-precision complex Long-precision real ZLANTR∆, ZLANTP∆

∆LAPACK

Syntax

Fortran
SLANTR | DLANTR | CLANTR | ZLANTR (norm, uplo, diag, m, n, a, lda, work)
SLANTP | DLANTP | CLANTP | ZLANTP (norm, uplo, diag, n, ap, work)

C and C++ slantr | dlantr | clantr | zlantr (norm, uplo, diag, m, n, a, lda, work);
slantp | dlantp | clantp | zlantp (norm, uplo, diag, n, ap, work);

On Entry

norm
specifies the type of computation, where:

If norm = 'O' or '1', the one norm of A is computed.

If norm = 'I', the infinity norm of A is computed.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is computed.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

Specified as: a single character; norm = 'O', '1', 'I', 'F', 'E', or 'M'.

uplo
indicates the storage mode used for matrix A, where:

For SLANTR, DLANTR, CLANTR, and ZLANTR
If uplo='U', A is stored in upper-trapezoidal storage mode.

If uplo='L', A is stored in lower-trapezoidal storage mode.

For SLANTP, DLANTP, CLANTP, and ZLANTP
If uplo='U', A is stored in upper-triangular-packed storage mode.

If uplo='L', A is stored in lower-triangular-packed storage mode.

672 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a single character. It must be 'U' or 'L'.

diag
indicates the characteristics of the diagonal of matrix A, where:

For SLANTR, DLANTR, CLANTR, and ZLANTR
If diag = 'U', A is a unit trapezoidal matrix.

If diag = 'N', A is not a unit trapezoidal matrix.

For SLANTP, DLANTP, CLANTP, and ZLANTP
If diag = 'U', A is a unit triangular matrix.

If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

m is the number of rows in trapezoidal matrix A.

Specified as: an integer; m ≥ 0.

n

For SLANTR, DLANTR, CLANTR, and ZLANTR
n is the number of columns in matrix A.

For SLANTP, DLANTP, CLANTP, and ZLANTP
n is the order of matrix A

Specified as: an integer; n ≥ 0.

ap is the matrix A of order n, stored in upper- or lower-triangular-packed storage
mode.

Specified as: a one-dimensional array of (at least) n(n+1)/2, containing
numbers of the data type indicated in Table 151 on page 672.

a is the trapezoidal matrix A, stored in upper- or lower-trapezoidal storage
mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 151 on page 672.

lda
is the leading dimension of matrix A.

Specified as: an integer; lda ≥ m.

work
is the work area used by this subroutine, where:
v When norm = 'I', '1', or 'O', work is (at least) of length:

– m for SLANTR, DLANTR, CLANTR, and ZLANTR
– n for SLANTP, DLANTP, CLANTP, and ZLANTP

v Otherwise, work is not referenced.

Specified as: an area of storage containing numbers of data type indicated in
Table 151 on page 672.

On Return

Function value
is the result of the norm computation, returned as a number of the data type
indicated in Table 151 on page 672.

If norm = 'O' or '1', the one norm of A is returned.

Chapter 10. Linear Algebraic Equations 673

If norm = 'I', the infinity norm of A is returned.

If norm = 'F' or 'E', the Frobenius or Euclidean norm of A is returned.

If norm = 'M', the absolute value of the matrix element having the largest
absolute value, i.e., max (|A|), is returned.

If m = 0 or n = 0, the function returns zero.

Notes
1. Declare this function in your program as returning a value of the data type

indicated in Table 151 on page 672.
2. This function accepts lowercase letters for the norm, uplo, and diag arguments.
3. For a description of triangular matrices and how they are stored in upper- and

lower-triangular-packed storage mode, see “Triangular Matrix” on page 91.
4. For a description of trapezoidal matrices and how they are stored in upper-

and lower-trapezoidal storage mode, see “Trapezoidal Matrix” on page 94.
5. For SLANTR, DLANTR, CLANTR, and ZLANTR, the following cases are

extensions to the LAPACK standard:
v uplo = 'U' and m > n
v uplo = 'L' and n > m

Function

One of the following computations is performed on matrix A, depending on the
value specified for norm:

Value specified for norm Type of computation performed

'O' or '1' one norm

'I' infinity norm

'F' or 'E' Frobenius or Euclidean norm

'M' absolute value of the matrix element having
the largest absolute value, i.e., max (|A|)

If m = 0 or n = 0, the function returns zero.

Error conditions

Resource Errors
None.

Computational Errors
None.

Input-Argument Errors
1. norm ≠ 'O', '1', 'I', 'F', 'E', or 'M'
2. uplo ≠ 'U' or 'L'
3. diag ≠ 'U' or 'N'
4. m < 0
5. n < 0
6. lda < 1
7. lda < m

Examples

Example 1

674 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example computes the infinity norm of real trapezoidal matrix A stored in
lower-trapezoidal storage mode.

Call Statements and Input:
NORM UPLO DIAG M N A LDA WORK
| | | | | | | |

ANORM = DLANTR(’I’, ’L’, ’N’, 10 , 9 , A , 10 , WORK)

┌ ┐
| 1.0 |
| 1.0 2.0 |
| 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

A = | 1.0 2.0 3.0 4.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

Output:

ANORM = 45.0

Example 2

This example computes the Frobenius norm of real trapezoidal matrix A stored
upper-trapezoidal storage mode.

Call Statements and Input:
NORM UPLO DIAG M N A LDA WORK
| | | | | | | |

ANORM = DLANTR(’F’, ’U’, ’U’, 9 , 10 , A , 9 , WORK)

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| . . . 1.0 4.0 4.0 4.0 4.0 4.0 4.0 |

A = | 1.0 5.0 5.0 5.0 5.0 5.0 |
| 1.0 6.0 6.0 6.0 6.0 |
| 1.0 7.0 7.0 7.0 |
| 1.0 8.0 8.0 |
| 1.0 9.0 |
└ ┘

Output:

ANORM = 28.88

Example 3

This example computes the infinity norm of complex trapezoidal matrix A
stored in lower-trapezoidal storage mode.

Call Statements and Input:
NORM UPLO DIAG M N A LDA WORK
| | | | | | | |

ANORM = ZLANTR(’I’, ’L’, ’N’, 5 , 4 , A , 5 , WORK)

┌ ┐
| (1.0, 1.0) . . . |
| (2.0, 1.0)(2.0, 2.0) . . |

A = | (3.0, 1.0)(3.0, 2.0)(3.0, 3.0) . |
| (4.0, 1.0)(4.0, 2.0)(4.0, 3.0)(4.0, 4.0) |
| (5.0, 1.0)(5.0, 2.0)(5.0, 3.0)(5.0, 4.0) |
└ ┘

Chapter 10. Linear Algebraic Equations 675

Output:

ANORM = 22.7

Example 4

This example computes the absolute value of the matrix element having the
largest absolute value of complex trapezoidal matrix A stored in
upper-trapezoidal storage mode.

Call Statements and Input:
NORM UPLO DIAG M N A LDA WORK
| | | | | | | |

ANORM = ZLANTR(’M’, ’U’, ’U’, 4 , 5 , A , 4 , WORK)

┌ ┐
| (1.0, 0.0)(1.0, 2.0)(1.0, 3.0)(1.0, 4.0)(1.0, 5.0) |
| . (1.0, 0.0)(2.0, 3.0)(2.0, 4.0)(2.0, 5.0) |

A = | . . (1.0, 0.0)(3.0, 4.0)(3.0, 5.0) |
| . . . (1.0, 0.0)(4.0, 5.0) |
└ ┘

Output:

ANORM = 6.40

Example 5

This example computes the infinity norm of real triangular matrix A, stored in
lower-triangular-packed storage mode.

Call Statements and Input:
NORM UPLO DIAG N AP WORK
| | | | | |

ANORM = DLANTP(’I’, ’L’, ’N’, 9 , AP , WORK)

┌ ┐
| 1.0 |
| 1.0 2.0 |
| 1.0 2.0 3.0 |
| 1.0 2.0 3.0 4.0 |

AP = | 1.0 2.0 3.0 4.0 5.0 |
| 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
| 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
└ ┘

Output:

ANORM = 45.0

Example 6

This example computes the Frobenius norm of real triangular matrix A, stored
in upper-triangular-packed storage mode.

Call Statements and Input:
NORM UPLO DIAG N AP WORK
| | | | | |

ANORM = DLANTP(’F’, ’U’, ’U’, 9 , AP , WORK)

┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| . 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| . . 1.0 3.0 3.0 3.0 3.0 3.0 3.0 |
| . . . 1.0 4.0 4.0 4.0 4.0 4.0 |

AP = | 1.0 5.0 5.0 5.0 5.0 |
| 1.0 6.0 6.0 6.0 |

676 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 1.0 7.0 7.0 |
| 1.0 8.0 |
| 1.0 |
└ ┘

Output:

ANORM = 28.72

Example 7

This example computes the infinity norm of complex triangular matrix A,
stored in lower-triangular-packed storage mode.

Call Statements and Input:
NORM UPLO DIAG N AP WORK
| | | | | |

ANORM = ZLANTP(’I’, ’L’, ’N’, 5 , AP , WORK)

┌ ┐
| (1.0, 1.0) |
| (1.0, 1.0)(2.0, 2.0) . . . |

AP = | (1.0, 1.0)(2.0, 2.0)(3.0, 3.0) . . |
| (1.0, 1.0)(2.0, 2.0)(3.0, 3.0)(4.0, 4.0) . |
| (1.0, 1.0)(2.0, 2.0)(3.0, 3.0)(4.0, 4.0)(5.0, 5.0) |
└ ┘

Output:

ANORM = 21.2

Example 8

This example computes the absolute value of the matrix element having the
largest absolute value of complex triangular matrix A, stored in
upper-triangular-packed storage mode.

Call Statements and Input:
NORM UPLO DIAG N AP WORK
| | | | | |

ANORM = ZLANTP(’M’, ’U’, ’U’, 5 , AP , WORK)

┌ ┐
| (1.0, 0.0)(1.0, 1.0)(1.0, 1.0)(1.0, 1.0)(1.0, 1.0) |
| . (1.0, 0.0)(2.0, 2.0)(2.0, 2.0)(2.0, 2.0) |

AP = | . . (1.0, 0.0)(3.0, 3.0)(3.0, 3.0) |
| . . . (1.0, 0.0)(4.0, 4.0) |
| (1.0, 0.0) |
└ ┘

Output:

ANORM = 5.65

Chapter 10. Linear Algebraic Equations 677

Banded Linear Algebraic Equation Subroutines

This contains the banded linear algebraic equation subroutine descriptions.

678 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix
Factorization and Multiple Right-Hand Side Solve)

Purpose

These subroutines solve the general band system of linear equations AX=B for X,
where A is a general band matrix and B and X are general matrices.

The matrix A is stored in BLAS-general-band storage mode and is factored using
Gaussian elimination with partial pivoting.

Table 152. Data Types

A, B Subroutine

Short-precision real SGBSV∆

Long-precision real DGBSV∆

Short-precision complex CGBSV∆

Long-precision complex ZGBSV∆

∆LAPACK

Syntax

Fortran CALL SGBSV | DGBSV | CGBSV | ZGBSV (n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info)

C and C++ sgbtrs | dgbtrs | cgbtrs | zgbtrs (n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info);

On Entry

n is the order of matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

kl is the lower band width kl of the matrix A.

Specified as: an integer; kl ≥ 0.

ku is the upper band width ku of the matrix A.

Specified as: an integer; ku ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the general band matrix A of order n.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 152.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

ipiv
See "On Return".

b is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Chapter 10. Linear Algebraic Equations 679

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 152 on page 679.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See "On Return".

On Return

a is the transformed matrix A of order n containing the results of the
factorization. See “Function.”

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 152 on page 679.

ipiv
is the integer vector of length n, containing the pivot indices.

Returned as: a one-dimensional integer array of (at least) length n, containing
integers; 1 ≤ ipivj ≤ n for all j.

b If info = 0, b is the general matrix X, containing the nrhs solutions to the
system. The solutions, each of length n, reside in the columns of matrix X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 152 on page 679.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, info is set to the first i, where Uii is zero. The solution has not been
computed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. a, ipiv, and b must have no common elements; otherwise, results are

unpredictable.
3. For a description of how a general band matrix is stored in BLAS-general-band

storage mode in an array, see “General Band Matrix” on page 98.
4. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information
about the singularity of A, but they also provide an error message.

Function

These subroutines solve the general band system of linear equations AX = B,
where A is a general band matrix and B and X are general matrices.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs is 0, no solutions are computed and the
subroutine returns after factoring the matrix.

See references [8 on page 1313] and [46 on page 1316].

680 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
None

Computational Errors
Matrix A is singular or nearly singular.
v The first column, i, of L with a corresponding Uii = 0 diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors

1. n < 0
2. kl < 0
3. ku < 0
4. nrhs < 0
5. lda ≤ 0
6. 2kl+ku+1 > lda

7. ldb ≤ 0
8. n > ldb

Examples

Example 1

This example shows how to solve the real general band system AX=B, where:

Matrix A is the same used as input in Example 1 for DGBTRF.

Matrix B is the same used as input in Example 1 for DGBTRS.

Call Statement and Input:
N KL KU NRHS A LDA IPIV B LDB INFO)
| | | | | | | | | |

CALL DGBSV(9 , 2, 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

A = (same as input A in Example 1)
B = (same as input B in Example 1)

Output:
┌ ┐
| 4.000 4.000 4.000 4.000 |
| 3.000 3.000 3.000 3.000 -2.271 |
| . . . 2.000 2.000 2.000 2.000 -4.074 -1.747 |
| . . 1.000 1.000 1.000 1.000 -4.691 -4.177 1.000 |

A = | . 2.000 2.000 2.000 2.000 -4.419 -3.174 2.000 0.927 |
| 3.000 3.000 3.000 3.000 -3.617 -5.095 3.000 -1.546 3.037 |
| 0.666 0.444 0.518 0.567 -0.334 0.326 0.043 -0.790 . |
| 0.333 -0.111 0.592 0.246 -0.829 -0.588 -0.617 . . |
└ ┘

IPIV = (3, 4, 5, 6, 5, 6, 9, 8, 9)

┌ ┐
| 0.629 1.149 4.713 |
| -0.025 1.870 -0.726 |
| 0.523 0.615 2.946 |
| -0.286 -1.434 -2.774 |

B = | -0.104 -0.524 -1.067 |

Chapter 10. Linear Algebraic Equations 681

| -0.118 -0.591 -0.970 |
| 0.220 -0.896 2.027 |
| -0.079 1.604 -0.340 |
| 0.496 0.480 3.599 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the complex general band system AX=B,
where:

Matrix A is the same used as input in Example 2 for ZGBTRF.

Matrix B is the same used as input in Example 3 for ZGBTRS.

Call Statement and Input:
N KL KU NRHS A LDA IPIV B LDB INFO)
| | | | | | | | | |

CALL ZGBSV(5 , 1 , 2 , 3 , A , 5 , IPIV , B , 5 , INFO)

A = (same as input A in Example 2)
B = (same as input B in Example 3)

Output:
┌ ┐
| . . . (2.000, 4.000) (3.000, 5.000) |
| . . (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |

A = | . (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
|(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) (-0.339,-6.596) |
|(0.060, 0.020) (0.534, 0.305) (0.443, 0.300) (-0.412,-0.396) . |
└ ┘

IPIV = (2, 3, 4, 5, 5)

┌ ┐
|(-0.039,-0.250)(0.237,-0.265)(-0.247,-0.723) |
|(0.161,-0.014)(0.158, 0.163)(-0.092,-0.192) |

B = |(0.205, 0.105)(0.069, 0.317)(0.248, 0.130) |
|(0.116, 0.109)(-0.015, 0.224)(0.314, 0.146) |
|(-0.055, 0.038)(-0.090,-0.027)(0.032,-0.001) |
└ ┘

INFO = 0

682 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix
Factorization)

Purpose

These subroutines factor general band matrix A, stored in BLAS-general-band
storage mode, using Gaussian elimination with partial pivoting.

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SGBTRS, DGBTRS, CGBTRS, and
ZGBTRS respectively.

Table 153. Data Types

A Subroutine

Short-precision real SGBTRF∆

Long-precision real DGBTRF∆

Short-precision complex CGBTRF∆

Long-precision complex ZGBTRF∆

∆LAPACK

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGBTRS, DGBTRS, CGBTRS, and ZGBTRS
respectively.

Syntax

Fortran CALL SGBTRF | DGBTRF | CGBTRF | ZGBTRF (m, n, kl, ku, a, lda, ipiv, info)

C and C++ sgbtrf | dgbtrf | cgbtrf | zgbtrf (m, n, kl, ku, a, lda, ipiv, info);

On Entry

m is the number of rows in matrix A.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A.

Specified as: an integer; n ≥ 0.

kl is the lower band width kl of the matrix A.

Specified as: an integer; kl ≥ 0.

ku is the upper band width ku of the matrix A.

Specified as: an integer; ku ≥ 0.

a is the m by n general band matrix A to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 153.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

ipiv
See "On Return".

Chapter 10. Linear Algebraic Equations 683

info
See "On Return".

On Return

a is the transformed matrix A containing the results of the factorization. See
“Function.”

Returned as: an lda by (at least) n array, containing integers.

ipiv
is the integer vector of length min(m,n), containing the pivot indices.

Returned as: a one-dimensional integer array of (at least) length min(m,n),
containing integers; 1 ≤ ipivj ≤ m for all j.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, info is set to the first i, where Uii is zero. The factorization has been
completed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. a and ipiv must have no common elements; otherwise, results are unpredictable.
3. For a description of how a general band matrix is stored in BLAS-general-band

storage mode in an array, see “General Band Matrix” on page 98.
4. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information about
the singularity of A, but they also provide an error message.

Function

These subroutines factor general band matrix A, stored in BLAS-general-band
storage mode, using Gaussian elimination with partial pivoting to compute the LU
factorization of A:

A = PLU

In the formula above:
P is the permutation matrix
L is a unit lower triangular band matrix
U is a upper triangular band matrix

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SGBTRS, DGBTRS, CGBTRS, and
ZGBTRS respectively.

If m or n is 0, no computation is performed and the subroutine returns after doing
some parameter checking.

See references [8 on page 1313] and [46 on page 1316].

684 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
None

Computational Errors
Matrix A is singular or nearly singular.
v The first column, i, of L with a corresponding Uii = 0 diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2146 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors
1. m < 0
2. n < 0
3. kl < 0
4. ku < 0
5. lda ≤ 0
6. 2kl + ku + 1 > lda

Examples

Example 1

This example shows a factorization of the following real general band matrix
of order 9. Matrix A is:

┌ ┐
| 1.0 2.0 3.0 4.0 0.0 0.0 0.0 0.0 0.0 |
| 2.0 1.0 2.0 3.0 4.0 0.0 0.0 0.0 0.0 |
| 3.0 2.0 1.0 2.0 3.0 4.0 0.0 0.0 0.0 |
| 0.0 3.0 2.0 1.0 2.0 3.0 4.0 0.0 0.0 |
| 0.0 0.0 3.0 2.0 1.0 2.0 3.0 4.0 0.0 |
| 0.0 0.0 0.0 3.0 2.0 1.0 2.0 3.0 4.0 |
| 0.0 0.0 0.0 0.0 3.0 2.0 1.0 2.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 3.0 2.0 1.0 2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 3.0 2.0 1.0 |
└ ┘

Call Statement and Input:
M N KL KU A LDA IPIV INFO)
| | | | | | | |

CALL DGBTRF(9 , 9 , 2 , 3 , A , 8 , IPIV , INFO)

┌ ┐
| |
| |
| . . . 4.0 4.0 4.0 4.0 4.0 4.0 |
| . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |

A = | . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 . |
| 3.0 3.0 3.0 3.0 3.0 3.0 3.0 . . |
└ ┘

Output:
┌ ┐
| 4.000 4.000 4.000 4.000 |
| 3.000 3.000 3.000 3.000 -2.271 |
| . . . 2.000 2.000 2.000 2.000 -4.074 -1.747 |
| . . 1.000 1.000 1.000 1.000 -4.691 -4.177 1.000 |

A = | . 2.000 2.000 2.000 2.000 -4.419 -3.174 2.000 0.927 |
| 3.000 3.000 3.000 3.000 -3.617 -5.095 3.000 -1.546 3.037 |

Chapter 10. Linear Algebraic Equations 685

| 0.666 0.444 0.518 0.567 -0.334 0.326 0.043 -0.790 . |
| 0.333 -0.111 0.592 0.246 -0.829 -0.588 -0.617 . . |
└ ┘

IPIV = (3, 4, 5, 6, 5, 6, 9, 8, 9)

INFO = 0

Example 2

This example shows a factorization of the following complex general band
matrix of order 5. Matrix A is:

┌ ┐
|(0.100, 0.100) (1.000, 2.000) (1.000, 3.000) (0.000, 0.000) (0.000, 0.000) |
|(2.000, 1.000) (0.200, 0.200) (2.000, 3.000) (2.000, 4.000) (0.000, 0.000) |
|(0.000, 0.000) (3.000, 2.000) (0.300, 0.300) (3.000, 4.000) (3.000, 5.000) |
|(0.000, 0.000) (0.000, 0.000) (4.000, 3.000) (0.400, 0.400) (4.000, 5.000) |
|(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (5.000, 4.000) (0.500, 0.500) |
└ ┘

Call Statement and Input:
M N KL KU A LDA IPIV INFO)
| | | | | | | |

CALL ZGBTRF(5 , 5 , 1 , 2 , A , 5 , IPIV , INFO)

┌ ┐
| |
| . . (1.000, 3.000) (2.000, 4.000) (3.000, 5.000) |

A = | . (1.000, 2.000) (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |
|(0.100, 0.100) (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
|(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) . |
└ ┘

Output:
┌ ┐
| . . . (2.000, 4.000) (3.000, 5.000) |
| . . (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |

A = | . (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
|(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) (-0.339,-6.596) |
|(0.060, 0.020) (0.534, 0.305) (0.443, 0.300) (-0.412,-0.396) . |
└ ┘

IPIV = (2, 3, 4, 5, 5)

INFO = 0

686 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix
Multiple Right-Hand Side Solve)

Purpose

SGBTRS and DGTBRS solve one of the following systems of equations for multiple
right-hand sides:

1. AX=B
2. ATX=B

CGBTRS and ZGBTRS solve one of the following systems of equations for multiple
right-hand sides:
1. AX = B
2. ATX=B

3. AHX=B

In the formulas above:
v A represents the general band matrix A stored in BLAS-general-band storage

mode, containing the factorization.
v B represents the general matrix B containing the right-hand sides in its columns.
v X represents the general matrix B containing the solution vectors in its columns.

These subroutines use the results of the factorization of matrix A and vector ipiv,
produced by a preceding call to SGBTRF, DGBTRF, CGBTRF, and ZGBTRF,
respectively.

Table 154. Data Types

A, B Subroutine

Short-precision real SGBTRS∆

Long-precision real DGBTRS∆

Short-precision complex CGBTRS∆

Long-precision complex ZGBTRS∆

∆LAPACK

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGBTRF, DGBTRF, CGBTRF, and ZGBTRF, respectively.

Syntax

Fortran
CALL SGBTRS | DGBTRS | CGBTRS | ZGBTRS (trans, n, kl, ku, nrhs, a, lda, ipiv, b, ldb,
info)

C and C++ sgbtrs | dgbtrs | cgbtrs | zgbtrs (trans, n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info);

On Entry

trans
indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used in the computation, resulting in solution 1.

If trans = 'T', AT is used in the computation, resulting in solution 2.

Chapter 10. Linear Algebraic Equations 687

If trans = 'C', AH is used in the computation, resulting in solution 3.

Specified as: a single character; transa = 'N', 'T', or 'C'.

n is the order of factored matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

kl is the lower band width kl of the matrix A.

Specified as: an integer; kl ≥ 0.

ku is the upper band width ku of the matrix A.

Specified as: an integer; ku ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B
used in the computation.

Specified as: an integer; nrhs ≥ 0.

a is the factorization of matrix A, produced by a preceding call to SGBTRF,
DGBTRF, CGBTRF, or ZGBTRF, respectively.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 154 on page 687.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

ipiv
is the array containing the pivot indices produced by a preceding call to
SGBTRF, DGBTRF, CGBTRF, or ZGBTRF, respectively.

Specified as: a one-dimensional array of (at least) length n, containing integers.

b is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 154 on page 687.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See "On Return".

On Return

b is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 154 on page 687.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

Returned as: an integer; info = 0.

688 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes
1. These subroutines accept lowercase letters for the trans arguments.
2. In your C program, argument info must be passed by reference.
3. For SGBTRS and DGBTRS, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
4. The scalar data specified for input argument n must be the same for both

_GTBRF and _GTBRS.
5. The array data specified for input arguments a and ipiv for these subroutines

must be the same as the corresponding output arguments for SGBTRF,
DGBTRF, CGBTRF, or ZGBTRF respectively.

6. a, ipiv, and b must have no common elements; otherwise, results are
unpredictable.

7. For a description of how a general band matrix is stored in BLAS-general-band
storage mode in an array, see “General Band Matrix” on page 98.

Function

One of the following systems of equations is solved for multiple right-hand sides:

1. AX=B
2. ATX=B
3. AHX=B (only for CGBTRS and ZGBTRS)

where A is a general band matrix and B and X are general matrices. These
subroutines uses the results of the factorization of matrix A, produced by a
preceding call to SGBTRF, DGBTRF, CGBTRF, or ZGBTRF, respectively. For details
on the factorization, see “SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band
Matrix Factorization)” on page 683.

If n or nrhs is 0, no computation is performed.

See reference [46 on page 1316].

Error conditions

Resource Errors
None

Computational Errors

Note: If the factorization performed by SGBTRF, DGBTRF, CGBTRF, or
ZGBTRF failed due to a singular matrix argument, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors

1. trans ≠ 'N', 'T, or 'C'
2. n < 0
3. kl < 0
4. ku < 0
5. nrhs < 0
6. lda ≤ 0
7. 2kl+ku+1 > lda

8. ldb ≤ 0

Chapter 10. Linear Algebraic Equations 689

9. n > ldb

Examples

Example 1

This example shows how to solve the system AX = B, where real general band
matrix A is the same matrix factored in Example 1 for DGBTRF.

Call Statement and Input:
TRANS N KL KU NRHS A LDA IPIV B LDB INFO)

| | | | | | | | | | |
CALL DGBTRS(’N’ , 9 , 2 , 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

A = (same as output A in Example 1)

IPIV = (same as output IPIV in Example 1)
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 2.0 |
| 1.0 1.0 3.0 |
| 1.0 -1.0 4.0 |

B = | 1.0 1.0 5.0 |
| 1.0 -1.0 6.0 |
| 1.0 1.0 7.0 |
| 1.0 -1.0 8.0 |
| 1.0 1.0 9.0 |
└ ┘

Output:
┌ ┐
| 0.629 1.149 4.713 |
| -0.025 1.870 -0.726 |
| 0.523 0.615 2.946 |
| -0.286 -1.434 -2.774 |

B = | -0.104 -0.524 -1.067 |
| -0.118 -0.591 -0.970 |
| 0.220 -0.896 2.027 |
| -0.079 1.604 -0.340 |
| 0.496 0.480 3.599 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system ATX = B, where real general
band matrix A is the same matrix factored in Example 1 for DGBTRF.

Call Statement and Input:
TRANS N KL KU NRHS A LDA IPIV B LDB INFO)

| | | | | | | | | | |
CALL DGBTRS(’T’ , 9 , 2 , 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

A = (same as output A in Example 1)

IPIV = (same as output IPIV in Example 1)
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 2.0 |
| 1.0 1.0 3.0 |
| 1.0 -1.0 4.0 |

B = | 1.0 1.0 5.0 |
| 1.0 -1.0 6.0 |

690 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 1.0 1.0 7.0 |
| 1.0 -1.0 8.0 |
| 1.0 1.0 9.0 |
└ ┘

Output:
┌ ┐
| 0.496 0.480 1.362 |
| -0.079 1.604 -0.450 |
| 0.220 -0.896 0.179 |
| -0.118 -0.591 -0.211 |

B = | -0.104 -0.524 0.018 |
| -0.286 -1.434 -0.095 |
| 0.523 0.615 2.285 |
| -0.025 1.870 0.468 |
| 0.629 1.149 1.586 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B, where complex general
band matrix A is the same matrix factored in Example 2 for ZGBTRF.

Call Statement and Input:
TRANS N KL KU NRHS A LDA IPIV B LDB INFO)

| | | | | | | | | | |
CALL ZGBTRS(’N’ , 5 , 1 , 2 , 3 , A , 5 , IPIV , B , 5 , INFO)

A = (same as output A in Example 2)

IPIV = (same as output IPIV in Example 2)
┌ ┐
|(0.100, 1.000)(-1.000, 1.000)(0.200, 0.400) |
|(0.100, 1.000)(-1.000, 1.000)(0.400, 0.800) |

B = |(0.100, 1.000)(-1.000, 1.000)(0.600, 1.200) |
|(0.100, 1.000)(-1.000, 1.000)(0.800, 1.600) |
|(0.100, 1.000)(-1.000, 1.000)(1.000, 2.000) |
└ ┘

Output:
┌ ┐
|(-0.039,-0.250)(0.237,-0.265)(-0.247,-0.723) |
|(0.161,-0.014)(0.158, 0.163)(-0.092,-0.192) |

B = |(0.205, 0.105)(0.069, 0.317)(0.248, 0.130) |
|(0.116, 0.109)(-0.015, 0.224)(0.314, 0.146) |
|(-0.055, 0.038)(-0.090,-0.027)(0.032,-0.001) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AHX = B, where complex general
band matrix A is the same matrix factored in Example 2 for ZGBTRF.

Call Statement and Input:
TRANS N KL KU NRHS A LDA IPIV B LDB INFO)

| | | | | | | | | | |
CALL ZGBTRS(’C’ , 5 , 1 , 2 , 3 , A , 5 , IPIV, B , 5 , INFO)

A = (same as output A in Example 2)

IPIV = (same as output IPIV in Example 2)

Chapter 10. Linear Algebraic Equations 691

┌ ┐
|(0.100, 1.000)(-1.000, 1.000)(0.200, 0.400) |
|(0.100, 1.000)(-1.000, 1.000)(0.400, 0.800) |

B = |(0.100, 1.000)(-1.000, 1.000)(0.600, 1.200) |
|(0.100, 1.000)(-1.000, 1.000)(0.800, 1.600) |
|(0.100, 1.000)(-1.000, 1.000)(1.000, 2.000) |
└ ┘

Output:
┌ ┐
|(0.015,-0.126)(0.150,-0.096)(0.029, 0.017) |
|(-0.158, 0.428)(-0.607, 0.209)(-0.002, 0.200) |

B = |(-0.094, 0.283)(-0.392, 0.149)(-0.054, 0.230) |
|(-0.057,-0.111)(0.070,-0.161)(-0.114, 0.109) |
|(-0.088,-0.409)(0.367,-0.460)(-0.111,-0.050) |
└ ┘

INFO = 0

692 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBS and DGBS (General Band Matrix Solve)
Purpose

These subroutines solve the system Ax = b for x, where A is a general band matrix,
and x and b are vectors. They use the results of the factorization of matrix A,
produced by a preceding call to SGBF or DGBF, respectively.

Table 155. Data Types

A, b, x Subroutine

Short-precision real SGBS

Long-precision real DGBS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGBF and DGBF, respectively.

Syntax

Fortran CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx)

C and C++ sgbs | dgbs (agb, lda, n, ml, mu, ipvt, bx);

On Entry

agb
is the factorization of general band matrix A, produced by a preceding call to
SGBF or DGBF. Specified as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 155, where lda ≥ 2ml+mu+16.

lda
is the leading dimension of the array specified for agb. Specified as: an integer;
lda > 0 and lda ≥ 2ml+mu+16.

n is the order of the matrix A. Specified as: an integer; n > ml and n > mu.

ml is the lower band width ml of the matrix A. Specified as: an integer; 0 ≤ ml < n.

mu is the upper band width mu of the matrix A. Specified as: an integer; 0 ≤ mu <
n.

ipvt
is the integer vector ipvt of length n, produced by a preceding call to SGBF or
DGBF. It contains the pivot information necessary to construct matrix L from
the information contained in the array specified for agb.

Specified as: a one-dimensional array of (at least) length n, containing integers.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 155.

On Return

bx is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 155.

Chapter 10. Linear Algebraic Equations 693

Notes
1. The scalar data specified for input arguments lda, n, ml, and mu for these

subroutines must be the same as that specified for SGBF and DGBF,
respectively.

2. The array data specified for input arguments agb and ipvt for these subroutines
must be the same as the corresponding output arguments for SGBF and DGBF,
respectively.

3. The entire lda by n array specified for agb must remain unchanged between
calls to the factorization and solve subroutines.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. This subroutine can be used for tridiagonal matrices (ml = mu = 1); however,
the tridiagonal subroutines, SGTF/DGTF and SGTS/DGTS, are faster.

6. For a description of how a general band matrix is stored in general-band
storage mode in an array, see “General Band Matrix” on page 98.

Function

The real system Ax = b is solved for x, where A is a real general band matrix,
stored in general-band storage mode, and x and b are vectors. These subroutines
use the results of the factorization of matrix A, produced by a preceding call to
SGBF or DGBF, respectively. The transformed matrix A, used by this computation,
consists of the upper triangular matrix U and the multipliers necessary to construct
L using ipvt, as defined in “Function” on page 740. See reference [46 on page
1316].

Error conditions

Computational Errors

Note: If the factorization performed by SGBF or DGBF failed due to a singular
matrix argument, the results returned by this subroutine are unpredictable, and
there may be a divide-by-zero program exception message.

Input-Argument Errors
1. lda ≤ 0
2. ml < 0
3. ml ≥ n
4. mu < 0
5. mu ≥ n
6. lda < 2ml+mu+16

Examples

Example

This example shows how to solve the system Ax = b, where general band
matrix A is the same matrix factored in Example for SGBF and DGBF. The
input for AGB and IPVT in this example is the same as the output for that
example.

Call Statement and Input:
AGB LDA N ML MU IPVT BX
| | | | | | |

CALL SGBS(AGB , 23 , 9 , 2 , 3 , IPVT , BX)

694 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
-327680, -327680)

BX = (4.0000, 5.0000, 9.0000, 10.0000, 11.0000, 12.0000,
12.0000, 12.0000, 33.0000)

AGB = (same as output AGB in
Example)

Output:
BX = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

0.9999, 1.0001)

Chapter 10. Linear Algebraic Equations 695

SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric
or Complex Hermitian Band Matrix Factorization and Multiple
Right-Hand Side Solve)

Purpose

These subroutines solve the system AX = B for X, where X and B are general
matrices and:
v For SPBSV and DPBSV, A is a positive definite real symmetric band matrix

stored in upper- or lower-band-packed storage mode.
v For CPBSV and ZPBSV, A is a positive definite complex Hermitian band matrix

stored in upper- or lower-band-packed storage mode.

Table 156. Data Types

A, B Subroutine

Short-precision real SPBSV∆

Long-precision real DPBSV∆

Short-precision complex CPBSV∆

Long-precision complex ZPBSV∆

∆LAPACK

Syntax

Fortran CALL SPBSV | DPBSV | CPBSV | ZPBSV (uplo, n, k, nrhs, a, lda, b, ldb, info)

C and C++ spbsv | dpbsv | cpbsv | zpbsv (uplo, n, k, nrhs, a, lda, b, ldb, info);

On Entry

uplo
indicates whether the matrix A is stored in upper- or lower-band-backed
storage mode, where:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B. Specified as: an
integer; n ≥ 0.

k is the half band width k of the matrix A. Specified as: an integer; 0 ≤ k ≤
max(0,n-1).

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.
Specified as: an integer; nrhs ≥ 0.

a is the positive definite real symmetric or complex Hermitian band matrix A of
order n, having a half band width of k , where:
v If uplo = 'U', it is stored in upper-band-packed storage mode.
v If uplo = 'L', it is stored in lower-band-packed storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 156.

696 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lda
is the leading dimension of the array specified for A. Specified as: an integer;
lda > 0 and lda > k.

b is the matrix B of right-hand side vectors. Specified as: the ldb by (at least) nrhs
array, containing numbers of the data type indicated in Table 156 on page 696.

ldb
is the leading dimension of the array specified for B. Specified as: an integer;
ldb > 0 and ldb ≥ n.

On Return

a If info = 0, a is the updated matrix A containing the results of the Cholesky
factorization. See “Function.”

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 156 on page 696.

b If info = 0, b is the general matrix X containing the nrhs solutions to the system.
The solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 156 on page 696.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info = i, the leading minor of order i is not positive definite. The factorization
could not be completed and the solution was not computed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. For a description of how real symmetric matrices are stored in upper- or

lower-band-packed storage mode, see “Upper-Band-Packed Storage Mode” on
page 104 or “Lower-Band-Packed Storage Mode” on page 105, respectively.
For a description of how complex Hermitian matrices are stored in upper- or
lower-band-packed storage mode, see “Complex Hermitian Band Matrix
Storage Representation” on page 106.

4. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

5. The matrices used in this computation must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 73.

6. The way these subroutines handle computational errors differs from LAPACK.
Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

7. On both input and output, matrix A conforms to LAPACK format.

Function

These subroutines solve the system AX = B for X, where X and B are general
matrices and:

Chapter 10. Linear Algebraic Equations 697

v For SPBSV and DPBSV, A is a positive definite real symmetric band matrix
stored in upper- or lower-band-packed storage mode.

v For CPBSV and ZPBSV, A is a positive definite complex Hermitian band matrix
stored in upper- or lower-band-packed storage mode.

Matrix A is factored using Cholesky factorization:
v For SPBTRF and DPBTRF:

– A = LLT if uplo= 'L'.
– A = UTU if uplo= 'U'.

v For CPBTRF and ZPBTRF:
– A = LLH if uplo= 'L'.
– A = UHU if uplo= 'U'.

Where:
v L is a lower triangular band matrix
v U is a upper triangular band matrix

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs = 0, no solutions are computed and the
subroutine returns after factoring the matrix. See references [8 on page 1313],[44 on
page 1316], and [73 on page 1317].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is not positive definite. For details, see the description of the info
argument.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. k < 0
4. k > max(0,n-1)
5. nrhs < 0
6. lda ≤ 0
7. k ≥ lda
8. ldb ≤ 0
9. n > ldb

Examples

Example 1

This example shows how to solve the system AX = B, where A is a real
positive definite band matrix factored in the form LLT.

Matrix A is the same used as input in Example 1 for DPBTRF.

Matrix B is the same used as input in Example 1 for DPBTRS.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL DPBSV(’L’ , 9 , 3 , 3 , A , 4 , B , 9 , INFO)

A = (same as input A in Example 1)
B = (same as input B in Example 1)

698 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
└ ┘

┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
| 1.0 -1.0 1.0 |

B = | 1.0 1.0 0.0 |
| 1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the system AX = B, where A is a real
positive definite symmetric band matrix factored in the form UTU .

Matrix A is the same used as input in Example 2 for DPBTRF.

Matrix B is the same used as input in Example 2 for DPBTRS.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL DPBSV(’U’ , 9 , 2 , 3 , A , 3 , B , 9 , INFO)

A = (same as input A in Example 2)
B = (same as input B in Example 2)

Output:
┌ ┐
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | . -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
| 1.0 -1.0 1.0 |

B = | 1.0 1.0 0.0 |
| 1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B, where A is a positive
definite complex Hermitian band matrix factored in the form LLH.

Matrix A is the same used as input in Example 3 for ZPBTRF.

Matrix B is the same used as input in Example 3 for ZPBTRS.

Chapter 10. Linear Algebraic Equations 699

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL ZPBSV (’L’ , 6 , 3 , 3 , A , 4 , B , 6 , INFO)

A = (same as input A in Example 3)
B = (same as input B in Example 3)

Output:
┌ ┐
| (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |

A = | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . |
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . |
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
└ ┘

┌ ┐
| (7.0, 33.0) (1.0, -1.0) (1.0, 1.0) |
| (19.0, -1.0) (1.0, -1.0) (1.0, -1.0) |
| (5.0, -13.0) (1.0, -1.0) (2.0, 1.0) |

B = | (-11.0, -5.0) (1.0, -1.0) (2.0, -1.0) |
| (-3.0, 9.0) (1.0, -1.0) (1.0, 2.0) |
| (5.0, -1.0) (1.0, -1.0) (1.0, -2.0) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX = B, where A is a complex
Hermitian band matrix factored in the form UHU.

Matrix A is the same used as input in Example 4 for ZPBTRF.

Matrix B is the same used as input in Example 4 for ZPBTRS.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL ZPBSV(’U’ , 6 , 2 , 3 , A , 3 , B , 6 , INFO)

A = (same as input A in Example 4)
B = (same as input B in Example 4)

Output:
┌ ┐
| . . (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |

A = | . (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
| (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
└ ┘

┌ ┐
| (5.0, 13.0) (1.0, -1.0) (1.0, 1.0) |
| (-3.0, 7.0) (1.0, -1.0) (1.0, -1.0) |
| (11.0, -5.0) (1.0, -1.0) (2.0, 1.0) |

B = | (3.0, 7.0) (1.0, -1.0) (2.0, -1.0) |
| (1.0, -5.0) (1.0, -1.0) (1.0, 2.0) |
| (1.0, 1.0) (1.0, -1.0) (1.0, -2.0) |
└ ┘

INFO = 0

700 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real
Symmetric or Complex Hermitian Band Matrix Factorization)

Purpose

These subroutines use Cholesky factorization to factor a positive definite real
symmetric or complex Hermitian band matrix A, stored in upper- or
lower-band-packed storage mode.

To solve the system of equations, follow the call to these subroutines with one or
more calls to SPBTRS, DPBTRS, CPBTRS, or ZPBTRS, respectively.

Table 157. Data Types

A Subroutine

Short-precision real SPBTRF∆

Long-precision real DPBTRF∆

Short-precision complex CPBTRF∆

Long-precision complex ZPBTRF∆

∆LAPACK

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SPBTRS, DPBTRS, CPBTRS, or ZPBTRS, respectively.

Syntax

Fortran CALL SPBTRF | DPBTRF | CPBTRF | ZPBTRF (uplo, n, k, a, lda, info)

C and C++ spbtrf | dpbtrf | cpbtrf | zpbtrf (uplo, n, k, a, lda, info);

On Entry

uplo
indicates whether matrix A is stored in upper- or lower-band-packed storage
mode, where:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A. Specified as: an integer; n ≥ 0.

k is the half band width k of the matrix A. Specified as: an integer; 0 ≤ k ≤
max(0,n-1).

a is the positive definite real symmetric or complex Hermitian band matrix A of
order n, having a half band width of k , where:
v If uplo = 'U', it is stored in upper-band-packed storage mode.
v If uplo = 'L', it is stored in lower-band-packed storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 157.

lda
is the leading dimension of the array specified for A. Specified as: an integer;
lda > 0 and lda > k.

Chapter 10. Linear Algebraic Equations 701

On Return

a If info = 0, a is the updated matrix A containing the results of the Cholesky
factorization. See “Function.”

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 157 on page 701.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info = i, the leading minor of order i is not positive definite and the
factorization could not be completed.

Returned as: an integer; info ≥ 0.

Notes
1. These subroutines accept lower case letters for the uplo argument.
2. In your C program, argument info must be passed by reference.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values. On output, they are set to zero.

4. For a description of how real symmetric matrices are stored in upper- or
lower-band-packed storage mode, see “Upper-Band-Packed Storage Mode” on
page 104 or“Lower-Band-Packed Storage Mode” on page 105, respectively.
For a description of how complex Hermitian matrices are stored in upper- or
lower-band-packed storage mode, see “Complex Hermitian Band Matrix
Storage Representation” on page 106.

5. The way these subroutines handle computational errors differs from LAPACK.
Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

6. On both input and output, matrix A conforms to LAPACK format.

Function

These subroutines use Cholesky factorization to factor a positive definite real
symmetric or complex Hermitian band matrix A, stored in upper- or
lower-band-packed storage mode:
v For SPBTRF and DPBTRF:

– A = LLT if uplo= 'L'.
– A = UTU if uplo= 'U'.

v For CPBTRF and ZPBTRF:
– A = LLH if uplo= 'L'.
– A = UHU if uplo= 'U'.

Where:
v L is a lower triangular band matrix
v U is a upper triangular band matrix

This factorization can then be used by SPBTRS, DPBTRS, CPBTRS, or ZPBTRS,
respectively, to solve the system of equations.

If n = 0, no computation is performed.

702 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is not positive definite. For details, see the description of the info
argument.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. k < 0
4. k > max(0,n-1)
5. lda ≤ 0
6. k ≥ lda

Examples

Example 1

This example shows a factorization of the following real positive definite
symmetric band matrix A in the form A = LLT:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 3.0 2.0 1.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 4.0 3.0 2.0 1.0 0.0 0.0 |
| 0.0 1.0 2.0 3.0 4.0 3.0 2.0 1.0 0.0 |
| 0.0 0.0 1.0 2.0 3.0 4.0 3.0 2.0 1.0 |
| 0.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 2.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
└ ┘

Call Statement and Input:
UPLO N K A LDA INFO
| | | | | |

CALL DPBTRF(’L’ , 9 , 3 , A , 4 , INFO)

┌ ┐
| 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |

A = | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 . |
| 1.0 2.0 2.0 2.0 2.0 2.0 2.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
| 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
└ ┘

INFO = 0

Example 2

This example shows a factorization of the following real positive definite
symmetric band matrix A in the form A = UTU:

┌ ┐
| 1.0 -1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 2.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 0.0 0.0 |

Chapter 10. Linear Algebraic Equations 703

| 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 |
└ ┘

Call Statement and Input:
UPLO N K A LDA INFO
| | | | | |

CALL DPBTRF(’U’ , 9 , 2 , A , 3 , INFO)

┌ ┐
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | . -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 |
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
└ ┘

Output:
┌ ┐
| . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

A = | . -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

INFO = 0

Example 3

This example shows a factorization of the following positive definite complex
Hermitian band matrix A in the form A = LLH:

┌ ┐
| (1.0, 0.0) (1.0,-1.0) (1.0,-1.0) (1.0,-1.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (3.0, 0.0) (3.0,-1.0) (3.0,-1.0) (1.0,-1.0) (0.0, 0.0) |
| (1.0, 1.0) (3.0, 1.0) (5.0, 0.0) (5.0,-1.0) (3.0,-1.0) (1.0,-1.0) |
| (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) (5.0,-1.0) (3.0,-1.0) |
| (0.0, 0.0) (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) (5.0,-1.0) |
| (0.0, 0.0) (0.0, 0.0) (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) |
└ ┘

Call Statement and Input:
UPLO N K A LDA INFO
| | | | | |

CALL ZPBTRF(’L’ , 6 , 3 , A , 4 , INFO)

┌ ┐
| (1.0, .) (3.0, .) (5.0, .) (7.0, .) (7.0, .) (7.0, .) |

A = | (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (5.0, 1.0) (5.0, 1.0) . |
| (1.0, 1.0) (3.0, 1.0) (3.0, 1.0) (3.0, 1.0) . . |
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
└ ┘

Output:
┌ ┐
| (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |

A = | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . |
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . |
| (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
└ ┘

INFO = 0

Example 4

This example shows a factorization of the following positive definite complex
Hermitian band matrix A in the form A = UHU:

┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0,-1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0,-1.0) (3.0, 0.0) (1.0,-3.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (1.0, 3.0) (5.0, 0.0) (1.0, 3.0) (1.0,-1.0) (0.0, 0.0) |

704 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| (0.0, 0.0) (1.0,-1.0) (1.0,-3.0) (5.0, 0.0) (1.0,-3.0) (1.0, 1.0) |
| (0.0, 0.0) (0.0, 0.0) (1.0, 1.0) (1.0, 3.0) (5.0, 0.0) (1.0, 3.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0,-1.0) (1.0,-3.0) (5.0, 0.0) |
└ ┘

Call Statement and Input:
UPLO N K A LDA INFO
| | | | | |

CALL ZPBTRF(’U’ , 6 , 2 , A , 3 , INFO)

┌ ┐
| . . (1.0,-1.0) (1.0, 1.0) (1.0,-1.0) (1.0, 1.0) |

A = | . (1.0, 1.0) (1.0,-3.0) (1.0, 3.0) (1.0,-3.0) (1.0, 3.0) |
| (1.0, .) (3.0, .) (5.0, .) (5.0, .) (5.0, .) (5.0, .) |
└ ┘

Output:
┌ ┐
| . . (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |

A = | . (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
| (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 705

SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real
Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
Side Solve)

Purpose

These subroutines solve the system AX = B for X, where X and B are general
matrices and:
v For SPBTRS and DPBTRS, A is a positive definite real symmetric band matrix.
v For CPBTRS and ZPBTRS, A is a positive definite complex Hermitian band

matrix.

Table 158. Data Types

A, B Subroutine

Short-precision real SPBTRS∆

Long-precision real DPBTRS∆

Short-precision complex CPBTRS∆

Long-precision complex ZPBTRS∆

∆LAPACK

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPBTRF, DPBTRF, CPBTRF, and ZPBTRF, respectively.

Syntax

Fortran CALL SPBTRS | DPBTRS | CPBTRS | ZPBTRS (uplo, n, k, nrhs, a, lda, b, ldb, info)

C and C++ spbtrs | dpbtrs | cpbtrs | zpbtrs (uplo, n, k, nrhs, a, lda, b, ldb, info);

On Entry

uplo
indicates whether the factored matrix A is stored in upper- or
lower-band-backed storage mode, where:

If uplo = 'U', A is stored in upper-band-packed storage mode.

If uplo = 'L', A is stored in lower-band-packed storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the order n of matrix A and the number of rows of matrix B. Specified as: an
integer; n ≥ 0.

k is the half band width k of the matrix A. Specified as: an integer; 0 ≤ k ≤
max(0,n-1).

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.
Specified as: an integer; nrhs ≥ 0.

a is the factorization of positive definite matrix A, produced by a preceding call
to SPBTRF, DPBTRF, CPBTRF, and ZPBTRF, respectively.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 158.

706 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lda
is the leading dimension of the array specified for A. Specified as: an integer;
lda > 0 and lda > k.

b is the matrix B of right-hand side vectors. Specified as: the ldb by (at least) nrhs
array, containing numbers of the data type indicated in Table 158 on page 706.

ldb
is the leading dimension of the array specified for B. Specified as: an integer;
ldb > 0 and ldb ≥ n.

On Return

b is the general matrix X, containing the nrhs solutions to the system. The
solutions, each of length n, reside in the columns of X.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 158 on page 706.

info
info has the following meaning:

If info = 0, the solve completed successfully.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. For a description of how real symmetric matrices are stored in upper- or

lower-band-packed storage mode, see “Upper-Band-Packed Storage Mode” on
page 104 or “Lower-Band-Packed Storage Mode” on page 105, respectively.
For a description of how complex Hermitian matrices are stored in upper- or
lower-band-packed storage mode, see “Complex Hermitian Band Matrix
Storage Representation” on page 106.

4. The scalar data specified for input arguments uplo, n, k, and lda for these
subroutines must be the same as the corresponding input arguments specified
for SPBTRF, DPBTRF, CPBTRF, and ZPBTRF, respectively.

5. The array data specified for input argument a for these subroutines must be the
same as the corresponding output argument for SPBTRF, DPBTRF, CPBTRF,
and ZPBTRF, respectively.

6. The matrices used in this computation must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 73.

Function

These subroutines solve the system AX = B for X, where X and B are general
matrices and:
v For SPBTRS and DPBTRS, A is a positive definite real symmetric band matrix.
v For CPBTRS and ZPBTRS, A is a positive definite complex Hermitian band

matrix.

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPBTRF, DPBTRF, CPBTRF, and ZPBTRF, respectively. For a
description of how A is factored, see “SPBTRF, DPBTRF, CPBTRF, and ZPBTRF
(Positive Definite Real Symmetric or Complex Hermitian Band Matrix
Factorization)” on page 701.

If n or nrhs is 0, no computation is performed. See references [8 on page 1313] and
[44 on page 1316].

Chapter 10. Linear Algebraic Equations 707

Error conditions

Computational Errors
None

Note: If the factorization performed by SPBTRF, DPBTRF, CPBTRF, and
ZPBTRF failed because matrix A was not positive definite, the results returned
by this subroutine are unpredictable, and there may be a divide-by-zero
program exception message.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. k < 0
4. k > max(0,n-1)
5. nrhs < 0
6. lda ≤ 0
7. k ≥ lda
8. ldb ≤ 0
9. n > ldb

Examples

Example 1

This example shows how to solve the system AX = B, where matrix A is the
same positive definite symmetric band matrix factored in Example 1 for
DPBTRF in the form A = LLT.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL DPBTRS(’L’ , 9 , 3 , 3 , A , 4 , B , 9 , INFO)

A = (same output A as in Example 1)

┌ ┐
| 4.0 0.0 1.0 |
| 8.0 0.0 1.0 |
| 12.0 0.0 0.0 |
| 16.0 0.0 1.0 |

B = | 16.0 0.0 0.0 |
| 16.0 0.0 -1.0 |
| 15.0 1.0 0.0 |
| 13.0 1.0 -2.0 |
| 10.0 2.0 -3.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
| 1.0 -1.0 1.0 |

B = | 1.0 1.0 0.0 |
| 1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
└ ┘

INFO = 0

Example 2

708 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how to solve the system AX = B, where matrix A is the
same positive definite symmetric band matrix factored in Example 2 for
DPBTRF in the form UTU.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL DPBTRS(’U’ , 9 , 2 , 3 , A , 3 , B , 9 , INFO)

A = (same as output A in Example 2)

┌ ┐
| 1.0 3.0 0.0 |
| 0.0 -6.0 2.0 |
| 1.0 9.0 -4.0 |
| 1.0 -9.0 4.0 |

B = | 1.0 9.0 0.0 |
| 1.0 -9.0 -4.0 |
| 1.0 9.0 4.0 |
| 0.0 -8.0 -1.0 |
| 2.0 6.0 -2.0 |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
| 1.0 -1.0 1.0 |

B = | 1.0 1.0 0.0 |
| 1.0 -1.0 -1.0 |
| 1.0 1.0 1.0 |
| 1.0 -1.0 0.0 |
| 1.0 1.0 -1.0 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the system AX = B, where matrix A is the
same positive definite complex Hermitian band matrix factored in Example 3
for ZPBTRF in the form LLH.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL ZPBTRS(’L’ , 6 , 3 , 3 , A , 4 , B , 6 , INFO)

A = (same as output A in Example 3)

┌ ┐
| (1.0, 1.0) (1.0, -7.0) (5.0, -5.0) |
| (1.0, 1.0) (9.0, -13.0) (18.0, -4.0) |
| (1.0, 1.0) (17.0, -19.0) (27.0, 0.0) |

B = | (1.0, 1.0) (25.0, -23.0) (35.0, 2.0) |
| (1.0, 1.0) (23.0, -19.0) (28.0, 5.0) |
| (1.0, 1.0) (19.0, -13.0) (18.0, -1.0) |
└ ┘

Output:
┌ ┐
| (7.0, 33.0) (1.0, -1.0) (1.0, 1.0) |
| (19.0, -1.0) (1.0, -1.0) (1.0, -1.0) |
| (5.0, -13.0) (1.0, -1.0) (2.0, 1.0) |

B = | (-11.0, -5.0) (1.0, -1.0) (2.0, -1.0) |
| (-3.0, 9.0) (1.0, -1.0) (1.0, 2.0) |

Chapter 10. Linear Algebraic Equations 709

| (5.0, -1.0) (1.0, -1.0) (1.0, -2.0) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the system AX = B, where matrix A is the
same positive definite complex Hermitian band matrix factored in Example 4
for ZPBTRF in the form UHU.

Call Statement and Input:
UPLO N K NRHS A LDA B LDB INFO
| | | | | | | | |

CALL ZPBTRS(’U’ , 6 , 2 , 3 , A , 3 , B , 6 , INFO)

A = (same as output A in Example 4)

┌ ┐
| (1.0, 1.0) (3.0, -3.0) (6.0, 0.0) |
| (1.0, 1.0) (3.0, -9.0) (13.0, -7.0) |
| (1.0, 1.0) (15.0, -3.0) (22.0, 15.0) |

B = | (1.0, 1.0) (3.0, -15.0) (25.0, -14.0) |
| (1.0, 1.0) (15.0, -1.0) (18.0, 19.0) |
| (1.0, 1.0) (3.0, -11.0) (13.0, -14.0) |
└ ┘

Output:
┌ ┐
| (5.0, 13.0) (1.0, -1.0) (1.0, 1.0) |
| (-3.0, 7.0) (1.0, -1.0) (1.0, -1.0) |
| (11.0, -5.0) (1.0, -1.0) (2.0, 1.0) |

B = | (3.0, 7.0) (1.0, -1.0) (2.0, -1.0) |
| (1.0, -5.0) (1.0, -1.0) (1.0, 2.0) |
| (1.0, 1.0) (1.0, -1.0) (1.0, -2.0) |
└ ┘

INFO = 0

710 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix
Factorization and Multiple Right-Hand Side Solve)

Purpose

These subroutines solve the general tridiagonal system of linear equations AX=B
for X, where A is a general tridiagonal matrix and B and X are general matrices.

The matrix A is factored using Gaussian elimination with partial pivoting.

Table 159. Data Types

dl, d, du, B Subroutine

Short-precision real SGTSV∆

Long-precision real DGTSV∆

Short-precision complex CGTSV∆

Long-precision complex ZGTSV∆

∆LAPACK

Syntax

Fortran CALL SGTSV | DGTSV | CGTSV | ZGTSV (n, nrhs, dl, d, du, b, ldb, info)

C and C++ sgtsv | dgtsv | cgtsv | zgtsv (n, nrhs, dl, d, du, b, ldb, info);

On Entry

n is the order of matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B
used in the computation.

Specified as: an integer; nrhs ≥ 0.

dl is the array DL, containing the n - 1 subdiagonal elements of A.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 159.

d is the array D, containing the n diagonal elements of A.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 159.

du is the array DU, containing the n - 1 superdiagonal elements of A.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 159.

b is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 159.

ldb
is the leading dimension of the array specified for B.

Chapter 10. Linear Algebraic Equations 711

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See "On Return".

On Return

dl The array DL is overwritten.

Returned as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 159 on page 711.

d The array D is overwritten.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 159 on page 711.

du The array DU is overwritten.

Returned as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 159 on page 711.

b If info = 0, b is the general matrix B, containing the nrhs right-hand sides of the
system. The right-hand sides, each of length n, reside in the columns of matrix
B.

Returned as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 159 on page 711.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, info is set to the first i, where Uii is zero. B is overwritten; that is, the
solution has not been computed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. dl, d, du, and B must have no common elements; otherwise, results are

unpredictable.
3. For a description of how general tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 110.
4. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information
about the singularity of A, but they also provide an error message.

Function

These subroutines solve the general tridiagonal system of linear equations AX = B,
where A is a general tridiagonal matrix and B and X are general matrices.

If n is 0 or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See reference [8 on page 1313].

712 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
None

Computational Errors
Matrix A is singular or nearly singular.
v The first column, i, of L with a corresponding zero diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2168 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors

1. n < 0
2. nrhs < 0
3. ldb ≤ 0
4. n > ldb

Examples

Example 1

This example shows how to solve the real general tridiagonal system AX = B,
where:

Matrix A is the same used as input in Example 1 for DGTTRF.

Matrix B is the same used as input in Example 1 for DGTTRS.

Note: On output, arrays DL, D, and DU are overwritten.

Call Statement and Input:
N NRHS DL D DU B LDB INFO
| | | | | | | |

CALL DGTSV(9 , 3 , DL , D , DU , B , 9 , INFO)

DL = (same as input DL in Example 1)
D = (same as input D in Example 1)
DU = (same as input DU in Example 1)

B = (same as input B in Example 1)

Output:
┌ ┐
| 0.609 0.478 4.597 |
| 0.098 0.130 -0.899 |
| -0.231 -0.641 -2.723 |
| 0.234 0.312 2.105 |

B = | 0.364 0.153 2.516 |
| -0.017 -0.023 -0.958 |
| -0.019 -0.359 -0.147 |
| 0.267 0.357 2.505 |
| 0.198 -0.070 1.484 |
└ ┘

INFO = 0

Example 2

Chapter 10. Linear Algebraic Equations 713

This example shows how to solve the complex general tridiagonal system
AX=B, where:

Matrix A is the same used as input in Example 2 for ZGTTRF.

Matrix B is the same used as input in Example 3 for ZGTTRS.

Note: On output, arrays DL, D, and DU are overwritten.

Call Statement and Input:
N NRHS DL D DU B LDB INFO
| | | | | | | |

CALL ZGTSV(4 , 3 , DL , D , DU , B , 4 , INFO)

DL = (same as input DL in Example 2)
D = (same as input D in Example 2)
DU = (same as input DU in Example 2)

B = (same as input B in Example 3.)

Output:
┌ ┐
| (-0.247, 0.0) (0.119, 0.0) (0.0, 0.247)|

B = | (0.311, 0.0) (0.220, 0.0) (0.0, -0.311)|
| (0.357, 0.0) (-0.394, 0.0) (0.0, -0.357)|
| (-0.073, 0.0) (0.183, 0.0) (0.0, 0.073)|
└ ┘

INFO = 0

714 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix
Factorization)

Purpose

These subroutines factor general tridiagonal matrix A using Gaussian elimination
with partial pivoting.

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SGTTRS, DGTTRS, CGTTRS, or
ZGTTRS, respectively.

Table 160. Data Types

dl, d, du, du2 Subroutine

Short-precision real SGTTRF∆

Long-precision real DGTTRF∆

Short-precision complex CGTTRF∆

Long-precision complex ZGTTRF∆

∆LAPACK

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGTTRS, DGTTRS, CGTTRS, or ZGTTRS,
respectively.

Syntax

Fortran CALL SGTTRF | DGTTRF | CGTTRF | ZGTTRF (n, dl, d, du, du2, ipiv, info)

C and C++ SGTTRF | DGTTRF | CGTTRF | ZGTTRF (n, dl, d, du, du2, ipiv, info);

On Entry

n the order of general tridiagonal matrix A used in the computation.

Specified as: an integer; n ≥ 0.

dl is the array DL, containing the n - 1 subdiagonal elements of A.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 160.

d is the array D, containing the n diagonal elements of A.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 160.

du is the array DU, containing the n - 1 superdiagonal elements of A.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 160.

du2
See "On Return".

ipiv
See "On Return".

info
See "On Return".

Chapter 10. Linear Algebraic Equations 715

On Return

dl is the array DL, containing the n - 1 multipliers that define matrix L from the
factorization of A.

Returned as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 160 on page 715.

d is the array D, containing the n diagonal elements of matrix U from the
factorization of A.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 160 on page 715.

du is the array DU, containing the n - 1 elements of the first superdiagonal of
matrix U from the factorization of A.

Returned as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 160 on page 715.

du2
is the array DU2, containing the n - 2 elements of the second superdiagonal of
matrix U from the factorization of A.

Returned as: a one-dimensional array of (at least) length n - 2, containing
numbers of the data type indicated in Table 160 on page 715.

ipiv
Contains the pivot indices.

For 1 ≤ i ≤ n , row i of the matrix was interchanged with row ipivi. ipivi will
always be either i or i + 1.

If ipivi = i, no row interchange was required.

Returned as: a one-dimensional integer array of (at least) length n, containing
integers; 1 ≤ ipivi ≤ n .

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, info is set to the first i, where Uii is zero. The factorization has been
completed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. dl, d, du, du2, and ipiv must have no common elements; otherwise results are

unpredictable.
3. For a description of how general tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 110.
4. The way these subroutines handle singularity differs from LAPACK. Like

LAPACK, these subroutines use the info argument to provide information about
the singularity of A, but they also provide an error message.

Function

These subroutines factor general tridiagonal matrix A using Gaussian elimination
with partial pivoting where:

716 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = LU

In the formula above:
v L is a product of permutation and unit lower bidiagonal matrices.
v U is upper triangular with non-zeros in only the main diagonal and first two

superdiagonals.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking.

See reference [8 on page 1313].

Error conditions

Resource Errors
None

Computational Errors
Matrix A is singular or nearly singular.
v The first column, i, of L with a corresponding zero diagonal element is

identified in the computational error message.
v The computational error message may occur multiple times with processing

continuing after each error, because the default for the number of allowable
errors for error code 2168 is set to be unlimited in the ESSL error option
table.

Input-Argument Errors

n < 0

Examples

Example 1

This example shows a factorization of a real general tridiagonal matrix of order
9.

Matrix A is:
┌ ┐
| 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 3.0 1.0 4.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 3.0 1.0 4.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 3.0 1.0 4.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 4.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 |
└ ┘

Call Statement and Input:
N DL D DU DU2 IPIV INFO
| | | | | | |

CALL DGTTRF(9 , DL , D , DU , DU2 , IPIV , INFO)

DL = (3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0)

D = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

DU = (4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0)

Output:

Chapter 10. Linear Algebraic Equations 717

DL = (0.333, 0.818, 0.696, 0.908, 0.849, -0.799, 0.625, -0.332)

D = (3.000, 3.666, 3.000, 3.303, 3.532, 3.000, 4.799, 3.000, 4.332)

DU = (1.000, -1.333, 1.000, -2.787, 4.000, 1.000, 3.196, 1.000)

DU2 = (4.000, 0.000, 4.000, 0.000, 0.000, 4.000, 0.000)

IPIV = (2, 2, 4, 4, 5, 7, 7, 9, 9)

INFO = 0

Example 2

This example shows a factorization of a complex general tridiagonal matrix of
order 4.

Matrix A is:
┌ ┐
| (1.0, 1.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
| (3.0, 3.0) (1.0, 1.0) (4.0, 4.0) (0.0, 0.0) |
| (0.0, 0.0) (3.0, 3.0) (1.0, 1.0) (4.0, 4.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (1.0, 1.0) |
└ ┘

Call Statement and Input:
N DL D DU DU2 IPIV INFO
| | | | | | |

CALL ZGTTRF(4 , DL , D , DU , DU2 , IPIV , INFO)

DL = ((3.0, 3.0) (3.0, 3.0) (3.0, 3.0))

D = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

DU = ((4.0, 4.0) (4.0, 4.0) (4.0, 4.0))

Output:
DL = ((0.0333, 0.0) (0.0818, 0.0) (0.0696, 0.0))

D = ((3.0, 3.0) (3.0666, 3.0666) (3.0, 3.0) (3.0303 , 3.0303))

DU = ((1.0, 1.0) (-1.0333, -1.0333) (1.0, 1.0))

DU2 = ((4.0, 4.0) (0.0, 0.0))

IPIV = (2, 2, 4, 4)

INFO = 0

718 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix
Multiple Right-Hand Side Solve)

Purpose

SGTTRS and DGTTRS solve one of the following systems of equations for multiple
right-hand sides:

1. AX=B
2. ATX=B

CGTTRS and ZGTTRS solve one of the following systems of equations for multiple
right-hand sides:
1. AX = B
2. ATX=B

3. AHX=B

In the formulas above:
v A represents the general tridiagonal matrix A containing the factorization.
v B represents the general matrix B containing the right-hand sides in its columns.
v X represents the general matrix B containing the solution vectors in its columns.

These subroutines use the results of the factorization of vectors dl, d, du, du2, and
ipiv, produced by a preceding call to SGTTRF, DGTTRF, CGTTRF, and ZGTTRF,
respectively.

Table 161. Data Types

dl, d, du, du2, B Subroutine

Short-precision real SGTTRS∆

Long-precision real DGTTRS∆

Short-precision complex CGTTRS∆

Long-precision complex ZGTTRS∆

∆LAPACK

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGTTRF, DGTTRF, CGTTRF, and ZGTTRF, respectively.

Syntax

Fortran
CALL SGTTRS | DGTTRS | CGTTRS | ZGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb,
info)

C and C++ sgttrs | dgttrs | cgttrs | zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info);

On Entry

trans
indicates the form of matrix A to use in the computation, where:

If trans = 'N', A is used in the computation, resulting in solution 1.

If trans = 'T', AT is used in the computation, resulting in solution 2.

If trans = 'C', AH is used in the computation, resulting in solution 3.

Chapter 10. Linear Algebraic Equations 719

Specified as: a single character; transa = 'N', 'T', or 'C'.

n is the order of factored matrix A and the number of rows in matrix B.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns of matrix B
used in the computation.

Specified as: an integer; nrhs ≥ 0.

dl is the array DL, containing the n - 1 multipliers that define matrix L from the
factorization of A, produced by a preceding call to SGTTRF, DGTTRF, CGTTRF,
or ZGTTRF, respectively.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 161 on page 719.

d is the array D, containing the n diagonal elements of matrix U from the
factorization of A, produced by a preceding call to SGTTRF, DGTTRF, CGTTRF,
or ZGTTRF, respectively.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 161 on page 719.

du is the array DU, containing the n - 1 elements of the first superdiagonal of
matrix U from the factorization of A, produced by a preceding call to SGTTRF,
DGTTRF, CGTTRF, or ZGTTRF, respectively.

Specified as: a one-dimensional array of (at least) length n - 1, containing
numbers of the data type indicated in Table 161 on page 719.

du2
is the array DU2, containing the n - 2 elements of the second superdiagonal of
matrix U from the factorization of A, produced by a preceding call to SGTTRF,
DGTTRF, CGTTRF, or ZGTTRF, respectively.

Specified as: a one-dimensional array of (at least) length n - 2, containing
numbers of the data type indicated in Table 161 on page 719.

ipiv
is the array containing the pivot indices produced by a preceding call to
SGTTRF, DGTTRF, CGTTRF, and ZGTTRF, respectively.

Specified as: a one-dimensional array of (at least) length n, containing integers;
1 ≤ ipivi ≤ n.

b is the general matrix B, containing the nrhs right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 161 on page 719.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

info
See "On Return".

On Return

b is the matrix X, containing the nrhs solutions to the system. The solutions, each
of length n, reside in the columns of X.

720 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 161 on page 719.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

Returned as: an integer; info = 0.

Notes
1. These subroutines accept lowercase letters for the trans arguments.
2. In your C program, argument info must be passed by reference.
3. dl, d, du, du2, ipiv, and B must have no common elements; otherwise results are

unpredictable.
4. For SGTTRS and DGTTRS, if you specify 'C' for the trans argument, it is

interpreted as though you specified 'T'.
5. The scalar data specified for input argument n must be the same for both

_GTTRF and _GTTRS.
6. The array data specified for input arguments d, dl, du, du2, and ipiv for these

subroutines must be the same as the corresponding output arguments for
SGTTRF, DGTTRF, CGTTRF, and ZGTTRF, respectively.

7. For a description of how general tridiagonal matrices are stored, see “General
Tridiagonal Matrix” on page 110.

Function

One of the following systems of equations is solved for multiple right-hand sides:

1. AX=B
2. ATX=B
3. AHX=B (only for CGTTRS and ZGTTRS)

where A is a general tridiagonal matrix and B and X are general matrices. These
subroutines uses the results of the factorization of matrix A, produced by a
preceding call to SGTTRF, DGTTRF, CGTTRF or ZGTTRF, respectively. For details
on the factorization, see “SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General
Tridiagonal Matrix Factorization)” on page 715.

If n is 0 or nrhs is 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See reference [8 on page 1313].

Error conditions

Resource Errors
None

Computational Errors
None

Note: If the factorization performed by SGTTRF, DGTTRF, CGTTRF or
ZGTTRF failed because a pivot element is zero, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Chapter 10. Linear Algebraic Equations 721

Input-Argument Errors

1. trans ≠ 'N', 'T', or 'C'
2. n < 0
3. nrhs < 0
4. ldb ≤ 0
5. n > ldb

Examples

Example 1

This example shows how to solve the real general tridiagonal system AX = B,
where matrix A is the same matrix factored in Example 1 for DGTTRF.

Call Statement and Input:
TRANS N NRHS DL D DU DU2 IPIV B LDB INFO

| | | | | | | | | | |
CALL DGTTRS(’N’ , 9 , 3 , DL , D , DU , DU2 , IPIV , B , 9 , INFO)

DL = (same as output DL in Example 1)
D = (same as output D in Example 1)
DU = (same as output DU in Example 1)
DU2 = (same as output DU2 in Example 1)

IPIV = (same as output IPIV in Example 1)
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 2.0 |
| 1.0 1.0 3.0 |
| 1.0 -1.0 4.0 |

B = | 1.0 1.0 5.0 |
| 1.0 -1.0 6.0 |
| 1.0 1.0 7.0 |
| 1.0 -1.0 8.0 |
| 1.0 1.0 9.0 |
└ ┘

Output:
┌ ┐
| 0.609 0.478 4.597 |
| 0.098 0.130 -0.899 |
| -0.231 -0.641 -2.723 |
| 0.234 0.312 2.105 |

B = | 0.364 0.153 2.516 |
| -0.017 -0.023 -0.958 |
| -0.019 -0.359 -0.147 |
| 0.267 0.357 2.505 |
| 0.198 -0.070 1.484 |
└ ┘

INFO = 0

Example 2

This example shows how to solve the real general tridiagonal system ATX = B,
where matrix A is the same matrix factored in Example 1 for DGTTRF.

Call Statement and Input:

722 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

TRANS N NRHS DL D DU DU2 IPIV B LDB INFO
| | | | | | | | | | |

CALL DGTTRS(’T’ , 9 , 3 , DL , D , DU , DU2 , IPIV , B , 9 , INFO)

DL = (same as output DL in Example 1)
D = (same as output D in Example 1)
DU = (same as output DU in Example 1)
DU2 = (same as output DU2 in Example 1)

IPIV = (same as output IPIV in Example 1)
┌ ┐
| 1.0 1.0 1.0 |
| 1.0 -1.0 2.0 |
| 1.0 1.0 3.0 |
| 1.0 -1.0 4.0 |

B = | 1.0 1.0 5.0 |
| 1.0 -1.0 6.0 |
| 1.0 1.0 7.0 |
| 1.0 -1.0 8.0 |
| 1.0 1.0 9.0 |
└ ┘

Output:
┌ ┐
| 0.198 -0.070 0.491 |
| 0.267 0.356 0.170 |
| -0.019 -0.359 -0.045 |
| -0.017 -0.023 0.789 |

B = | 0.365 0.153 1.130 |
| 0.234 0.312 0.238 |
| -0.230 -0.641 0.414 |
| 0.979 0.130 1.878 |
| 0.609 0.478 1.489 |
└ ┘

INFO = 0

Example 3

This example shows how to solve the complex general tridiagonal system
AX=B, where matrix A is the same matrix factored in Example 2 for ZGTTRF.

Call Statement and Input:
TRANS N NRHS DL D DU DU2 IPIV B LDB INFO

| | | | | | | | | | |
CALL ZGTTRS(’N’ , 4 , 3 , DL , D , DU , DU2 , IPIV , B , 4 , INFO)

DL = (same as output DL in Example 2)
D = (same as output D in Example 2)
DU = (same as output DU in Example 2)
DU2 = (same as output DU2 in Example 2)

IPIV = (same as output IPIV in Example 2)
┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |

B = | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
| (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
└ ┘

Output:

Chapter 10. Linear Algebraic Equations 723

┌ ┐
| (-0.247, 0.000) (0.119, 0.000) (0.000, 0.247) |

B = | (0.311, 0.000) (0.220, 0.000) (0.000, -0.311) |
| (0.357, 0.000) (-0.394, 0.000) (0.000, -0.357) |
| (-0.073, 0.000) (0.183, 0.000) (0.000, 0.073) |
└ ┘

INFO = 0

Example 4

This example shows how to solve the complex general tridiagonal system
ATX = B, where matrix A is the same matrix factored in Example 2 for
ZGTTRF.

Call Statement and Input:
TRANS N NRHS DL D DU DU2 IPIV B LDB INFO

| | | | | | | | | | |
CALL ZGTTRS(’T’ , 4 , 3 , DL , D , DU , DU2 , IPIV , B , 4 , INFO)

DL = (same as output DL in Example 2)
D = (same as output D in Example 2)
DU = (same as output DU in Example 2)
DU2 = (same as output DU2 in Example 2)

IPIV = (same as output IPIV in Example 2)
┌ ┐
| (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |

B = | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
| (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
└ ┘

Output:
┌ ┐
| (-0.073, 0.0) (-0.183, 0.0) (0.0, 0.073)|

B = | (0.357, 0.0) (0.394, 0.0) (0.0, -0.357)|
| (0.311, 0.0) (-0.220, 0.0) (0.0, -0.311)|
| (-0.247, 0.0) (-0.119, 0.0) (0.0, 0.247)|
└ ┘

INFO = 0

724 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric
or Complex Hermitian Tridiagonal Matrix Factorization and Multiple
Right-Hand Side Solve)

Purpose

SPTSV and DPTSV solve the tridiagonal system AX = B for X, where X and B are
general matrices and A is a positive definite real symmetric matrix stored in
LAPACK-symmetric-tridiagonal storage mode.

CPTSV and ZPTSV solve one of the following tridiagonal systems for X, where X
and B are general matrices and A is a positive definite complex Hermitian matrix
stored in LAPACK-complex Hermitian-tridiagonal storage mode:
v If you specify the subdiagonal of A in e, then this subroutine solves AX = B.
v If you specify the superdiagonal of A in e, then this subroutines solves ATX = B.

Table 162. Data Types

d e, B Subroutine

Short-precision real Short-precision real SPTSV∆

Long-precision real Long-precision real DPTSV∆

Short-precision real Short-precision complex CPTSV∆

Long-precision real Long-precision complex ZPTSV∆

∆LAPACK

Syntax

Fortran CALL SPTSV | DPTSV | CPTSV | ZPTSV (n, nrhs, d, e, b, ldb, info)

C and C++ sptsv | dptsv | cptsv | zptsv (n, nrhs, d, e, b, ldb, info);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.
Specified as: an integer; nrhs ≥ 0.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array referred to as D. Specified as: a one-dimensional array, of
(at least) length n, containing numbers of the data type indicated in Table 162.

e is the vector e containing the subdiagonal or superdiagonal of matrix A in
positions 1 through n-1 in an array referred to as E. Specified as: a
one-dimensional array, of (at least) length n-1, containing numbers of the data
type indicated in Table 162.

b is the matrix B of right-hand side vectors. Specified as the ldb by (at least) nrhs
array, containing numbers of the data type indicated in Table 162.

ldb
is the leading dimension of the array specified for B. Specified as: an integer;
ldb > 0 and ldb ≥ n.

On Return

d if info=0, is the vector d, containing the diagonal D of the factorization of matrix

Chapter 10. Linear Algebraic Equations 725

A in an array referred to as D. Returned as: a one-dimensional array of (at
least) length n, containing numbers of the data type indicated in Table 162 on
page 725.

e if info=0, is the vector e, as follows:

For SPTSV and DPTSV
e contains the subdiagonal or superdiagonal elements of the unit lower
bidiagonal factor L in positions 1 through n-1 in an array, referred to as
E.

For CPTSV and ZPTSV
e contains the following:
v If, on entry, you specified the subdiagonal of matrix A in e, e

contains the subdiagonal elements of the unit lower bidiagonal
factor L in positions 1 through n-1 in an array, referred to as E.

v If, on entry, you specified the superdiagonal of matrix A in e, e
contains the superdiagonal elements of the unit upper bidiagonal
factor U in positions 1 through n-1 in an array, referred to as E.

Returned as: a one-dimensional array of (at least) length n-1, containing
numbers of the data type indicated in Table 162 on page 725. It has the same
length as E on entry.

b If info = 0, b is the general matrix X, containing the solutions to the system.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 162 on page 725.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info = i, the leading minor of order i is not positive definite. The factorization
could not be completed and the solution was not computed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. For a description of how real symmetric tridiagonal matrices are stored in

LAPACK-symmetric-tridiagonal storage mode, see “LAPACK-Symmetric-
Tridiagonal Storage Mode” on page 112. For a description of how complex
Hermitian tridiagonal matrices are stored in LAPACK-complex
Hermitian-tridiagonal storage mode, “Complex Hermitian Tridiagonal Storage
Representation” on page 114.

3. The way these subroutines handle computational errors differs from LAPACK.
Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

4. On both input and output, matrix A conforms to LAPACK format.

Function

SPTSV and DPTSV solve the tridiagonal system AX = B for X, where X and B are
general matrices and A is a positive definite real symmetric matrix stored in
LAPACK-symmetric-tridiagonal storage mode.

The matrix A is factored using A = LDLT.

726 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: Because A is symmetric, this may be considered to be a UTDU factorization
as well.

CPTSV and ZPTSV solve one of the following tridiagonal systems for X, where X
and B are general matrices and A is a positive definite complex Hermitian matrix
stored in LAPACK-complex Hermitian-tridiagonal storage mode:
v If you specify the subdiagonal of A in e, then this subroutine solves AX = B and

A = LDLH.
v If you specify the superdiagonal of A in e, then this subroutines solves ATX = B

and A = UHDU.

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking. If n > 0 and nrhs = 0, no solutions are computed and the
subroutine returns after factoring the matrix. See references [8 on page 1313],[44 on
page 1316], and [73 on page 1317].

Error conditions

Computational Errors
Matrix A is not positive definite. For details, see the description of the info
argument.

Input-Argument Errors
1. n < 0
2. nrhs < 0
3. ldb ≤ 0
4. n > ldb

Examples

Example 1
This example shows how to solve the positive definite real symmetric
tridiagonal system of linear equations AX = B, where:

Matrix A is the same used as input in Example 1 for DPTTRF.

Matrix B is the same used as input in Example 1 for DPTTRS.

Call Statement and Input:
N NRHS D E B LDB INFO
| | | | | | |

CALL DPTSV(4 , 2 , D , E , B , 4 , INFO)

D = (same as output D in Example 1)

E = (same as output E in Example 1)

B = (same as input B in Example 1)

Output:
D = (1.0, 1.0, 2.0, 0.5)

E = (1.0, 1.0, 0.5)

┌ ┐
| 1.0 -1.0 |

B = | 1.0 -1.0 |
| 1.0 0.0 |
| 1.0 1.0 |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 727

Example 2
This example shows how to solve the positive definite complex Hermitian
tridiagonal system of linear equations AX = B, where:

Matrix A is the same used as input in Example 2 for ZPTTRF.

Matrix B is the same used as input in Example 2 for ZPTTRS.

Call Statement and Input:
N NRHS D E B LDB INFO
| | | | | | |

CALL ZPTSV(4 , 3 , D , E , B , 4 , INFO)

D = (same as output D in Example 2)

E = (same as output E in Example 2)

B = (same as input B in Example 2)

Output:
D = (1.0 2.0 3.0 4.0)

E = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
└ ┘

INFO = 0

Example 3
This example shows how to solve the positive definite complex Hermitian
tridiagonal system of linear equations ATX = B, where:

Matrix A is the same used as input in Example 3 for ZPTTRF.

Matrix B is the same used as input in Example 3 for ZPTTRS.

Call Statement and Input:
N NRHS D E B LDB INFO
| | | | | | |

CALL ZPTSV(4 , 3 , D , E , B , 4 , INFO)

D = (same as output D in Example 3)

E = (same as output E in Example 3)

B = (same as input B in Example 3)

Output:
D = (1.0 2.0 3.0 4.0)

E = ((1.0, -1.0) (1.0, -1.0) (1.0, -1.0))

┌ ┐
| (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
| (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |

B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
| (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
└ ┘

INFO = 0

728 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real
Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

Purpose

SPTTRF and DPTTRF factor a positive definite real symmetric tridiagonal matrix
stored in LAPACK-symmetric-tridiagonal storage mode:

A = LDLT

CPTTRF and ZPTTRF factor a positive definite complex Hermitian tridiagonal
matrix stored in LAPACK-complex Hermitian-tridiagonal storage mode:
v If you specify the subdiagonal of A in vector e, then A = LDLH

v If you specify the superdiagonal of A in vector e, then A = UHDU

To solve the system of equations with one or more right-hand sides, follow the call
to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF with a call to SPTTRS, DPTTRS,
CPTTRS, or ZPTTRS, respectively.

Table 163. Data Types

Data Types

d e Subroutine

Short-precision real Short-precision real SPTTRF∆

Long-precision real Long-precision real DPTTRF∆

Short-precision real Short-precision complex CPTTRF∆

Long-precision real Long-precision complex ZPTTRF∆

∆LAPACK

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SPTTRS, DPTTRS, CPTTRS, or ZPTTRS, respectively.

Syntax

Fortran CALL SPTTRF | DPTTRF | CPTTRF | ZPTTRF (n, d, e, info)

C and C++ spttrf | dpttrf | cpttrf | zpttrf (n, d, e, info);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array referred to as D. Specified as: a one-dimensional array, of
(at least) length n, containing numbers of the data type indicated in Table 163.

e is the vector e containing the subdiagonal or superdiagonal of matrix A in
positions 1 through n-1 in an array referred to as E. Specified as: a
one-dimensional array, of (at least) length n-1, containing numbers of the data
type indicated in Table 163.

On Return

d If info = 0, is the vector d, containing the diagonal D of the factorization of
matrix A in an array referred to as D. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 163.

Chapter 10. Linear Algebraic Equations 729

e If info = 0, is the vector e, as follows:

For SPTTRF and DPTTRF
e contains the subdiagonal elements of the unit lower bidiagonal factor
L in positions 1 through n-1 in an array referred to as E.

For CPTTRF and ZPTTRF
e contains the following:
v If on entry you specified the subdiagonal of matrix A in e, e contains

the subdiagonal elements of the unit bidiagonal factor L in positions
1 through n-1 in an array, referred to as E.

v If on entry you specified the superdiagonal of matrix A in e, e
contains the subdiagonal elements of the unit bidiagonal factor U in
positions 1 through n-1 in an array, referred to as E.

Returned as: a one-dimensional array of (at least) length n-1, containing
numbers of the data type indicated in Table 163 on page 729. It has the same
length as E on entry.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info = i, the leading minor of order i is not positive definite, and the
factorization could not be completed.

Returned as: an integer; info ≥ 0.

Notes
1. In your C program, argument info must be passed by reference.
2. For a description of how real symmetric tridiagonal matrices are stored in

LAPACK-symmetric-tridiagonal storage mode, see “LAPACK-Symmetric-
Tridiagonal Storage Mode” on page 112. For a description of how complex
Hermitian tridiagonal matrices are stored in LAPACK-complex
Hermitian-tridiagonal storage mode, “Complex Hermitian Tridiagonal Storage
Representation” on page 114.

3. The way these subroutines handle computational errors differs from LAPACK.
Like LAPACK, these subroutines use the info argument to provide information
about the computational error, but they also provide an error message.

4. On both input and output, matrix A conforms to LAPACK format.

Function

SPTTRF and DPTTRF factor a positive definite real symmetric tridiagonal matrix
stored in LAPACK-symmetric-tridiagonal storage mode:

A = LDLT

Note: Because A is symmetric, this may be considered to be a UTDU factorization
as well.

CPTTRF and ZPTTRF factor a positive definite complex Hermitian tridiagonal
matrix stored in LAPACK-complex Hermitian-tridiagonal storage mode:
v If you specify the subdiagonal of A in vector e, then A = LDLH

v If you specify the superdiagonal of A in vector e, then A = UHDU

730 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

To solve the system of equations with one or more right-hand sides, follow the call
to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF with a call to SPTTRS, DPTTRS,
CPTTRS, or ZPTTRS, respectively.

If n is 0, no computation is performed and the subroutine returns after doing some
parameter checking. See references [8 on page 1313],[44 on page 1316], and [73 on
page 1317].

Error conditions

Computational Errors
Matrix A is not positive definite. For details, see the description of the info
argument.

Input-Argument Errors
1. n < 0

Examples

Example 1

This example shows a factorization of the positive definite real symmetric
tridiagonal matrix A, in the form A = LDLT:

┌ ┐
| 1.0 1.0 0.0 0.0 |
| 1.0 2.0 1.0 0.0 |
| 0.0 1.0 3.0 1.0 |
| 0.0 0.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N D E INFO
| | | |

CALL DPTTRF(4 , D , E , INFO)

D = (1.0, 2.0, 3.0, 1.0)

E = (1.0, 1.0, 1.0)

Output:
D = (1.0, 1.0, 2.0, 0.5)

E = (1.0, 1.0, 0.5)

INFO = 0

Example 2

This example shows a factorization of the positive definite complex Hermitian
tridiagonal matrix A, in the form A = LDLH:

┌ ┐
| (1.0, 0.0) (1.0, -1.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (4.0, 0.0) (2.0, -2.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (7.0, 0.0) (3.0, -3.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 0.0) |
└ ┘

Call Statement and Input:
N D E INFO
| | | |

CALL ZPTTRF(4 , D , E , INFO)

Chapter 10. Linear Algebraic Equations 731

D = (1.0 4.0 7.0 10.0)

E = ((1.0, 1.0) (2.0, 2.0) (3.0, 3.0))

Output:
D = (1.0 2.0 3.0 4.0)

E = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

INFO = 0

Example 3

This example shows a factorization of the positive definite complex Hermitian
tridiagonal matrix A, in the form A = UHDU:

┌ ┐
| (1.0, 0.0) (1.0, -1.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (4.0, 0.0) (2.0, -2.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (7.0, 0.0) (3.0, -3.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 0.0) |
└ ┘

Call Statement and Input:
N D E INFO
| | | |

CALL ZPTTRF(4 , D , E , INFO)

D = (1.0 4.0 7.0 10.0)

E = ((1.0, -1.0) (2.0, -2.0) (3.0, -3.0))

Output:
D = (1.0 2.0 3.0 4.0)

E = ((1.0, -1.0) (1.0, -1.0) (1.0, -1.0))

INFO = 0

732 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real
Symmetric or Complex Hermitian Tridiagonal Matrix Multiple
Right-Hand Solve)

Purpose

SPTTRS and DPTTRS solve the tridiagonal system AX = B for X, where X and B
are general matrices and A is a positive definite real symmetric matrix.

CPTTRS and ZPTTRS solve one of the following tridiagonal systems for X, where
X and B are general matrices and A is a positive definite complex Hermitian
matrix.
v If, in the call to CPTTRF or ZPTTRF, you specified the subdiagonal of A in e:

– If uplo = 'L', then this subroutine solves AX = B.
– If uplo = 'U', then this subroutine solves ATX = B.

v If, in the call to CPTTRF or ZPTTRF, you specified the superdiagonal of A in e:
– If uplo = 'L', then this subroutine solves ATX = B.
– If uplo = 'U', then this subroutine solves AX = B.

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF respectively.

Table 164. Data Types

d e, B Subroutine

Short-precision real Short-precision real SPTTRS∆

Long-precision real Long-precision real DPTTRS∆

Short-precision real Short-precision complex CPTTRS∆

Long-precision real Long-precision complex ZPTTRS∆

∆LAPACK

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPTTRF, DPTTRF, CPTTRF, or ZPTTRF respectively.

Syntax

Fortran CALL SPTTRS | DPTTRS (n, nrhs, d, e, b, ldb, info)

CALL CPTTRS | ZPTTRS (uplo, n, nrhs, d, e, b, ldb, info)

C and C++ spttrs | dpttrs(n, nrhs, d, e, b, ldb, info);

cpttrs | zpttrs (uplo, n, nrhs, d, e, b, ldb, info);

On Entry

uplo
indicates whether e is the subdiagonal of the unit bidiagonal lower triangular
factor L or superdiagonal of the unit bidiagonal upper triangular factor U:

If uplo = 'L', e is the subdiagonal of the unit bidiagonal lower triangular factor
L.

If uplo = 'U', e is the superdiagonal of the unit bidiagonal upper triangular
factor U.

Chapter 10. Linear Algebraic Equations 733

Specified as: a single character. It must be 'L' or 'U'.

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; i.e., the number of columns of matrix B.
Specified as: an integer; nrhs ≥ 0.

d is the vector d, containing part of the factorization of matrix A from SPTTRF,
DPTTRF, CPTTRF, or ZPTTRF, respectively, in an array, referred to as D.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 164 on page 733.

e

For SPTTRS and DPTTRS
is the vector e, containing the subdiagonal elements of the unit
bidiagonal factor L in positions 1 through n-1 in an array, referred to as
E.

For CPTTRS and ZPTTRS
is the vector e, containing the subdiagonal or superdiagonal of matrix
A in positions 1 through n-1 in an array, referred to as E.
v If uplo = 'L', e contains he subdiagonal elements of the unit

bidiagonal factor L in positions 1 through n-1 in an array, referred to
as E.

v If uplo = 'U', e contains the superdiagonal elements of the unit
bidiagonal factor U in positions 1 through n-1 in an array, referred to
as E.

Specified as: a one-dimensional array, of (at least) length n-1, containing
numbers of the data type indicated in Table 164 on page 733.

b is the matrix B of right-hand side vectors. Specified as the ldb by (at least) nrhs
array, containing numbers of the data type indicated in Table 164 on page 733.

ldb
is the leading dimension of the array specified for B. Specified as: an integer;
ldb > 0 and ldb ≥ n.

On Return

b is the general matrix X, containing the solutions to the system.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 164 on page 733.

info
info has the following meaning:

If info = 0, the solve completed successfully.

Notes
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the uplo argument.
3. For a description of how real symmetric tridiagonal matrices are stored in

LAPACK-symmetric-tridiagonal storage mode, see “LAPACK-Symmetric-
Tridiagonal Storage Mode” on page 112. For a description of how complex
Hermitian tridiagonal matrices are stored in LAPACK-complex
Hermitian-tridiagonal storage mode, “Complex Hermitian Tridiagonal Storage
Representation” on page 114.

734 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. The scalar data specified for input argument n for these subroutines must be
the same as the corresponding input argument specified for SPTTRF, DPTTRF,
CPTTRF, or ZPTTRF, respectively.

5. The array data specified for input arguments d and e for these subroutines
must be the same as the corresponding output arguments for SPTTRF, DPTTRF,
CPTTRF, and ZPTTRF, respectively.

Function

SPTTRS and DPTTRS solve the tridiagonal system AX = B for X, where X and B
are general matrices and A is a positive definite real symmetric matrix.

CPTTRS and ZPTTRS solve one of the following tridiagonal systems for X, where
X and B are general matrices and A is a positive definite complex Hermitian
matrix.
v If, in the call to CPTTRF or ZPTTRF, you specified the subdiagonal of A in e:

– If uplo = 'L', then this subroutine solves AX = B.
– If uplo = 'U', then this subroutine solves ATX = B.

v If, in the call to CPTTRF or ZPTTRF, you specified the superdiagonal of A in e:
– If uplo = 'L', then this subroutine solves ATX = B.
– If uplo = 'U', then this subroutine solves AX = B.

These subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF respectively. For a
description of how A is factored, see “SPTTRF, DPTTRF, CPTTRF, and ZPTTRF
(Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix
Factorization)” on page 729.

If n or nrhs is 0, no computation is performed. See references [8 on page 1313] and
[44 on page 1316].

Error conditions

Computational Errors
None

Note: If the factorization performed by SPTTRF, DPTTRF, CPTTRF, or ZPTTRF
failed because matrix A was not positive definite, the results returned by this
subroutine are unpredictable, and there may be a divide-by-zero program
exception message.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nrhs < 0
4. ldb ≤ 0
5. n > ldb

Examples

Example 1
This example shows how to solve the system of linear equations AX = B where
positive definite real symmetric tridiagonal matrix A is the same matrix
factored in Example 1 for DPTTRF in the form LDLT.

Call Statement and Input:

Chapter 10. Linear Algebraic Equations 735

N NRHS D E B LDB INFO
| | | | | | |

CALL DPTTRS(4 , 2 , D , E , B , 4 , INFO)

D = (same as output D in Example 1)

E = (same as output E in Example 1)

┌ ┐
| 2.0 -2.0 |

B = | 4.0 -3.0 |
| 5.0 0.0 |
| 2.0 1.0 |
└ ┘

Output:
┌ ┐
| 1.0 -1.0 |

B = | 1.0 -1.0 |
| 1.0 0.0 |
| 1.0 1.0 |
└ ┘

INFO = 0

Example 2
This example shows how to solve the system of linear equations AX = B where
positive definite complex Hermitian tridiagonal matrix A is the same matrix
factored in Example 2 for ZPTTRF in the form LDLH.

Call Statement and Input:
UPLO N NRHS D E B LDB INFO
| | | | | | | |

CALL ZPTTRS(’L’, 4 , 3 , D , E , B , 4 , INFO)

D = (same as output D in Example 2)

E = (same as output E in Example 2)

┌ ┐
| (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |

B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
| (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
| (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
└ ┘

Output:
┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
└ ┘

INFO = 0

Example 3
This example shows how to solve the system of linear equations ATX = B
where positive definite complex Hermitian tridiagonal matrix A is the same
matrix factored in Example 2 for ZPTTRF in the form LDLH.

Call Statement and Input:
UPLO N NRHS D E B LDB INFO
| | | | | | | |

CALL ZPTTRS(’U’, 4 , 3 , D , E , B , 4 , INFO)

736 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

D = (same as output D in Example 2)

E = (same as output E in Example 2)

┌ ┐
| (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |

B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
| (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
| (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
└ ┘

Output:
┌ ┐
| (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
| (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |

B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
| (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
└ ┘

INFO = 0

Example 4
This example shows how to solve the system of linear equations AX = B where
positive definite complex Hermitian tridiagonal matrix A is the same matrix
factored in Example 3 for ZPTTRF in the form UHDU.

Call Statement and Input:
UPLO N NRHS D E B LDB INFO
| | | | | | | |

CALL ZPTTRS(’U’, 4 , 3 , D , E , B , 4 , INFO)

D = (same as output D in Example 3)

E = (same as output E in Example 3)

┌ ┐
| (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |

B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
| (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
| (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
└ ┘

Output:
┌ ┐
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |

B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
| (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
└ ┘

INFO = 0

Example 5
This example shows how to solve the system of linear equations ATX = B
where positive definite complex Hermitian tridiagonal matrix A is the same
matrix factored in Example 3 for ZPTTRF in the form UHDU.

Call Statement and Input:
UPLO N NRHS D E B LDB INFO
| | | | | | | |

CALL ZPTTRS(’U’, 4 , 3 , D , E , B , 4 , INFO)

D = (same as output D in Example 3)

E = (same as output E in Example 3)

┌ ┐

Chapter 10. Linear Algebraic Equations 737

| (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |
B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |

| (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
| (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
└ ┘

Output:
┌ ┐
| (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
| (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |

B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
| (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
└ ┘

INFO = 0

738 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBF and DGBF (General Band Matrix Factorization)
Purpose

These subroutines factor general band matrix A, stored in general-band storage
mode, using Gaussian elimination. To solve the system of equations with one or
more right-hand sides, follow the call to these subroutines with one or more calls
to SGBS or DGBS, respectively.

Table 165. Data Types

A Subroutine

Short-precision real SGBF

Long-precision real DGBF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGBS and DGBS, respectively.

Syntax

Fortran CALL SGBF | DGBF (agb, lda, n, ml, mu, ipvt)

C and C++ sgbf | dgbf (agb, lda, n, ml, mu, ipvt);

On Entry

agb
is the general band matrix A of order n, stored in general-band storage mode,
to be factored. It has an upper band width mu and a lower band width ml.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 165, where lda ≥ 2ml+mu+16.

lda
is the leading dimension of the array specified for agb. Specified as: an integer;
lda > 0 and lda ≥ 2ml+mu+16.

n is the order of the matrix A. Specified as: an integer; n > ml and n > mu.

ml is the lower band width ml of the matrix A. Specified as: an integer; 0 ≤ ml < n.

mu is the upper band width mu of the matrix A. Specified as: an integer; 0 ≤ mu <
n.

ipvt
See On Return.

On Return

agb
is the transformed matrix A of order n, containing the results of the
factorization. See “Function” on page 740. Returned as: an lda by (at least) n
array, containing numbers of the data type indicated in Table 165.

ipvt
is the integer vector ipvt of length n, containing the pivot information
necessary to construct matrix L from the information contained in the output
array agb. Returned as: a one-dimensional array of (at least) length n,
containing integers.

Chapter 10. Linear Algebraic Equations 739

Notes
1. ipvt is not a permutation vector in the strict sense. It is used to record column

interchanges in L due to partial pivoting and to improve performance.
2. The entire lda by n array specified for agb must remain unchanged between

calls to the factorization and solve subroutines.
3. This subroutine can be used for tridiagonal matrices (ml = mu = 1); however,

the tridiagonal subroutines SGTF/DGTF and SGTS/DGTS are faster.
4. For a description of how a general band matrix is stored in general-band

storage mode in an array, see “General Band Matrix” on page 98.

Function

The general band matrix A, stored in general-band storage mode, is factored using
Gaussian elimination with partial pivoting to compute the LU factorization of A,
where:

ipvt is a vector containing the pivoting information.
L is a unit lower triangular band matrix.
U is an upper triangular band matrix.

The transformed matrix A contains U in packed format, along with the multipliers
necessary to construct, with the help of ipvt, a matrix L, such that A = LU. This
factorization can then be used by SGBS or DGBS, respectively, to solve the system
of equations. See reference [46 on page 1316].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
Matrix A is singular.
v One or more columns of L and the corresponding diagonal of U contain all

zeros (all columns of L are checked). The last column, i, of L with a
corresponding U = 0 diagonal element is identified in the computational
error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2103 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this
error occurs. For details, see “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors
1. lda ≤ 0
2. ml < 0
3. ml ≥ n
4. mu < 0
5. mu ≥ n
6. lda < 2ml+mu+16

Examples

Example

740 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows a factorization of a general band matrix A of order 9, with
a lower band width of 2 and an upper band width of 3. On input matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
└ ┘

Matrix A is stored in general-band storage mode in the two-dimensional array
AGB of size LDA by N, where LDA = 2ml+mu+16 = 23. The array AGB is declared as
AGB(1:23,1:9).

Note: Matrix A is the same matrix used in the examples in subroutines SGEF
and DGEF (see Example 1) and SGEFCD and DGEFCD (see Example).

Call Statement and Input:
AGB LDA N ML MU IPVT)
| | | | | |

CALL SGBF(AGB , 23 , 9 , 2 , 3 , IPVT)

Output:

┌ ┐
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.0000 |
| 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |

AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
└ ┘

Chapter 10. Linear Algebraic Equations 741

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
-327680, -327680)

┌ ┐
| 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
| 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
| 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.3111 |
| 0.2500 0.2000 0.1600 0.1400 0.1250 0.1100 0.1000 5.5380 -325.00 |
| 0.0000 0.1500 0.0000 0.0714 0.0000 -0.0556 -0.0306 0.9385 0.0000 |
| 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0694 -0.0194 0.0000 0.0000 |
| 0.2500 0.0000 0.1000 0.0000 0.0536 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |

AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
└ ┘

742 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGBS and DGBS (General Band Matrix Solve)
Purpose

These subroutines solve the system Ax = b for x, where A is a general band matrix,
and x and b are vectors. They use the results of the factorization of matrix A,
produced by a preceding call to SGBF or DGBF, respectively.

Table 166. Data Types

A, b, x Subroutine

Short-precision real SGBS

Long-precision real DGBS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGBF and DGBF, respectively.

Syntax

Fortran CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx)

C and C++ sgbs | dgbs (agb, lda, n, ml, mu, ipvt, bx);

On Entry

agb
is the factorization of general band matrix A, produced by a preceding call to
SGBF or DGBF. Specified as: an lda by (at least) n array, containing numbers of
the data type indicated in Table 155 on page 693, where lda ≥ 2ml+mu+16.

lda
is the leading dimension of the array specified for agb. Specified as: an integer;
lda > 0 and lda ≥ 2ml+mu+16.

n is the order of the matrix A. Specified as: an integer; n > ml and n > mu.

ml is the lower band width ml of the matrix A. Specified as: an integer; 0 ≤ ml < n.

mu is the upper band width mu of the matrix A. Specified as: an integer; 0 ≤ mu <
n.

ipvt
is the integer vector ipvt of length n, produced by a preceding call to SGBF or
DGBF. It contains the pivot information necessary to construct matrix L from
the information contained in the array specified for agb.

Specified as: a one-dimensional array of (at least) length n, containing integers.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 155 on page 693.

On Return

bx is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 155 on page 693.

Chapter 10. Linear Algebraic Equations 743

Notes
1. The scalar data specified for input arguments lda, n, ml, and mu for these

subroutines must be the same as that specified for SGBF and DGBF,
respectively.

2. The array data specified for input arguments agb and ipvt for these subroutines
must be the same as the corresponding output arguments for SGBF and DGBF,
respectively.

3. The entire lda by n array specified for agb must remain unchanged between
calls to the factorization and solve subroutines.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. This subroutine can be used for tridiagonal matrices (ml = mu = 1); however,
the tridiagonal subroutines, SGTF/DGTF and SGTS/DGTS, are faster.

6. For a description of how a general band matrix is stored in general-band
storage mode in an array, see “General Band Matrix” on page 98.

Function

The real system Ax = b is solved for x, where A is a real general band matrix,
stored in general-band storage mode, and x and b are vectors. These subroutines
use the results of the factorization of matrix A, produced by a preceding call to
SGBF or DGBF, respectively. The transformed matrix A, used by this computation,
consists of the upper triangular matrix U and the multipliers necessary to construct
L using ipvt, as defined in “Function” on page 740. See reference [46 on page
1316].

Error conditions

Computational Errors

Note: If the factorization performed by SGBF or DGBF failed due to a singular
matrix argument, the results returned by this subroutine are unpredictable, and
there may be a divide-by-zero program exception message.

Input-Argument Errors
1. lda ≤ 0
2. ml < 0
3. ml ≥ n
4. mu < 0
5. mu ≥ n
6. lda < 2ml+mu+16

Examples

Example

This example shows how to solve the system Ax = b, where general band
matrix A is the same matrix factored in Example for SGBF and DGBF. The
input for AGB and IPVT in this example is the same as the output for that
example.

Call Statement and Input:
AGB LDA N ML MU IPVT BX
| | | | | | |

CALL SGBS(AGB , 23 , 9 , 2 , 3 , IPVT , BX)

744 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
-327680, -327680)

BX = (4.0000, 5.0000, 9.0000, 10.0000, 11.0000, 12.0000,
12.0000, 12.0000, 33.0000)

AGB = (same as output AGB in
Example)

Output:
BX = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

0.9999, 1.0001)

Chapter 10. Linear Algebraic Equations 745

SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band
Matrix Factorization)

Purpose

These subroutines factor positive definite symmetric band matrix A, stored in
lower-band-packed storage mode, using:
v Gaussian elimination for SPBF and DPBF
v Cholesky factorization for SPBCHF and DPBCHF

To solve the system of equations with one or more right-hand sides, follow the call
to these subroutines with one or more calls to SPBS, DPBS, SPBCHS, or DPBCHS,
respectively.

Table 167. Data Types

A Subroutine

Short-precision real SPBF and SPBCHF

Long-precision real DPBF and DPBCHF

Note:

1. The output from these factorization subroutines should be used only as input
to the solve subroutines SPBS, DPBS, SPBCHS, and DPBCHS, respectively.

2. For optimal performance:
v For wide band widths, use _PBCHF.
v For narrow band widths, use either _PBF or _PBCHF.
v For very narrow band widths:

– Use either SPBF or SPBCHF.
– Use DPBF.

Syntax

Fortran CALL SPBF | DPBF | SPBCHF | DPBCHF (apb, lda, n, m)

C and C++ spbf | dpbf | spbchf | dpbchf (apb, lda, n, m);

On Entry

apb
is the positive definite symmetric band matrix A of order n, stored in
lower-band-packed storage mode, to be factored. It has a half band width of m.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 167. See “Notes ” on page 747.

lda
is the leading dimension of the array specified for apb. Specified as: an integer;
lda > 0 and lda > m.

n is the order n of matrix A. Specified as: an integer; n > m.

m is the half band width of the matrix A. Specified as: an integer; 0 ≤ m < n.

On Return

apb
is the transformed matrix A of order n, containing the results of the

746 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

factorization. See “Function.” Returned as: an lda by (at least) n array,
containing numbers of the data type indicated in Table 167 on page 746. For
further details, see “Notes .”

Notes
1. These subroutines can be used for tridiagonal matrices (m = 1); however, the

tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are faster.
2. For SPBF and DPBF when m > 0, location APB(2,n) is sometimes set to 0.
3. For a description of how a positive definite symmetric band matrix is stored in

lower-band-packed storage mode in an array, see “Positive Definite Symmetric
Band Matrix” on page 105.

Function

The positive definite symmetric band matrix A, stored in lower-band-packed
storage mode, is factored using Gaussian elimination in SPBF and DPBF and
Cholesky factorization in SPBCHF and DPBCHF. The transformed matrix A
contains the results of the factorization in packed format. This factorization can
then be used by SPBS, DPBS, SPBCHS, and DPBCHS, respectively, to solve the
system of equations.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DPBF works properly, when processing narrow band
widths; therefore, you may want to scale your problem.

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors

1. Matrix A is not positive definite (for SPBF and DPBF).
v One or more elements of D contain values less than or equal to 0; all

elements of D are checked. The index i of the last nonpositive element
encountered is identified in the computational error message.

v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2104 in the ESSL error option
table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see Chapter 4, “Coding Your
Program,” on page 131.

2. Matrix A is not positive definite (for SPBCHF and DPBCHF).
v The leading minor of order i has a nonpositive determinant. The order i

is identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by using the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2115 in the ESSL error option
table; otherwise, the default value causes your program to be terminate
when this error occurs. For details, see Chapter 4, “Coding Your
Program,” on page 131.

Input-Argument Errors
1. lda ≤ 0
2. m < 0

Chapter 10. Linear Algebraic Equations 747

3. m ≥ n
4. m ≥ lda

Examples

Example 1

This example shows a factorization of a real positive definite symmetric band
matrix A of order 9, using Gaussian elimination, where on input, matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 |
└ ┘

and on output, matrix A is:
┌ ┐
| 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
| 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 |
└ ┘

where array location APB(2,9) is set to 0.0.

Call Statement and Input:
APB LDA N M
| | | |

CALL SPBF(APB , 3 , 9 , 2)

┌ ┐
| 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |

APB = | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

Example 2

This example shows a Cholesky factorization of the same matrix used in
Example 1.

Call Statement and Input:
APB LDA N M
| | | |

CALL SPBCHF(APB , 3 , 9 , 2)

APB = (same as input APB in Example 1)

748 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
└ ┘

Chapter 10. Linear Algebraic Equations 749

SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric
Band Matrix Solve)

Purpose

These subroutines solve the system Ax = b for x, where A is a positive definite
symmetric band matrix, and x and b are vectors. They use the results of the
factorization of matrix A, produced by a preceding call to SPBF, DPBF, SPBCHF,
and DPBCHF, respectively, where:
v Gaussian elimination was used by SPBF and DPBF.
v Cholesky factorization was used by SPBCHF and DPBCHF.

Table 168. Data Types

A, b, x Subroutine

Short-precision real SPBS and SPBCHS

Long-precision real DPBS and DPBCHS

Note:

1. The input to these solve subroutines must be the output from the factorization
subroutines SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

2. For performance tradeoffs, see “SPBF, DPBF, SPBCHF, and DPBCHF (Positive
Definite Symmetric Band Matrix Factorization)” on page 746.

Syntax

Fortran CALL SPBS | DPBS | SPBCHS | DPBCHS (apb, lda, n, m, bx)

C and C++ spbs | dpbs | spbchs | dpbchs (apb, lda, n, m, bx);

On Entry

apb
is the factorization of matrix A, produced by a preceding call to SPBF or DPBF.
Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 168. See “Notes ” on page 751.

lda
is the leading dimension of the array specified for apb. Specified as: an integer;
lda > 0 and lda > m.

n is the order n of matrix A. Specified as: an integer; n > m.

m is the half band width of the matrix A. Specified as: an integer; 0 ≤ m < n.

bx is the vector b of length n, containing the right-hand side of the system.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 168.

On Return

bx is the solution vector x of length n, containing the results of the computation.
Returned as: a one-dimensional array, containing numbers of the data type
indicated in Table 168.

750 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes
1. The scalar data specified for input arguments lda, n, and m for these

subroutines must be the same as that specified for SPBF, DPBF, SPBCHF, and
DPBCHF, respectively.

2. The array data specified for input argument apb for these subroutines must be
the same as the corresponding output argument for SPBF, DPBF, SPBCHF, and
DPBCHF, respectively.

3. These subroutines can be used for tridiagonal matrices (m = 1); however, the
tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are faster.

4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. For a description of how a positive definite symmetric band matrix is stored in
lower-band-packed storage mode in an array, see “Positive Definite Symmetric
Band Matrix” on page 105.

Function

The system Ax = b is solved for x, where A is a positive definite symmetric band
matrix, stored in lower-band-packed storage mode, and x and b are vectors. These
subroutines use the results of the factorization of matrix A, produced by a
preceding call to SPBF, DPBF, SPBCHF, or DPBCHF, respectively.

Error conditions

Computational Errors
None

Note: If the factorization subroutine resulted in a nonpositive definite matrix,
error 2104 for SPBF and DPBF or error 2115 for SPBCHF and DPBCHF, results
of these subroutines may be unpredictable.

Input-Argument Errors
1. lda ≤ 0
2. m < 0
3. m ≥ n
4. m ≥ lda

Examples

Example 1

This example shows how to solve the system Ax = b, where matrix A is the
same matrix factored in the Example 1 for SPBF and DPBF, using Gaussian
elimination.

Call Statement and Input:
APB LDA N M BX
| | | | |

CALL SPBS(APB , 3 , 9 , 2 , BX)

APB = (same as output APB in
Example 1)
BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Chapter 10. Linear Algebraic Equations 751

This example shows how to solve the system Ax = b, where matrix A is the
same matrix factored in the Example 2 for SPBCHF and DPBCHF, using
Cholesky factorization.

Call Statement and Input:
APB LDA N M BX
| | | | |

CALL SPBCHS(APB , 3 , 9 , 2 , BX)

APB = (same as output APB in
Example 2)
BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

752 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTF and DGTF (General Tridiagonal Matrix Factorization)
Purpose

These subroutines compute the standard Gaussian factorization with partial
pivoting for tridiagonal matrix A, stored in tridiagonal storage mode. To solve a
tridiagonal system with one or more right-hand sides, follow the call to these
subroutines with one or more calls to SGTS or DGTS, respectively.

Table 169. Data Types

c, d, e, f Subroutine

Short-precision real SGTF

Long-precision real DGTF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SGTS and DGTS, respectively.

Syntax

Fortran CALL SGTF | DGTF (n, c, d, e, f, ipvt)

C and C++ sgtf | dgtf (n, c, d, e, f, ipvt);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 169.

d is the vector d, containing the main diagonal of matrix A, in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 169.

e is the vector e, containing the upper subdiagonal of matrix A, in positions 1
through n-1 in an array, referred to as E. Specified as: a one-dimensional array
of (at least) length n, containing numbers of the data type indicated in
Table 169.

f See On Return.

ipvt
See On Return.

On Return

c is the vector c, containing part of the factorization of matrix A in positions 1
through n in an array, referred to as C. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 169.

d is the vector d, containing part of the factorization of matrix A in an array,
referred to as D. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 169.

e is the vector e, containing part of the factorization of the matrix A in positions
1 through n in an array, referred to as E. Returned as: a one-dimensional array
of (at least) length n, containing numbers of the data type indicated in
Table 169.

Chapter 10. Linear Algebraic Equations 753

f is the vector f, containing part of the factorization of matrix A in the first n
positions in an array, referred to as F. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 169
on page 753.

ipvt
is the integer vector ipvt of length n, containing the pivot information.
Returned as: a one-dimensional array of (at least) length n, containing integers.

Notes
1. For a description of how tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 110.
2. ipvt is not a permutation vector in the strict sense. It is used to record column

interchanges in the tridiagonal matrix due to partial pivoting.
3. The factorization matrix A is stored in nonstandard format.

Function

The standard Gaussian elimination with partial pivoting of tridiagonal matrix A is
computed. The factorization is returned by overwriting input arrays C, D, and E,
and by writing into output array F, along with pivot information in vector ipvt.
This factorization can then be used by SGTS or DGTS, respectively, to solve
tridiagonal systems of linear equations. See references [51 on page 1316], [63 on
page 1317], [64 on page 1317], and [107 on page 1319]. If n is 0, no computation is
performed.

Error conditions

Computational Errors
Matrix A is singular or nearly singular.
v A pivot element has a value that cannot be reciprocated or is equal to 0. The

index i of the element is identified in the computational error message.
v The return code is set to 1.
v i can be determined at run time by use of the ESSL error-handling facilities.

To obtain this information, you must use ERRSET to change the number of
allowable errors for error code 2105 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this
error occurs. For details, see “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors

n < 0

Examples

Example

This example shows how to factor the following tridiagonal matrix A of order
4:

┌ ┐
| 2.0 2.0 0.0 0.0 |
| 1.0 3.0 2.0 0.0 |
| 0.0 1.0 3.0 2.0 |
| 0.0 0.0 1.0 3.0 |
└ ┘

Call Statement and Input:

754 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N C D E F IPVT
| | | | | |

CALL DGTF(4 , C , D , E , F , IPVT)

C = (. , 1.0, 1.0, 1.0)
D = (2.0, 3.0, 3.0, 3.0)
E = (2.0, 2.0, 2.0, .)

Output:
C = (. , -0.5, -0.5, -0.5)
D = (-0.5, -0.5, -0.5, -0.5)
E = (2.0, 2.0, 2.0, .)
IPVT = (X’00’, X’00’, X’00’, X’00’)

Notes :
1. F is stored in an internal format and is passed unchanged to the solve

subroutine.
2. A “.” means you do not have to store a value in that position in the array.

However, these storage positions are required and may be overwritten
during the computation.

Chapter 10. Linear Algebraic Equations 755

SGTS and DGTS (General Tridiagonal Matrix Solve)
Purpose

These subroutines solve a tridiagonal system of linear equations using the
factorization of tridiagonal matrix A, stored in tridiagonal storage mode, produced
by SGTF or DGTF, respectively.

Table 170. Data Types

c, d, e, f, b, x Subroutine

Short-precision real SGTS

Long-precision real DGTS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGTF and DGTF, respectively.

Syntax

Fortran CALL SGTS | DGTS (n, c, d, e, f, ipvt, bx)

C and C++ sgts | dgts (n, c, d, e, f, ipvt, bx);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from SGTF or
DGTF, respectively, in an array, referred to as C. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 170.

d is the vector d, containing part of the factorization of matrix A from SGTF or
DGTF, respectively, in an array, referred to as D. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 170.

e is the vector e, containing part of the factorization of matrix A from SGTF or
DGTF, respectively, in an array, referred to as E. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 170.

f is the vector f, containing part of the factorization of matrix A from SGTF or
DGTF, respectively, in an array, referred to as F. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 170.

ipvt
is the integer vector ipvt of length n, containing the pivot information,
produced by a preceding call to SGTF and DGTF, respectively. Specified as: a
one-dimensional array of (at least) length n, containing integers.

bx is the vector b of length n, containing the right-hand side of the system in the
first n positions in an array, referred to as BX. Specified as: a one-dimensional
array of (at least) length n+1, containing numbers of the data type indicated in
Table 170. For details on specifying the length, see “Notes ” on page 757.

On Return

bx is the solution vector x (at least) of length n, containing the solution of the

756 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

tridiagonal system in the first n positions in an array, referred to as BX.
Returned as: a one-dimensional array, of (at least) length (n+1), containing
numbers of the data type indicated in Table 170 on page 756. For details about
the length, see “Notes .”

Notes
1. For a description of how tridiagonal matrices are stored, see “General

Tridiagonal Matrix” on page 110.
2. Array BX can have a length of n if memory location BX(n+1) is

addressable—that is, not in read-protected storage. If it is in read-protected
storage, array BX must have a length of n+1. In both cases, the vector b (on
input) and vector x (on output) reside in positions 1 through n in array BX.
Array location BX(n+1) is not altered by these subroutines.

Function

Given the factorization produced by SGTF or DGTF, respectively, these subroutines
use the standard forward elimination and back substitution to solve the tridiagonal
system Ax = b, where A is a general tridiagonal matrix. See references [51 on page
1316], [63 on page 1317], [64 on page 1317], and [107 on page 1319].

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example

This example solves the tridiagonal system Ax = b, where matrix A is the same
matrix factored in Example for SGTF and DGTF, and where:

b = (4.0, 6.0, 6.0, 4.0)
x = (1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D E F IPVT BX
| | | | | | |

CALL DGTS(4 , C , D , E , F , IPVT , BX)

C = (same as output C in Example)
D = (same as output D in Example)
E = (same as output E in Example)
F = (same as output F in Example)
IPVT = (same as output IPVT in Example)
BX = (4.0, 6.0, 6.0, 4.0, .)

Output:
BX = (1.0, 1.0, 1.0, 1.0, .)

Chapter 10. Linear Algebraic Equations 757

SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix
Combined Factorization and Solve with No Pivoting)

Purpose

These subroutines solve the tridiagonal system Ax = b using Gaussian elimination,
where tridiagonal matrix A is stored in tridiagonal storage mode.

Table 171. Data Types

c, d, e, b, x Subroutine

Short-precision real SGTNP

Long-precision real DGTNP

Short-precision complex CGTNP

Long-precision complex ZGTNP

Note: In general, these subroutines provide better performance than the _GTNPF
and _GTNPS subroutines; however, in the following instances, you get better
performance by using _GTNPF and _GTNPS:
v For small n
v When performing a single factorization followed by multiple solves

Syntax

Fortran CALL SGTNP | DGTNP | CGTNP | ZGTNP (n, c, d, e, bx)

C and C++ sgtnp | dgtnp | cgtnp | zgtnp (n, c, d, e, bx);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 171.
On output, C is overwritten; that is, the original input is not preserved.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 171.
On output, D is overwritten; that is, the original input is not preserved.

e is the vector e, containing the upper subdiagonal of matrix A in positions 1
through n-1 in an array, referred to as E. Specified as: a one-dimensional array
of (at least) length n, containing numbers of the data type indicated in
Table 171. On output, E is overwritten; that is, the original input is not
preserved.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 171.

On Return

bx is the solution vector x of length n, containing the solution of the tridiagonal
system in the first n positions in an array, referred to as BX. Returned as: a
one-dimensional array, containing numbers of the data type indicated in
Table 171.

758 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes

For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 110.

Function

The solution of the tridiagonal system Ax = b is computed by Gaussian
elimination.

No pivoting is done. Therefore, these subroutines should not be used when
pivoting is necessary to maintain the numerical accuracy of the solution. Overflow
may occur if small main diagonal elements are generated. Underflow or accuracy
loss may occur if large main diagonal elements are generated.

For performance reasons, complex divides are done without scaling. Computing
the inverse in this way restricts the range of numbers for which the ZGTNP
subroutine works properly.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DGTNP and ZGTNP work properly; therefore, you may
want to scale your problem, such that the diagonal elements are close to 1.0 for
DGTNP and (1.0, 0.0) for ZGTNP.

Error conditions

Computational Errors
None

Input-Argument Errors

n < 0

Examples

Example 1

This example shows a factorization of the real tridiagonal matrix A, of order 4:
┌ ┐
| 7.0 4.0 0.0 0.0 |
| 1.0 8.0 5.0 0.0 |
| 0.0 2.0 9.0 6.0 |
| 0.0 0.0 3.0 10.0 |
└ ┘

It then finds the solution of the tridiagonal system Ax = b, where b is:
(11.0, 14.0, 17.0, 13.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

On output, arrays C, D, and E are overwritten.

Call Statement and Input:
N C D E BX
| | | | |

CALL DGTNP(4 , C , D , E , BX)

C = (. , 1.0, 2.0, 3.0)
D = (7.0, 8.0, 9.0, 10.0)
E = (4.0, 5.0, 6.0, .)
BX = (11.0, 14.0, 17.0, 13.0)

Chapter 10. Linear Algebraic Equations 759

Output:
BX = (1.0, 1.0, 1.0, 1.0)

Example 2

This example shows a factorization of the complex tridiagonal matrix A, of
order 4:

┌ ┐
| (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
└ ┘

It then finds the solution of the tridiagonal system Ax = b, where b is:
((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

and x is:
((1.0,-1.0), (2.0,-2.0), (3.0,-3.0), (4.0,-4.0))

On output, arrays C, D, and E are overwritten.

Call Statement and Input:
N C D E BX
| | | | |

CALL ZGTNP(4 , C , D , E , BX)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 85.0))

Output:
BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

760 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix
Factorization with No Pivoting)

Purpose

These subroutines factor tridiagonal matrix A, stored in tridiagonal storage mode,
using Gaussian elimination. To solve a tridiagonal system of linear equations with
one or more right-hand sides, follow the call to these subroutines with one or more
calls to SGTNPS, DGTNPS, CGTNPS, or ZGTNPS, respectively.

Table 172. Data Types

c, d, e Subroutine

Short-precision real SGTNPF

Long-precision real DGTNPF

Short-precision complex CGTNPF

Long-precision complex ZGTNPF

Note:

1. The output from these factorization subroutines should be used only as input
to the solve subroutines SGTNPS, DGTNPS, CGTNPS, and ZGTNPS,
respectively.

2. In general, the _GTNP subroutines provide better performance than the
_GTNPF and _GTNPS subroutines; however, in the following instances, you get
better performance by using _GTNPF and _GTNPS:
v For small n
v When performing a single factorization followed by multiple solves

Syntax

Fortran CALL SGTNPF | DGTNPF | CGTNPF | ZGTNPF (n, c, d, e, iopt)

C and C++ sgtnpf | dgtnpf | cgtnpf | zgtnpf (n, c, d, e, iopt);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing the lower subdiagonal of matrix A in positions 2
through n in an array, referred to as C. Specified as: a one-dimensional array, of
(at least) length n, containing numbers of the data type indicated in Table 172.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array, referred to as D. Specified as: a one-dimensional array, of
(at least) length n, containing numbers of the data type indicated in Table 172.

e is the vector e, containing the upper subdiagonal of matrix A in positions 1
through n-1 in an array, referred to as E. Specified as: a one-dimensional array,
of (at least) length n, containing numbers of the data type indicated in
Table 172.

iopt
indicates the type of computation to be performed, where:

If iopt = 0 or 1, Gaussian elimination is used to factor the matrix.

Chapter 10. Linear Algebraic Equations 761

Specified as: an integer; iopt = 0 or 1.

On Return

c is the vector c, containing part of the factorization of matrix A in positions 1
through n in an array, referred to as C. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 172
on page 761.

d is the vector d, containing part of the factorization of matrix A in an array,
referred to as D. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 172 on page 761.

e is the vector e, containing part of the factorization of matrix A in positions 1
through n in an array, referred to as E. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 172
on page 761. It has the same length as E on entry.

Notes

For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 110.

Function

The factorization of a diagonally-dominant tridiagonal matrix A is computed using
Gaussian elimination, This factorization can then be used by SGTNPS, DGTNPS,
CGTNPS, or ZGTNPS respectively, to solve the tridiagonal systems of linear
equations. See reference [89 on page 1318].

No pivoting is done by these subroutines. Therefore, these subroutines should not
be used when pivoting is necessary to maintain the numerical accuracy of the
solution. Overflow may occur if small main diagonal elements are generated.
Underflow or accuracy loss may occur if large main diagonal elements are
generated.

For performance reasons, complex divides are done without scaling. Computing
the inverse in this way restricts the range of numbers for which ZGTNPF works
properly.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DGTNPF and ZGTNPF work properly; therefore, you
may want to scale your problem, such that the diagonal elements are close to 1.0
for DGTNPF and (1.0, 0.0) for ZGTNPF.

Error conditions

Computational Errors
None

Input-Argument Errors
1. n < 0
2. iopt ≠ 0 or 1

Examples

Example 1

This example shows a factorization of the tridiagonal matrix A, of order 4:

762 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 1.0 1.0 0.0 0.0 |
| 1.0 2.0 1.0 0.0 |
| 0.0 1.0 3.0 1.0 |
| 0.0 0.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N C D E IOPT
| | | | |

CALL DGTNPF(4 , C , D , E , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)
E = (1.0, 1.0, 1.0, .)

Output:
C = (. , -1.0, -1.0, 1.0)
D = (-1.0, -1.0, -1.0, -1.0)
E = (1.0, 1.0, -1.0, .)

Example 2

This example shows a factorization of the tridiagonal matrix A, of order 4:
┌ ┐
| (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
| (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
| (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
└ ┘

Call Statement and Input:
N C D E IOPT
| | | | |

CALL ZGTNPF(4 , C , D , E , 0)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)

Output:
C = (. , (-0.142, 0.0), (-0.269, 0.0), (3.0, 3.0))
D = ((-0.0714, 0.0714), (-0.0673, 0.0673), (-0.0854, 0.0854),

(-0.05, 0.05))
E = ((4.0, 4.0), (5.0, 5.0), (-0.6, 0.0), .)

Notes :
1. A “.” means you do not have to store a value in that position in the array.

However, these storage positions are required and may be overwritten
during the computation.

Chapter 10. Linear Algebraic Equations 763

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix
Solve with No Pivoting)

Purpose

These subroutines solve a tridiagonal system of equations using the factorization of
matrix A, stored in tridiagonal storage mode, produced by SGTNPF, DGTNPF,
CGTNPF, or ZGTNPF, respectively.

Table 173. Data Types

c, d, e, b, x Subroutine

Short-precision real SGTNPS

Long-precision real DGTNPS

Short-precision complex CGTNPS

Long-precision complex ZGTNPS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively.

Syntax

Fortran CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx)

C and C++ sgtnps | dgtnps | cgtnps | zgtnps (n, c, d, e, bx);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from SGTNPF,
DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as C.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 173.

d is the vector d, containing part of the factorization of matrix A from SGTNPF,
DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as D.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 173.

e is the vector e, containing part of the factorization of matrix A from SGTNPF,
DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as E.
Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 173.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 173.

On Return

bx is the solution vector x of length n, containing the solution of the tridiagonal
system in the first n positions in an array, referred to as BX. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the data
type indicated in Table 173.

764 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes

For a description of how tridiagonal matrices are stored, see “General Tridiagonal
Matrix” on page 110.

Function

The solution of tridiagonal system Ax = b is computed using the factorization
produced by SGTNPF, DGTNPF, CGTNPF, or ZGTNPF, respectively. The
factorization is based on Gaussian elimination. See reference [89 on page 1318].

Error conditions

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

This example finds the solution of tridiagonal system Ax = b, where matrix A
is the same matrix factored in Example 1 for SGTNPF and DGTNPF. b is:

(2.0, 4.0, 5.0, 2.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D E BX
| | | | |

CALL DGTNPS(4 , C , D , E , BX)

C = (same as output C in Example 1)
D = (same as output D in Example 1)
E = (same as output E in Example 1)
BX = (2.0, 4.0, 5.0, 2.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0)

Example 2

This example finds the solution of tridiagonal system Ax = b, where matrix A
is the same matrix factored in Example 2 for CGTNPF and ZGTNPF. b is:

((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

and x is:
((0.0,1.0), (1.0,2.0), (2.0,3.0), (3.0,4.0))

Call Statement and Input:
N C D E BX
| | | | |

CALL ZGTNPS(4 , C , D , E , BX)

C = (same as output C in Example 2)
D = (same as output D in Example 2)
E = (same as output E in Example 2)
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 8))

Chapter 10. Linear Algebraic Equations 765

Output:
BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

766 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix
Factorization)

Purpose

These subroutines factor symmetric tridiagonal matrix A, stored in
symmetric-tridiagonal storage mode, using Gaussian elimination. To solve a
tridiagonal system of linear equations with one or more right-hand sides, follow
the call to these subroutines with one or more calls to SPTS or DPTS, respectively.

Table 174. Data Types

c, d Subroutine

Short-precision real SPTF

Long-precision real DPTF

Note: The output from these factorization subroutines should be used only as
input to the solve subroutines SPTS and DPTS, respectively.

Syntax

Fortran CALL SPTF | DPTF (n, c, d, iopt)

C and C++ sptf | dptf (n, c, d, iopt);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing the off-diagonal of matrix A in positions 2 through n
in an array, referred to as C. Specified as: a one-dimensional array, of (at least)
length n, containing numbers of the data type indicated in Table 174.

d is the vector d, containing the main diagonal of matrix A in positions 1
through n in an array referred to as D. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 174.

iopt
indicates the type of computation to be performed, where:

If iopt = 0 or 1, Gaussian elimination is used to factor the matrix.

Specified as: an integer; iopt = 0 or 1.

On Return

c is the vector c, containing part of the factorization of matrix A in an array,
referred to as C. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 174.

d is the vector d, containing part of the factorization of matrix A in positions 1
through n in an array, referred to as D. Returned as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 174.
It has the same length as D on entry.

Notes

For a description of how positive definite symmetric tridiagonal matrices are
stored, see “Positive Definite Symmetric Tridiagonal Matrix” on page 113.

Chapter 10. Linear Algebraic Equations 767

Function

The factorization of positive definite symmetric tridiagonal matrix A is computed
using Gaussian elimination. This factorization can then be used by SPTS or DPTS,
respectively, to solve the tridiagonal systems of linear equations. See reference [89
on page 1318].

No pivoting is done. Therefore, these subroutines should not be used when
pivoting is necessary to maintain the numerical accuracy of the solution. Overflow
may occur if small pivots are generated.

For performance reasons, divides are done in a way that reduces the effective
exponent range for which DPTF works properly; therefore, you may want to scale
your problem, such that the diagonal elements are close to 1.0 for DPTF.

Error conditions

Computational Errors
None

Note: There is no test for positive definiteness in these subroutines.

Input-Argument Errors
1. n < 0
2. iopt ≠ 0 or 1

Examples

Example

This example shows a factorization of the tridiagonal matrix A, of order 4:
┌ ┐
| 1.0 1.0 0.0 0.0 |
| 1.0 2.0 1.0 0.0 |
| 0.0 1.0 3.0 1.0 |
| 0.0 0.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N C D IOPT
| | | |

CALL DPTF(4 , C , D , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)

Output:
C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)

Note
A “.” means you do not have to store a value in that position in the array.
However, these storage positions are required and may be overwritten during
the computation.

768 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)
Purpose

These subroutines solve a positive definite symmetric tridiagonal system of
equations using the factorization of matrix A, stored in symmetric-tridiagonal
storage mode, produced by SPTF and DPTF, respectively.

Table 175. Data Types

c, d, b, x Subroutine

Short-precision real SPTS

Long-precision real DPTS

Note: The input to these solve subroutines must be the output from the
factorization subroutines SPTF and DPTF, respectively.

Syntax

Fortran CALL SPTS | DPTS (n, c, d, bx)

C and C++ spts | dpts (n, c, d, bx);

On Entry

n is the order n of tridiagonal matrix A. Specified as: an integer; n ≥ 0.

c is the vector c, containing part of the factorization of matrix A from SPTF or
DPTF, respectively, in an array, referred to as C. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 175.

d is the vector d, containing part of the factorization of matrix A from SPTF or
DPTF, respectively, in an array, referred to as D. Specified as: a one-dimensional
array of (at least) length n, containing numbers of the data type indicated in
Table 175.

bx is the vector b, containing the right-hand side of the system in the first n
positions in an array, referred to as BX. Specified as: a one-dimensional array of
(at least) length n, containing numbers of the data type indicated in Table 175.

On Return

bx is the solution vector x of length n, containing the solution of the tridiagonal
system in the first n positions in an array, referred to as BX. Returned as: a
one-dimensional array of (at least) length n, containing numbers of the data
type indicated in Table 175.

Notes

For a description of how tridiagonal matrices are stored, see “Positive Definite or
Negative Definite Symmetric Matrix” on page 87.

Function

The solution of positive definite symmetric tridiagonal system Ax = b is computed
using the factorization produced by SPTF or DPTF, respectively. The factorization
is based on Gaussian elimination. See reference [89 on page 1318].

Chapter 10. Linear Algebraic Equations 769

Error conditions

Computational Errors
None

Input-Argument Errors

n < 0

Examples

Example

This example finds the solution of tridiagonal system Ax = b, where matrix A
is the same matrix factored in Example for SPTF and DPTF. b is:

(2.0, 4.0, 5.0, 2.0)

and x is:
(1.0, 1.0, 1.0, 1.0)

Call Statement and Input:
N C D BX
| | | |

CALL DPTS(4 , C , D , BX)

C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)
BX = (2.0, 4.0, 5.0, 2.0)

Output:
BX = (1.0, 1.0, 1.0, 1.0)

770 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Sparse Linear Algebraic Equation Subroutines

This contains the sparse linear algebraic equation subroutine descriptions.

Chapter 10. Linear Algebraic Equations 771

DGSF (General Sparse Matrix Factorization Using Storage by Indices,
Rows, or Columns)

Purpose

This subroutine factors sparse matrix A by Gaussian elimination, using a modified
Markowitz count with threshold pivoting. The sparse matrix can be stored by
indices, rows, or columns. To solve the system of equations, follow the call to this
subroutine with a call to DGSS.

Syntax

Fortran CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux)

C and C++ dgsf (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);

On Entry

iopt
indicates the storage technique used for sparse matrix A, where:

If iopt = 0, it is stored by indices.

If iopt = 1, it is stored by rows.

If iopt = 2, it is stored by columns.

Specified as: an integer; iopt = 0, 1, or 2.

n is the order n of sparse matrix A. Specified as: an integer; n ≥ 0.

nz is the number of elements in sparse matrix A, stored in an array, referred to as
A.

Specified as: an integer; nz > 0.

a is the sparse matrix A, to be factored, stored in an array, referred to as A.

Specified as: an array of length lna, containing long-precision real numbers.

ia is the array, referred to as IA, where:

If iopt = 0, it contains the row numbers that correspond to the elements in
array A.

If iopt = 1, it contains the row pointers.

If iopt = 2, it contains the row numbers that correspond to the elements in
array A.

Specified as: an array of length lna, containing integers; IA(i) ≥ 1. See “Sparse
Matrix” on page 114 for more information on storage techniques.

ja is the array, referred to as JA, where:

If iopt = 0, it contains the column numbers that correspond to the elements in
array A.

If iopt = 1, it contains the column numbers that correspond to the elements in
array A.

If iopt = 2, it contains the column pointers.

Specified as: an array of length lna, containing integers; JA(i) ≥ 1. See “Sparse
Matrix” on page 114 for more information on storage techniques.

772 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

lna
is the length of the arrays specified for a, ia, and ja.

Specified as: an integer; lna > 2nz. If you do not specify a sufficient amount, it
results in an error. See “Error conditions” on page 775.

The size of lna depends on the structure of the input matrix. The requirement
that lna > 2nz does not guarantee a successful run of the program. If the input
matrix is expected to have many fill-ins, lna should be set larger. Larger lna
may result in a performance improvement.

For details on how lna relates to storage compressions, see “Performance and
Accuracy Considerations” on page 513.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) determines whether the default values for iparm and rparm are

used by this subroutine.
If IPARM(1) = 0, the following default values are used:

IPARM(2) = 10
IPARM(3) = 1
IPARM(4) = 0
RPARM(1) = 10-12

RPARM(2) = 0.1
If IPARM(1) = 1, the default values are not used.

v IPARM(2) determines the number of minimal Markowitz counts that are
examined to determine a pivot. (See reference [118 on page 1320].)

v IPARM(3) has the following meaning, where:
If IPARM(3) = 0, this subroutine checks the values in arrays IA and JA.
If IPARM(3) = 1, this subroutine assumes that the input values are correct in
arrays IA and JA.

v IPARM(4) has the following meaning, where:
If IPARM(4) = 0, this computation is not performed.
If IPARM(4) = 1, this subroutine computes:

The absolute value of the smallest pivot element
The absolute value of the largest element in U.
These values are stored in OPARM(2) and OPARM(3), respectively.

v IPARM(5) is reserved.

Specified as: an array of (at least) length 5, containing integers, where the iparm
values must be:

IPARM(1) = 0 or 1
IPARM(2) ≥ 1
IPARM(3) = 0 or 1
IPARM(4) = 0 or 1

rparm
is an array of parameters, RPARM(i), where:
v RPARM(1) contains the lower bound of the absolute value of all elements in

the matrix. If a pivot element is less than this number, the matrix is reported
as singular. Any computed element whose absolute value is less than this
number is set to 0.

Chapter 10. Linear Algebraic Equations 773

v RPARM(2) is the threshold pivot tolerance used to control the choice of pivots.
v RPARM(3) is reserved.
v RPARM(4) is reserved.
v RPARM(5) is reserved.

Specified as: a one-dimensional array of (at least) length 5, containing
long-precision real numbers, where the rparm values must be:

RPARM(1) ≥ 0.0
0.0 ≤ RPARM(2) ≤ 1.0

For additional information about rparm, see “Performance and Accuracy
Considerations” on page 513.

oparm
See On Return.

aux
is the storage work area used by this subroutine. Its size is specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer.

For 32-bit integer arguments
naux ≥ 10n+100.

For 64-bit integer arguments
naux ≥ 18n+100.

On Return

a is the transformed array, referred to as A, containing the factored matrix A,
required as input to DGSS. Returned as: a one-dimensional array of length lna,
containing long-precision real numbers.

ia is the transformed array, referred to as IA, required as input to DGSS. Returned
as: a one-dimensional array of length lna, containing integers.

ja is the transformed array, referred to as JA, required as input to DGSS. Returned
as: a one-dimensional array of length lna, containing integers.

oparm
is an array of parameters, OPARM(i), where:
v OPARM(1) is the amount of fill-ins for the sparse processing portion of the

algorithm.
v OPARM(2) contains the absolute value of the smallest pivot element of the

matrix. This value is computed and set only if IPARM(4) = 1.
v OPARM(3) contains the absolute value of the largest element encountered in U

after the factorization. This value is computed and set only if IPARM(4) = 1.
v OPARM(4) is reserved.
v OPARM(5) is reserved.

Returned as: a one-dimensional array of length 5, containing long-precision
real numbers.

774 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

aux
is the storage work area used by this subroutine. It contains the information
required as input for DGSS.

Specified as: an area of storage, containing long-precision real numbers.

Notes
1. For a description of the three storage techniques used by this subroutine for

sparse matrices, see “Sparse Matrix” on page 114.
2. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The matrix A is factored by Gaussian elimination, using a modified Markowitz
count with threshold pivoting to compute the sparse LU factorization of A:

LU = PAQ

where:

A is a general sparse matrix of order n, stored by indices, columns, or rows in
arrays A, IA, and JA.

L is a unit lower triangular matrix.

U is an upper triangular matrix.

P is a permutation matrix.

Q is a permutation matrix.

To solve the system of equations, follow the call to this subroutine with a call to
DGSS. If n is 0, no computation is performed. See references [16 on page 1314], [56
on page 1316], and [110 on page 1319].

Error conditions

Computational Errors

1. If this subroutine has to perform storage compressions, an attention
message is issued. When this occurs, the performance of this subroutine is
affected. The performance can be improved by increasing the value
specified for lna.

2. The following errors with their corresponding return codes can occur in
this subroutine. Where a value of i is indicated, it can be determined at run
time by use of the ESSL error-handling facilities. To obtain this information,
you must use ERRSET to change the number of allowable errors for that
particular error code in the ESSL error option table; otherwise, the default
value causes your program to terminate when the error occurs. For details,
see “What Can You Do about ESSL Computational Errors?” on page 66.
v For error 2117, return code 2 indicates that the pivot element in a

column, i, is smaller than the value specified in RPARM(1).
v For error 2118, return code 3 indicates that pivot element in a row, i, is

smaller than the value specified in RPARM(1).

Chapter 10. Linear Algebraic Equations 775

v For error 2120, return code 4 indicates that a row, i, is found empty on
factorization. The matrix is singular.

v For error 2121, return code 5 indicates that a column is found empty on
factorization. The matrix is singular.

v For error 2119, return code 6 indicates that the storage space indicated by
lna is insufficient.

v For error 2122, return code 7 indicates that no pivot element was found
in the active submatrix.

Input-Argument Errors

1. iopt ≠ 0, 1, or 2
2. n < 0
3. nz ≤ 0
4. lna ≤ 2nz

5. IPARM(1) ≠ 0 or 1
6. IPARM(2) ≤ 0
7. IPARM(3) ≠ 0 or 1
8. IPARM(4) ≠ 0 or 1
9. RPARM(1) < 0.0

10. RPARM(2) < 0.0 or RPARM(2) > 1.0
11. iopt = 1 and ia(i) ≥ ia (i+1), i = 1, n
12. iopt = 2 and ja(i) ≥ ja(i+1), i = 1, n
13. iopt = 0 or 1 and ja(i) < 1 or ja(i) > n, i = 1, nz

14. iopt = 0 or 1 and ia(i) < 1 or ia(i) > n, i = 1, nz

15. There are duplicate indices in a row or column of the input matrix.
16. The matrix is singular if a row or column of the input matrix is empty.
17. naux is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.

Examples

Example

This example factors 5 by 5 sparse matrix A, which is stored by indices in
arrays A, IA, and JA. The three storage techniques are shown in this example,
and the output is the same regardless of the storage technique used. The
matrix is factored using Gaussian elimination with threshold pivoting. Matrix
A is:

┌ ┐
| 2.0 0.0 4.0 0.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 |
| 0.0 0.0 3.0 4.0 0.0 |
| 2.0 2.0 0.0 1.0 5.0 |
| 0.0 0.0 1.0 1.0 0.0 |
└ ┘

Note: In this example, only nonzero elements are used as input to the matrix.

Call Statement and Input (Storage-By-Indices):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(0 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

776 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = (2.0, 1.0, 1.0, 3.0, 4.0, 1.0, 5.0, 2.0, 2.0, 1.0, 1.0,
4.0, 3.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 1, 2, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

JA = (1, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 3, 5, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

Call Statement and Input (Storage-By-Rows):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(1 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

A = (2.0, 4.0, 1.0, 1.0, 3.0, 3.0, 4.0, 2.0, 2.0, 1.0, 5.0,
1.0, 1.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 3, 6, 8, 12, 14, . , . , . , . , . , . , . , . , . ,
. , . , . , . , .)

JA = (1, 3, 1, 2, 5, 3, 4, 1, 2, 4, 5, 3, 4, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

Call Statement and Input (Storage-By-Columns):
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
| | | | | | | | | | | |

CALL DGSF(2 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

A = (2.0, 1.0, 2.0, 1.0, 2.0, 4.0, 3.0, 1.0, 4.0, 1.0, 1.0,
3.0, 5.0, . , . , . , . , . , . , . , . , . , . , . , . ,
. , .)

IA = (1, 2, 4, 2, 4, 1, 3, 5, 3, 4, 5, 2, 4, . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)

JA = (1, 4, 6, 9, 12, 14, . , . , . , . , . , . , . , . , . ,
. , . , . , . , .)

IPARM = (1, 3, 0, 1)
RPARM = (1.D-12, 0.1D0)

Output:
A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,

1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
4.0, -3.0, -4.0)

IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
. , . , . , 2, 1, 1, 3, 3, 5, 5)

JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
. , . , . , 4, 2, 4, 4, 1, 3, 1)

OPARM = (1.000000, 0.333333, 3.000000)

Note: On input, a “.” means that you do not have to store a value in that
position in the array. However, the storage position is required and may be
overwritten during the computation. On output, a “.” means that the value in
that position in the array is not significant.

Chapter 10. Linear Algebraic Equations 777

DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by
Indices, Rows, or Columns)

Purpose

This subroutine solves either of the following systems:

Ax = b
ATx = b

where A is a sparse matrix, AT is the transpose of sparse matrix A, and x and b are
vectors. DGSS uses the results of the factorization of matrix A, produced by a
preceding call to DGSF.

Note: The input to this solve subroutine must be the output from the factorization
subroutine, DGSF.

Syntax

Fortran CALL DGSS (jopt, n, a, ia, ja, lna, bx, aux, naux)

C and C++ dgss (jopt, n, a, ia, ja, lna, bx, aux, naux);

On Entry

jopt
indicates the type of computation to be performed, where:

If jopt = 0, Ax = b is solved, where the right-hand side is not sparse.

If jopt = 1, ATx = b is solved, where the right-hand side is not sparse.

If jopt = 10, Ax = b is solved, where the right-hand side is sparse.

If jopt = 11, ATx = b is solved, where the right-hand side is sparse.

Specified as: an integer; jopt = 0, 1, 10, or 11.

n is the order n of sparse matrix A. Specified as: an integer; n ≥ 0.

a is the factorization of sparse matrix A, stored in array A, produced by a
preceding call to DGSF.

Specified as: an array of length lna, containing long-precision real numbers.

ia is the array, referred to as IA, produced by a preceding call to DGSF.

Specified as: an array of length lna, containing integers.

ja is the array, referred to as JA, produced by a preceding call to DGSF.

Specified as: an array of length lna, containing integers.

lna
is the length of the arrays A, IA, and JA. In DGSS, lna must be identical to the
value specified in DGSF; otherwise, results are unpredictable.

Specified as: an integer; lna > 0.

bx is the vector b of length n, containing the right-hand side of the system.

Specified as: a one-dimensional array of (at least) length n, containing
long-precision real numbers.

778 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

aux
is the storage work area passed to this subroutine by a preceding call to DGSF.
Its size is specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer.

For 32-bit integer arguments
naux ≥ 10n+100.

For 64-bit integer arguments
naux ≥ 18n+100.

On Return

ia is the transformed array, referred to as IA, which can be used as input in
subsequent calls to this subroutine. This may result in a performance increase.

Specified as: an array of length lna, containing integers.

bx is the solution vector x of length n, containing the results of the computation.

Specified as: a one-dimensional array, containing long-precision real numbers.

Notes
1. The input arguments n, lna, and naux, must be the same as those specified for

DGSF. Whereas, the input arguments a, ia, ja, and aux must be those produced
on output by DGSF. Otherwise, results are unpredictable.

2. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The system Ax = b is solved for x, where A is a sparse matrix and x and b are
vectors. Depending on the value specified for the jopt argument, DGSS can also
solve the system ATx = b, where AT is the transpose of sparse matrix A.

If the value specified for the jopt argument is 0 or 10, the following equation is
solved:

Ax = b

If the value specified for the jopt argument is 1 or 11, the following equation is
solved:

ATx = b

DGSS uses the results of the factorization of matrix A, produced by a preceding
call to DGSF. The transformed matrix A consists of the upper triangular matrix U
and the lower triangular matrix L.

See references [16 on page 1314], [56 on page 1316], and [110 on page 1319].

Chapter 10. Linear Algebraic Equations 779

Error conditions

Computational Errors
None

Input-Argument Errors

1. jopt ≠ 0, 1, 10, or 11
2. n < 0
3. lna ≤ 0
4. naux is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.

Examples

Example 1

This example shows how to solve the system Ax = b, where matrix A is a 5 by
5 sparse matrix. The right-hand side is not sparse.

Note: The input for this subroutine is the same as the output from DGSF,
except for BX.
Matrix A is:

┌ ┐
| 2.0 0.0 4.0 0.0 0.0 |
| 1.0 1.0 0.0 0.0 3.0 |
| 0.0 0.0 3.0 4.0 0.0 |
| 2.0 2.0 0.0 1.0 5.0 |
| 0.0 0.0 1.0 1.0 0.0 |
└ ┘

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(0 , 5 , A , IA , JA , 27 , BX , AUX , 150)

A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,
1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
4.0, -3.0, -4.0)

IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
. , . , . , 2, 1, 1, 3, 3, 5, 5)

JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
. , . , . , 4, 2, 4, 4, 1, 3, 1)

BX = (1.0, 1.0, 1.0, 1.0, 1.0)

Output:
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,

. , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (-5.500000, 9.500000, 3.000000, -2.000000, -1.000000)

Note: On input, a “.” means that you do not have to store a value in that
position in the array. However, the storage position is required and may be
overwritten during the computation. On output, a “.” means that the value in
that position in the array is not significant.

Example 2

This example shows how to solve the system ATx = b, using the same matrix A
used in Example 1. The input is also the same as in Example 1, except for the
jopt argument. The right-hand side is not sparse.

Call Statement and Input:

780 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(1 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (1.0, 1.0, 1.0, 1.0, 1.0)

Output:
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,

. , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, -3.000000, -2.000000, 2.000000, 7.000000)

Note: On input, a “.” means that you do not have to store a value in that
position in the array. However, the storage position is required and may be
overwritten during the computation. On output, a “.” means that the value in
that position in the array is not significant.

Example 3

This example shows how to solve the system Ax = b, using the same matrix A
as in Examples 1 and 2. The input is also the same as in Examples 1 and 2,
except for the jopt and bx arguments. The right-hand side is sparse.

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(10 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

Output:
IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 3.000000, 0.000000, 0.000000, -1.000000)

Note: On input, a “.” means that you do not have to store a value in that
position in the array. However, the storage position is required and may be
overwritten during the computation. On output, a “.” means that the value in
that position in the array is not significant.

Example 4

This example shows how to solve the system ATx = b, using the same matrix A
as in Examples 1, 2, and 3. The input is also the same as in Examples 1, 2, and
3, except for the jopt argument. The right-hand side is sparse.

Call Statement and Input:
JOPT N A IA JA LNA BX AUX NAUX
| | | | | | | | |

CALL DGSS(11 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

Output:
IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 0.000000, 1.000000, 0.000000, -3.000000)

Note: On input, a “.” means that you do not have to store a value in that
position in the array. However, the storage position is required and may be
overwritten during the computation. On output, a “.” means that the value in
that position in the array is not significant.

Chapter 10. Linear Algebraic Equations 781

DGKFS (General Sparse Matrix or Its Transpose Factorization,
Determinant, and Solve Using Skyline Storage Mode)

Purpose

This subroutine can perform either or both of the following functions for general
sparse matrix A, stored in skyline storage mode, and for vectors x and b:
v Factor A and, optionally, compute the determinant of A.
v Solve the system Ax = b or ATx = b using the results of the factorization of

matrix A, produced on this call or a preceding call to this subroutine.

You also have the choice of using profile-in or diagonal-out skyline storage mode
for A on input or output.

Note: The input to the solve performed by this subroutine must be the output
from the factorization performed by this subroutine.

Syntax

Fortran CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx)

C and C++ dgkfs (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);

On Entry

n is the order of general sparse matrix A. Specified as: an integer; n ≥ 0.

au is the array, referred to as AU, containing one of three forms of the upper
triangular part of general sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if IPARM(3) = 0,

then AU contains the unfactored upper triangle of general sparse matrix A.
v If you are doing a factor only, and if IPARM(3) > 0, then AU contains the

partially factored upper triangle of general sparse matrix A. The first
IPARM(3) columns in the upper triangle of A are already factored. The
remaining columns are factored in this computation.

v If you are doing a solve only, then AU contains the factored upper triangle of
general sparse matrix A, produced by a preceding call to this subroutine.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

nu is the length of array AU.

Specified as: an integer; nu ≥ 0 and nu ≥ (IDU(n+1)-1).

idu
is the array, referred to as IDU, containing the relative positions of the diagonal
elements of matrix A (in one of its three forms) in array AU.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

782 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

al is the array, referred to as AL, containing one of three forms of the lower
triangular part of general sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if IPARM(3) = 0,

then AL contains the unfactored lower triangle of general sparse matrix A.
v If you are doing a factor only, and if IPARM(3) > 0, then AL contains the

partially factored lower triangle of general sparse matrix A. The first
IPARM(3) rows in the lower triangle of A are already factored. The remaining
rows are factored in this computation.

v If you are doing a solve only, then AL contains the factored lower triangle of
general sparse matrix A, produced by a preceding call to this subroutine.

Note: In all these cases, entries in AL for diagonal elements of A are not
assumed to have meaningful values.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

nl is the length of array AL.

Specified as: an integer; nl ≥ 0 and nl ≥ (IDL(n+1)-1).

idl
is the array, referred to as IDL, containing the relative positions of the diagonal
elements of matrix A (in one of its three forms) in array AL.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) indicates whether certain default values for iparm and rparm are

used by this subroutine, where:
If IPARM(1) = 0, the following default values are used. For restrictions, see
“Notes ” on page 789.

IPARM(2) = 0
IPARM(3) = 0
IPARM(4) = 0
IPARM(5) = 0
IPARM(10) = 0
IPARM(11) = -1
IPARM(12) = -1
IPARM(13) = -1
IPARM(14) = -1
IPARM(15) = 0
RPARM(10) = 10-12

If IPARM(1) = 1, the default values are not used.
v IPARM(2) indicates the type of computation performed by this subroutine.

The following table gives the IPARM(2) values for each variation:

Chapter 10. Linear Algebraic Equations 783

Type of Computation Ax = b
Ax = b and
Determinant(A) ATx = b

ATx = b and
Determinant(A)

Factor and Solve 0 10 100 110

Factor Only 1 11 N/A N/A

Solve Only 2 N/A 102 N/A

v IPARM(3) indicates whether a full or partial factorization is performed on
matrix A, where:
If IPARM(3) = 0, and:
If you are doing a factor and solve or a factor only, then a full factorization
is performed for matrix A on rows and columns 1 through n.
If you are doing a solve only, this argument has no effect on the
computation, but must be set to 0.
If IPARM(3) > 0, and you are doing a factor only, then a partial factorization
is performed on matrix A. Rows 1 through IPARM(3) of columns 1 through
IPARM(3) in matrix A must be in factored form from a preceding call to this
subroutine. The factorization is performed on rows IPARM(3)+1 through n
and columns IPARM(3)+1 through n. For an illustration, see “Notes ” on page
789.

v IPARM(4) indicates the input storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on input,
where:
If IPARM(4) = 0, diagonal-out skyline storage mode is used.
If IPARM(4) = 1, profile-in skyline storage mode is used.

v IPARM(5) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on output,
where:
If IPARM(5) = 0, diagonal-out skyline storage mode is used.
If IPARM(5) = 1, profile-in skyline storage mode is used.

v IPARM(6) through IPARM(9) are reserved.
v IPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(10)
indicates whether certain default values for iparm and rparm are used by this
subroutine, where:
If IPARM(10) = 0, the following default values are used. For restrictions, see
“Notes ” on page 789.

IPARM(11) = -1
IPARM(12) = -1
IPARM(13) = -1
IPARM(14) = -1
IPARM(15) = 0
RPARM(10) = 10-12

If IPARM(10) = 1, the default values are not used.
If you are doing a solve only, this argument is not used.

v IPARM(11) through IPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, then IPARM(11) through
IPARM(15) control the type of processing to apply to pivot elements
occurring in regions 1 through 5, respectively. The pivot elements are ukk for
k = 1, n when doing a full factorization, and they are k = IPARM(3)+1, n

784 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

when doing a partial factorization. The region in which a pivot element falls
depends on the sign and magnitude of the pivot element. The regions are
determined by RPARM(10). For a description of the regions and associated
pivot values, see “Notes ” on page 789. For each region i for i = 1,5, where
the pivot occurs in region i, the processing applied to the pivot element is
determined by IPARM(10+i), where:
If IPARM(10+i) = -1, the pivot element is trapped and computational error
2126 is generated. See “Error conditions” on page 791.
If IPARM(10+i) = 0, for i = 1, 2, 4, and 5, processing continues normally.

Note: A value of 0 is not permitted for region 3, because if processing
continues, a divide-by-zero exception occurs.
If IPARM(10+i) = 1, the pivot element is replaced with the value in
RPARM(10+i), and processing continues normally.
If you are doing a solve only, these arguments are not used.

v IPARM(16) through IPARM(25), see On Return.

Specified as: a one-dimensional array of (at least) length 25, containing
integers, where:

IPARM(1) = 0 or 1
IPARM(2) = 0, 1, 2, 10, 11, 100, 102, or 110
If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0
If IPARM(2) = 1 or 11, then 0 ≤ IPARM(3) ≤ n
IPARM(4), IPARM(5) = 0 or 1
If IPARM(2) = 0, 1, 10, 11, 100, or 110, then:
IPARM(10) = 0 or 1
IPARM(11), IPARM(12) = -1, 0, or 1
IPARM(13) = -1 or 1
IPARM(14), IPARM(15) = -1, 0, or 1

rparm
is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(9) are reserved.
v RPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, RPARM(10) is the
tolerance value for small pivots. This sets the bounds for the pivot regions,
where pivots are processed according to the options you specify for the five
regions in IPARM(11) through IPARM(15), respectively. The suggested value is
10-15 ≤ IPARM(10) ≤ 1.
If you are doing a solve only, this argument is not used.

v RPARM(11) through RPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, RPARM(11) through
RPARM(15) are the fix-up values to use for the pivots in regions 1 through 5,
respectively. For each RPARM(10+i) for i = 1,5, where the pivot occurs in
region i:
If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where
|RPARM(10+i)| should be a sufficiently large nonzero value to avoid overflow
when calculating the reciprocal of the pivot. The suggested value is 10-15 ≤
|RPARM(10+i)| ≤ 1.
If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.
If you are doing a solve only, these arguments are not used.

v RPARM(16) through RPARM(25), see On Return.

Chapter 10. Linear Algebraic Equations 785

Specified as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, or 110, then:

RPARM(10) ≥ 0.0
RPARM(11) through RPARM(15) ≠ 0.0

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, DGKFS dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise,

If you are doing a factor only:

For 32-bit integer arguments
Use naux ≥ 5n.

For 64-bit integer arguments
Use naux ≥ 7n.

If you are doing a factor and solve or a solve only:

For 32-bit integer arguments
Use naux ≥ 5n + 4mbx.

For 64-bit integer arguments
Use naux ≥ 7n + 4mbx.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array, containing
the mbx right-hand side vectors b of the system Ax = b or ATx = b. Each vector
b is length n and is stored in the corresponding column of the array.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

ldbx
has the following meaning, where:

If you are doing a factor and solve or a solve only, ldbx is the leading
dimension of the array specified for bx.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an integer; ldbx ≥ n and:

If mbx ≠ 0, then ldbx > 0.

If mbx = 0, then ldbx ≥ 0.

786 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

mbx
has the following meaning, where:

If you are doing a factor and solve or a solve only, mbx is the number of
right-hand side vectors, b, in the array specified for bx.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an integer; mbx ≥ 0.

On Return

au is the array, referred to as AU, containing the upper triangular part of the LU
factored form of general sparse matrix A, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

(If mbx = 0 and you are doing a solve only, then au is unchanged on output.)
Returned as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

idu
is the array, referred to as IDU, containing the relative positions of the diagonal
elements of the factored output matrix A in array AU. (If mbx = 0 and you are
doing a solve only, then idu is unchanged on output.) Returned as: a
one-dimensional array of (at least) length n+1, containing integers.

al is the array, referred to as AL, containing the lower triangular part of the LU
factored form of general sparse matrix A, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

Note: You should assume that entries in AL for diagonal elements of A do not
have meaningful values.

(If mbx = 0 and you are doing a solve only, then al is unchanged on output.)
Returned as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

idl
is the array, referred to as IDL, containing the relative positions of the diagonal
elements of the factored output matrix A in array AL. (If mbx = 0 and you are
doing a solve only, then idl is unchanged on output.) Returned as: a
one-dimensional array of (at least) length n+1, containing integers.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) through IPARM(15) are unchanged.
v IPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If IPARM(16) = -1, your factorization did not complete successfully, resulting
in computational error 2126.
If IPARM(16) > 0, it is the row number k, in which the maximum absolute
value of the ratio akk/ukk occurred, where:
If IPARM(3) = 0, k can be any of the rows, 1 through n, in the full
factorization.
If IPARM(3) > 0, k can be any of the rows, IPARM(3)+1 through n, in the
partial factorization.

Chapter 10. Linear Algebraic Equations 787

If you are doing a solve only, this argument is not used in the computation
and is unchanged.

v IPARM(17) through IPARM(20) are reserved.
v IPARM(21) through IPARM(25) have the following meaning, where:

If you are doing a factor and solve or a factor only, IPARM(21) through
IPARM(25) have the following meanings for each region i for i = 1,5,
respectively:
If IPARM(20+i) = -1, your factorization did not complete successfully, resulting
in computational error 2126.
If IPARM(20+i) ≥ 0, it is the number of pivots in region i for the columns that
were factored in matrix A, where:
If IPARM(3) = 0, columns 1 through n were factored in the full factorization.
If IPARM(3) > 0, columns IPARM(3)+1 through n were factored in the partial
factorization.
If you are doing a solve only, these arguments are not used in the
computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing
integers.

rparm
is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(15) are unchanged.
v RPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If RPARM(16) = 0.0, your factorization did not complete successfully, resulting
in computational error 2126.
If |RPARM(16)| > 0.0, it is the ratio for row k, akk/ukk, having the maximum
absolute value. Row k is indicated in IPARM(16), and:
If IPARM(3) = 0, the ratio corresponds to one of the rows, 1 through n, in the
full factorization.
If IPARM(3) > 0, the ratio corresponds to one of the rows, IPARM(3)+1
through n, in the partial factorization.
If you are doing a solve only, this argument is not used in the computation
and is unchanged.

v RPARM(17) and RPARM(18) have the following meaning, where:
If you are computing the determinant of matrix A, then RPARM(17) is the
mantissa, detbas, and RPARM(18) is the power of 10, detpwr, used to express
the value of the determinant: detbas(10detpwr), where 1 ≤ detbas < 10. Also:
If IPARM(3) = 0, the determinant is computed for columns 1 through n in the
full factorization.
If IPARM(3) > 0, the determinant is computed for columns IPARM(3)+1
through n in the partial factorization.
If you are not computing the determinant of matrix A, these arguments are
not used in the computation and are unchanged.

v RPARM(19) through RPARM(25) are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers.

bx has the following meaning, where:

788 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If you are doing a factor and solve or a solve only, bx is the array, containing
the mbx solution vectors x of the system Ax = b or ATx = b. Each vector x is
length n and is stored in the corresponding column of the array. (If mbx = 0,
then bx is unchanged on output.)

If you are doing a factor only, this argument is not used in the computation
and is unchanged.

Returned as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

Notes
1. If you set either IPARM(1) = 0 or IPARM(10) = 0, indicating you want to use the

default values for IPARM(11) through IPARM(15) and RPARM(10), then:
v Matrix A must be positive definite.
v No pivots are fixed, using RPARM(11) through RPARM(15) values.
v No small pivots are tolerated; that is, the value should be |pivot| >

RPARM(10).
2. Many of the input and output parameters for iparm and rparm are defined for

the five pivot regions handled by this subroutine. The limits of the regions are
based on RPARM(10), as shown in Figure 11. The pivot values in each region are:

Region 1: pivot < -RPARM(10)
Region 2: -RPARM(10) ≤ pivot < 0
Region 3: pivot = 0
Region 4: 0 < pivot ≤ RPARM(10)
Region 5: pivot > RPARM(10)

3. The IPARM(4) and IPARM(5) arguments allow you to specify the same or
different skyline storage modes for your input and output arrays for matrix A.
This allows you to change storage modes as needed. However, if you are
concerned with performance, you should use diagonal-out skyline storage
mode for both input and output, if possible, because there is less overhead.
For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 124 and “Diagonal-Out Skyline
Storage Mode” on page 122.

4. Following is an illustration of the portion of matrix A factored in the partial
factorization when IPARM(3) > 0. In this case, the subroutine assumes that rows
and columns 1 through IPARM(3) are already factored and that rows and
columns IPARM(3)+1 through n are to be factored in this computation.

RPARM(10)0

Pivot
Values:

Regions: ... 1) (2) (3) (4) (5 ...
RPARM(10)

Figure 11. Five Pivot Regions

Chapter 10. Linear Algebraic Equations 789

You use the partial factorization function when, for design or storage reasons,
you must factor the matrix A in stages. When doing a partial factorization, you
must use the same skyline storage mode for all parts of the matrix as it is
progressively factored.

5. Your various arrays must have no common elements; otherwise, results are
unpredictable.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

This subroutine can factor, compute the determinant of, and solve general sparse
matrix A, stored in skyline storage mode. For all computations, input matrix A can
be stored in either diagonal-out or profile-in skyline storage mode. Output matrix
A can also be stored in either of these modes and can be different from the mode
used for input.

Matrix A is factored into the following form using specified pivot processing:

A = LU

where:

U is an upper triangular matrix.
L is a lower triangular matrix.

The transformed matrix A, factored into its LU form, is stored in packed format in
arrays AU and AL. The inverse of the diagonal of matrix U is stored in the
corresponding elements of array AU. The off-diagonal elements of the upper
triangular matrix U are stored in the corresponding off-diagonal elements of array
AU. The off-diagonal elements of the lower triangular matrix L are stored in the
corresponding off-diagonal elements of array AL. (The diagonal elements stored in
array AL do not have meaningful values.)

The partial factorization of matrix A, which you can do when you specify the
factor-only option, assumes that the first IPARM(3) rows and columns are already
factored in the input matrix. It factors the remaining n-IPARM(3) rows and columns

790 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

in matrix A. (See “Notes ” on page 789 for an illustration.) It updates only the
elements in arrays AU and AL corresponding to the part of matrix A that is factored.

The determinant can be computed with any of the factorization computations.
With a full factorization, you get the determinant for the whole matrix. With a
partial factorization, you get the determinant for only that part of the matrix
factored in this computation.

The system Ax = b or ATx = b, having multiple right-hand sides, is solved for x,
using the transformed matrix A produced by this call or a subsequent call to this
subroutine.

See references [11 on page 1314], [19 on page 1314], [32 on page 1315], [56 on page
1316], and [83 on page 1318]. If n is 0, no computation is performed. If mbx is 0, no
solve is performed.

Error conditions

Resource Errors

v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.
v Unable to allocate internal work area.

Computational Errors

1. If a pivot occurs in region i for i = 1,5 and IPARM(10+i) = 1, the pivot value
is replaced with RPARM(10+i), an attention message is issued, and processing
continues.

2. Unacceptable pivot values occurred in the factorization of matrix A.
v One or more diagonal elements of U contains unacceptable pivots and no

valid fixup is applicable. The row number i of the first unacceptable
pivot element is identified in the computational error message.

v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2126 in the ESSL error option
table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see “What Can You Do about ESSL
Computational Errors?” on page 66.

Input-Argument Errors

1. n < 0
2. nu < 0
3. IDU(n+1) > nu+1
4. IDU(i+1) ≤ IDU(i) for i = 1, n
5. IDU(i+1) > IDU(i)+i and IPARM(4) = 0 for i = 1, n
6. IDU(i) > IDU(i-1)+i and IPARM(4) = 1 for i = 2, n
7. nl < 0
8. IDL(n+1) > nl+1
9. IDL(i+1) ≤ IDL(i) for i = 1, n

10. IDL(i+1) > IDL(i)+i and IPARM(4) = 0 for i = 1, n
11. IDL(i) > IDL(i-1)+i and IPARM(4) = 1 for i = 2, n
12. IPARM(1) ≠ 0 or 1
13. IPARM(2) ≠ 0, 1, 2, 10, 11, 100, 102, or 110

Chapter 10. Linear Algebraic Equations 791

14. IPARM(3) < 0
15. IPARM(3) > n
16. IPARM(3) > 0 and IPARM(2) ≠ 1 or 11
17. IPARM(4), IPARM(5) ≠ 0 or 1
18. IPARM(2) = 0, 1, 10, 11, 100, or 110 and:

IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12) ≠ -1, 0, or 1
IPARM(13) ≠ -1 or 1
IPARM(14), IPARM(15) ≠ -1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) = 0.0 and IPARM(10+i) = 1 for i = 1,5

19. IPARM(2) = 0, 2, 10, 100, 102, or 110 and:

ldbx ≤ 0 and mbx ≠ 0 and n ≠ 0
ldbx < 0 and mbx = 0
ldbx < n and mbx ≠ 0
mbx < 0

20. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows how to factor a 9 by 9 general sparse matrix A and solve
the system Ax = b with three right-hand sides. The default values are used for
IPARM and RPARM. Input matrix A, shown here, is stored in diagonal-out skyline
storage mode. Matrix A is:

┌ ┐
| 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 2.0 4.0 4.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 2.0 4.0 6.0 4.0 4.0 0.0 2.0 0.0 4.0 |
| 2.0 4.0 6.0 6.0 6.0 2.0 4.0 0.0 6.0 |
| 0.0 0.0 0.0 2.0 4.0 4.0 4.0 2.0 4.0 |
| 0.0 2.0 4.0 6.0 8.0 6.0 8.0 4.0 10.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
| 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
└ ┘

Output matrix A, shown here, is in LU factored form with U-1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix B is:

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 2.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 2.0 0.0 2.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 2.0 2.0 2.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 2.0 2.0 2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 0.5 2.0 2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.5 2.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 |
└ ┘

Call Statement and Input:

792 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

AU = (2.0, 4.0, 2.0, 6.0, 4.0, 2.0, 6.0, 4.0, 2.0, 4.0, 6.0,
4.0, 2.0, 6.0, 4.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (0.0, 0.0, 2.0, 0.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,

2.0, 0.0, 8.0, 6.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,
8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
4.0, 2.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 6.00 12.00 18.00 |
| 16.00 32.00 48.00 |
| 26.00 52.00 78.00 |
| 36.00 72.00 108.00 |
| 20.00 40.00 60.00 |

BX = | 48.00 96.00 144.00 |
| 34.00 68.00 102.00 |
| 38.00 76.00 114.00 |
| 66.00 132.00 198.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,
2.0,

2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5,
2.0, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0)

IDL =(same as input)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, . , . , . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |

BX = | 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| . . . |
| . . . |
| . . . |
└ ┘

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9 , AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

Chapter 10. Linear Algebraic Equations 793

Example 2

This example shows how to factor the 9 by 9 general sparse matrix A from
Example 1, solve the system ATx = b with three right-hand sides, and compute
the determinant of A. The default values for pivot processing are used for
IPARM. Input matrix A is stored in profile-in skyline storage mode. Output
matrix A is in LU factored form with U-1 on the diagonal, and is stored in
diagonal-out skyline storage mode. It is the same as output matrix A in
Example 1.

Call Statement and Input:

AU = (2.0, 2.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 6.0, 2.0, 4.0,
6.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 4.0, 8.0, 8.0, 2.0,
4.0, 6.0, 8.0, 2.0, 4.0, 6.0, 4.0, 10.0, 8.0, 10.0, 16.0)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (0.0, 2.0, 0.0, 2.0, 4.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,

0.0, 2.0, 4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,
4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 6.0, 8.0, 6.0, 10.0,
8.0, 0.0)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 10.00 20.00 30.00 |
| 20.00 40.00 60.00 |
| 28.00 56.00 84.00 |
| 30.00 60.00 90.00 |
| 40.00 80.00 120.00 |

BX = | 30.00 60.00 90.00 |
| 44.00 88.00 132.00 |
| 28.00 56.00 84.00 |
| 60.00 120.00 180.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, 5.12, 2.0, . , . , . , . , . , . , .)
BX =(same as output BX in Example 1)

Example 3

This example shows how to factor a 9 by 9 negative-definite general sparse
matrix A, solve the system Ax = b with three right-hand sides, and compute
the determinant of A. (Default values for pivot processing are not used for
IPARM because A is negative-definite.) Input matrix A, shown here, is stored in
diagonal-out skyline storage mode:

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

794 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| -2.0 -4.0 -4.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
| -2.0 -4.0 -6.0 -4.0 -4.0 0.0 -2.0 0.0 -4.0 |
| -2.0 -4.0 -6.0 -6.0 -6.0 -2.0 -4.0 0.0 -6.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -4.0 -4.0 -2.0 -4.0 |
| 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 -4.0 -10.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 |
| 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -8.0 -10.0 |
| -2.0 -4.0 -6.0 -6.0 -8.0 -6.0 -10.0 -8.0 -16.0 |
└ ┘

Output matrix A, shown here, is in LU factored form with U-1 on the diagonal,
and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -0.5 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 -0.5 -2.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
| 1.0 1.0 -0.5 -2.0 -2.0 0.0 -2.0 0.0 -2.0 |
| 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 0.0 -2.0 |
| 0.0 0.0 0.0 1.0 -0.5 -2.0 -2.0 -2.0 -2.0 |
| 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 |
| 0.0 0.0 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -0.5 |
└ ┘

Call Statement and Input:

AU = (-2.0, -4.0, -2.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0,
-4.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0, -8.0, -8.0,
-4.0, -4.0, -2.0, -8.0, -6.0, -4.0, -2.0, -16.0, -10.0,
-8.0, -10.0, -4.0, -6.0, -4.0, -2.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (0.0, 0.0, -2.0, 0.0, -4.0, -2.0, 0.0, -6.0, -4.0, -2.0,

0.0, -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -6.0, -4.0,
-2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -8.0, -10.0,
-6.0, -8.0, -6.0, -6.0, -4.0, -2.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,

. , . , . , . , . , . , . , . , .)
RPARM = (. , . , . , . , . , . , . , . , . , 10-15, . , . ,

. , . , . , . , . , . , . , . , . , . , . , . , .)
BX = (same as input BX in Example 1

Output:
AU = (-0.5, -0.5, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0, -2.0,

-0.5, -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0,
-2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -2.0, -0.5, -2.0,
-2.0, -2.0, -2.0, -2.0, -2.0, -2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0)

IDL =(same as input)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 9,

. , . , . , . , 9, 0, 0, 0, 0)
RPARM = (. , . , . , . , . , . , . , . , . , 10-15, . , . ,
. , . , . , 8.0, -5.12, 2.0, . , . , . , . , . , . , .)

┌ ┐
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

BX = | -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

Chapter 10. Linear Algebraic Equations 795

| . . . |
| . . . |
| . . . |
└ ┘

Example 4

This example shows how to factor the first six rows and columns, referred to
as matrix A1, of the 9 by 9 general sparse matrix A from Example 1 and
compute the determinant of A1. Input matrix A1, shown here, is stored in
diagonal-out skyline storage mode. Input matrix A1 is:

┌ ┐
| 2.0 2.0 2.0 0.0 0.0 0.0 |
| 2.0 4.0 4.0 2.0 2.0 0.0 |
| 2.0 4.0 6.0 4.0 4.0 0.0 |
| 2.0 4.0 6.0 6.0 6.0 2.0 |
| 0.0 0.0 0.0 2.0 4.0 4.0 |
| 0.0 2.0 4.0 6.0 8.0 6.0 |
└ ┘

Output matrix A1, shown here, is in LU factored form with U-1 on the
diagonal, and is stored in diagonal-out skyline storage mode. Output matrix
A1 is:

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 |
└ ┘

Call Statement and Input:
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(6, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

AU =(same as input AU in Example 1)
IDU = (1, 2, 4, 7, 10, 14, 17)
AL =(same as input AL in Example 1)
IDL = (1, 2, 4, 7, 11, 13, 18)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:
AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,
2.0,

2.0, 2.0, 0.5, 2.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)

IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 6.0, 4.0, 2.0, 0.0,
8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
4.0, 2.0)

IDL =(same as input)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 3,

. , . , . , . , 0, 0, 0, 0, 6)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 3.0, 6.4, 1.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

796 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 5

This example shows how to do a partial factorization of the 9 by 9 general
sparse matrix A from Example 1, where the first six rows and columns were
factored in Example 4. It factors the remaining three rows and columns and
computes the determinant of that part of the matrix. The input matrix, referred
to as A2, shown here, is made up of the output factored matrix A1 plus the
three remaining unfactored rows and columns of matrix A. Matrix A2 is:

┌ ┐
| 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
| 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 4.0 |
| 1.0 1.0 1.0 0.5 2.0 2.0 4.0 0.0 6.0 |
| 0.0 0.0 0.0 1.0 0.5 2.0 4.0 2.0 4.0 |
| 0.0 1.0 1.0 1.0 1.0 0.5 8.0 4.0 10.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
| 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
| 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
└ ┘

Both parts of input matrix A2 are stored in diagonal-out skyline storage mode.

Output matrix A2 is the same as output matrix A in Example 1 and is stored in
diagonal-out skyline storage mode.

Call Statement and Input:
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

AU =(same as output AU in Example 4)
IDU =(same as input IDU in Example 1)
AL =(same as output AL in Example 4)
IDL =(same as input IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:
AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 9,

. , . , . , . , 0, 0, 0, 0, 3)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8.0, 8.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 6

This example shows how to solve the system Ax = b with one right-hand side
for a general sparse matrix A. Input matrix A, used here, is the same as
factored output matrix A from Example 1, stored in profile-in skyline storage
mode. Here, output matrix A is unchanged on output and is stored in
profile-in skyline storage mode.

Call Statement and Input:
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | | | | |

CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 49 , BX , 9 , 1)

Chapter 10. Linear Algebraic Equations 797

AU = (0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0,
2.0,

2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5, 2.0,
2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.5)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,

0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 0.0)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX = (12.0, 58.0, 114.0, 176.0, 132.0, 294.0, 240.0, 274.0,

406.0)

Output:
AU =(same as input)
IDU =(same as input)
AL =(same as input)
IDL =(same as input)
IPARM =(same as input)
RPARM =(not relevant)
BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

798 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and
Solve Using Skyline Storage Mode)

Purpose

This subroutine can perform either or both of the following functions for
symmetric sparse matrix A, stored in skyline storage mode, and for vectors x and
b:
v Factor A and, optionally, compute the determinant of A.
v Solve the system Ax = b using the results of the factorization of matrix A,

produced on this call or a preceding call to this subroutine.

You have the choice of using either Gaussian elimination or Cholesky
decomposition. You also have the choice of using profile-in or diagonal-out skyline
storage mode for A on input or output.

Note: The input to the solve performed by this subroutine must be the output
from the factorization performed by this subroutine.

Syntax

Fortran CALL DSKFS (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx)

C and C++ dskfs (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx);

On Entry

n is the order of symmetric sparse matrix A. Specified as: an integer; n ≥ 0.

a is the array, referred to as A, containing one of three forms of the upper
triangular part of symmetric sparse matrix A, depending on the type of
computation performed, where:
v If you are doing a factor and solve or a factor only, and if IPARM(3) = 0,

then A contains the unfactored upper triangle of symmetric sparse matrix A.
v If you are doing a factor only, and if IPARM(3) > 0, then A contains the

partially factored upper triangle of symmetric sparse matrix A. The first
IPARM(3) columns in the upper triangle of A are already factored. The
remaining columns are factored in this computation.

v If you are doing a solve only, then A contains the factored upper triangle of
sparse matrix A, produced by a preceding call to this subroutine.

In each case:

If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

na is the length of array A.

Specified as: an integer; na ≥ 0 and na ≥ (IDIAG(n+1)-1).

idiag
is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A (in one of its three forms) in array A.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

Chapter 10. Linear Algebraic Equations 799

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) indicates whether certain default values for iparm and rparm are

used by this subroutine, where:
If IPARM(1) = 0, the following default values are used. For restrictions, see
“Notes ” on page 805.

IPARM(2) = 0
IPARM(3) = 0
IPARM(4) = 0
IPARM(5) = 0
IPARM(10) = 0
IPARM(11) = -1
IPARM(12) = -1
IPARM(13) = -1
IPARM(14) = -1
IPARM(15) = 0
RPARM(10) = 10-12

If IPARM(1) = 1, the default values are not used.
v IPARM(2) indicates the type of computation performed by this subroutine.

The following table gives the IPARM(2) values for each variation:

Type of Computation
Gaussian
Elimination Ax = b

Gaussian
Elimination Ax = b
and Determinant(A)

Cholesky
Decomposition Ax =
b

Cholesky
Decomposition Ax =
b and
Determinant(A)

Factor and Solve 0 10 100 110

Factor Only 1 11 101 111

Solve Only 2 N/A 102 N/A

v IPARM(3) indicates whether a full or partial factorization is performed on
matrix A, where:
If IPARM(3) = 0, and:
If you are doing a factor and solve or a factor only, then a full factorization
is performed for matrix A on rows and columns 1 through n.
If you are doing a solve only, this argument has no effect on the
computation, but must be set to 0.
If IPARM(3) > 0, and you are doing a factor only, then a partial factorization
is performed on matrix A. Rows 1 through IPARM(3) of columns 1 through
IPARM(3) in matrix A must be in factored form from a preceding call to this
subroutine. The factorization is performed on rows IPARM(3)+1 through n
and columns IPARM(3)+1 through n. For an illustration, see “Notes ” on page
805.

v IPARM(4) indicates the input storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDIAG on input, where:
If IPARM(4) = 0, diagonal-out skyline storage mode is used.
If IPARM(4) = 1, profile-in skyline storage mode is used.

v IPARM(5) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDAIG on output, where:
If IPARM(5) = 0, diagonal-out skyline storage mode is used.
If IPARM(5) = 1, profile-in skyline storage mode is used.

v IPARM(6) through IPARM(9) are reserved.

800 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v IPARM(10) has the following meaning, where:
If you are doing a factor and solve or a factor only, then IPARM(10)
indicates whether certain default values for iparm and rparm are used by this
subroutine, where:

If IPARM(10) = 0, the following default values are used.
For restrictions, see “Notes ” on page 805.

IPARM(11) = -1
IPARM(12) = -1
IPARM(13) = -1
IPARM(14) = -1
IPARM(15) = 0
RPARM(10) = 10-12

If IPARM(10) = 1, the default values are not used.
If you are doing a solve only, this argument is not used.

v IPARM(11) through IPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, then IPARM(11) through
IPARM(15) control the type of processing to apply to pivot elements
occurring in regions 1 through 5, respectively. The pivot elements are dkk for
Gaussian elimination and rkk for Cholesky decomposition for k = 1, n when
doing a full factorization, and they are k = IPARM(3)+1, n when doing a
partial factorization. The region in which a pivot element falls depends on
the sign and magnitude of the pivot element. The regions are determined by
RPARM(10). For a description of the regions and associated pivot values, see
“Notes ” on page 805. For each region i for i = 1,5, where the pivot occurs in
region i, the processing applied to the pivot element is determined by
IPARM(10+i), where:
If IPARM(10+i) = -1, the pivot element is trapped and computational error
2126 is generated. See “Error conditions” on page 808.
If IPARM(10+i) = 0, processing continues normally.

Note: A value of 0 is not permitted for region 3, because if processing
continues, a divide-by-zero exception occurs. In addition, if you are doing a
Cholesky decomposition, a value of 0 is not permitted in regions 1 and 2,
because a square root exception occurs.
If IPARM(10+i) = 1, the pivot element is replaced with the value in
RPARM(10+i), and processing continues normally.
If you are doing a solve only, these arguments are not used.

v IPARM(16) through IPARM(25), see On Return.

Specified as: a one-dimensional array of (at least) length 25, containing
integers, where:

IPARM(1) = 0 or 1
IPARM(2) = 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111
If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0
If IPARM(2) = 1, 11, 101, or 111, then 0 ≤ IPARM(3) ≤ n
IPARM(4), IPARM(5) = 0 or 1
If IPARM(2) = 0, 1, 10, or 11, then:

IPARM(10) = 0 or 1

Chapter 10. Linear Algebraic Equations 801

IPARM(11), IPARM(12) = -1, 0, or 1
IPARM(13) = -1 or 1
IPARM(14), IPARM(15) = -1, 0, or 1

If IPARM(2) = 100, 101, 110, or 111, then:

IPARM(10) = 0 or 1
IPARM(11), IPARM(12), IPARM(13) = -1 or 1
IPARM(14), IPARM(15) = -1, 0, or 1

rparm
is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(9) are reserved.
v RPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, RPARM(10) is the
tolerance value for small pivots. This sets the bounds for the pivot regions,
where pivots are processed according to the options you specify for the five
regions in IPARM(11) through IPARM(15), respectively. The suggested value is
10-15 ≤ IPARM(10) ≤ 1.
If you are doing a solve only, this argument is not used.

v RPARM(11) through RPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, RPARM(11) through
RPARM(15) are the fix-up values to use for the pivots in regions 1 through 5,
respectively. For each RPARM(10+i) for i = 1,5, where the pivot occurs in
region i:
If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where
|RPARM(10+i)| should be a sufficiently large nonzero value to avoid overflow
when calculating the reciprocal of the pivot. For Gaussian elimination, the
suggested value is 10-15 ≤ |RPARM(10+i)| ≤ 1. For Cholesky decomposition,
the value must be RPARM(10+i) > 0.
If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.
If you are doing a solve only, these arguments are not used.

v RPARM(16) through RPARM(25), see On Return.

Specified as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, 101, 110, or
111, then:

RPARM(10) ≥ 0.0

If IPARM(2) = 0, 1, 10, or 11, then RPARM(11) through RPARM(15) ≠ 0.0

If IPARM(2) = 100, 101, 110, or 111, then RPARM(11) through RPARM(15) > 0.0

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

802 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If naux = 0 and error 2015 is unrecoverable, DSKFS dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise, If you are doing a factor only

For 32-bit integer arguments
You can use naux ≥ n.

For 64-bit integer arguments
You can use naux ≥ 2n.

However, for optimal performance:

For 32-bit integer arguments
Use naux ≥ 3n.

For 64-bit integer arguments
Use naux ≥ 4n.

If you are doing a factor and solve or a solve only:

For 32-bit integer arguments
Use naux ≥ 3n + 4mbx.

For 64-bit integer arguments
Use naux ≥ 4n + 4mbx.

For further details on error handling and the special factor-only case, see
“Notes ” on page 805.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array, containing
the mbx right-hand side vectors b of the system Ax = b. Each vector b is length
n and is stored in the corresponding column of the array.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

ldbx
has the following meaning, where:

If you are doing a factor and solve or a solve only, ldbx is the leading
dimension of the array specified for bx.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an integer; ldbx ≥ n and:

If mbx ≠ 0, then ldbx > 0.

If mbx = 0, then ldbx ≥ 0.

mbx
has the following meaning, where:

If you are doing a factor and solve or a solve only, mbx is the number of
right-hand side vectors, b, in the array specified for bx.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an integer; mbx ≥ 0.

On Return

Chapter 10. Linear Algebraic Equations 803

a is the array, referred to as A, containing the upper triangular part of symmetric
sparse matrix A in LDLT or RTR factored form, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.

If IPARM(5) = 1, profile-in skyline storage mode is used for A.

(If mbx = 0 and you are doing a solve only, then a is unchanged on output.)
Returned as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

idiag
is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of the factored output matrix A in array A. (If mbx = 0 and
you are doing a solve only, then idiag is unchanged on output.)

Returned as: a one-dimensional array of (at least) length n+1, containing
integers.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) through IPARM(15) are unchanged.
v IPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:
If IPARM(16) = -1, your factorization did not complete successfully, resulting
in computational error 2126.
If IPARM(16) > 0, it is the row number k, in which the maximum absolute
value of the ratio akk/dkk for Gaussian elimination and akk/rkk for Cholesky
decomposition occurred, where:
If IPARM(3) = 0, k can be any of the rows, 1 through n, in the full
factorization.
If IPARM(3) > 0, k can be any of the rows, IPARM(3)+1 through n, in the
partial factorization.
If you are doing a solve only, this argument is not used in the computation
and is unchanged.

v IPARM(17) through IPARM(20) are reserved.
v IPARM(21) through IPARM(25) have the following meaning, where:

If you are doing a factor and solve or a factor only, IPARM(21) through
IPARM(25) have the following meanings for each region i for i = 1,5,
respectively:
If IPARM(20+i) = -1, your factorization did not complete successfully, resulting
in computational error 2126.
If IPARM(20+i) ≥ 0, it is the number of pivots in region i for the columns that
were factored in matrix A, where:
If IPARM(3) = 0, columns 1 through n were factored in the full factorization.
If IPARM(3) > 0, columns IPARM(3)+1 through n were factored in the partial
factorization.
If you are doing a solve only, these arguments are not used in the
computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing
integers.

rparm
is an array of parameters, RPARM(i), where:
v RPARM(1) through RPARM(15) are unchanged.

804 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v RPARM(16) has the following meaning, where:
If you are doing a factor and solve or a factor only, and:
If RPARM(16) = 0.0, your factorization did not complete successfully, resulting
in computational error 2126.
If |RPARM(16)| > 0.0, it is the ratio for row k, akk/dkk for Gaussian elimination
and akk/rkk for Cholesky decomposition, having the maximum absolute
value. Row k is indicated in IPARM(16), and:
If IPARM(3) = 0, the ratio corresponds to one of the rows, 1 through n, in the
full factorization.
If IPARM(3) > 0, the ratio corresponds to one of the rows, IPARM(3)+1
through n, in the partial factorization.
If you are doing a solve only, this argument is not used in the computation
and is unchanged.

v RPARM(17) and RPARM(18) have the following meaning, where:
If you are computing the determinant of matrix A, then RPARM(17) is the
mantissa, detbas, and RPARM(18) is the power of 10, detpwr, used to express
the value of the determinant: detbas(10detpwr), where 1 ≤ detbas < 10. Also:
If IPARM(3) = 0, the determinant is computed for columns 1 through n in the
full factorization.
If IPARM(3) > 0, the determinant is computed for columns IPARM(3)+1
through n in the partial factorization.
If you are not computing the determinant of matrix A, these arguments are
not used in the computation and are unchanged.

v RPARM(19) through RPARM(25) are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing
long-precision real numbers.

bx has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array, containing
the mbx solution vectors x of the system Ax = b. Each vector x is length n and
is stored in the corresponding column of the array. (If mbx = 0, then bx is
unchanged on output.)

If you are doing a factor only, this argument is not used in the computation
and is unchanged.

Returned as: an ldbx by (at least) mbx array, containing long-precision real
numbers.

Notes
1. When doing a solve only, you should specify the same factorization method in

IPARM(2), Gaussian elimination or Cholesky decomposition, that you specified
for your factorization on a previous call to this subroutine.

2. If you set either IPARM(1) = 0 or IPARM(10) = 0, indicating you want to use the
default values for IPARM(11) through IPARM(15) and RPARM(10), then:
v Matrix A must be positive definite.
v No pivots are fixed, using RPARM(11) through RPARM(15) values.
v No small pivots are tolerated; that is, the value should be |pivot| >

RPARM(10).

Chapter 10. Linear Algebraic Equations 805

3. Many of the input and output parameters for iparm and rparm are defined for
the five pivot regions handled by this subroutine. The limits of the regions are
based on RPARM(10), as shown in Figure 12. The pivot values in each region are:

Region 1: pivot < -RPARM(10)
Region 2: -RPARM(10) ≤ pivot < 0
Region 3: pivot = 0
Region 4: 0 < pivot ≤ RPARM(10)
Region 5: pivot > RPARM(10)

4. The IPARM(4) and IPARM(5) arguments allow you to specify the same or
different skyline storage modes for your input and output arrays for matrix A.
This allows you to change storage modes as needed. However, if you are
concerned with performance, you should use diagonal-out skyline storage
mode for both input and output, if possible, because there is less overhead.
For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 124 and “Diagonal-Out Skyline
Storage Mode” on page 122. Those descriptions use different array and variable
names from the ones used here. To relate the two sets, use the following table:

Name Here Name in the Storage Description

A AU

na nu

IDIAG IDU

5. Following is an illustration of the portion of matrix A factored in the partial
factorization when IPARM(3) > 0. In this case, the subroutine assumes that rows
and columns 1 through IPARM(3) are already factored and that rows and
columns IPARM(3)+1 through n are to be factored in this computation.

RPARM(10)0

Pivot
Values:

Regions: ... 1) (2) (3) (4) (5 ...
RPARM(10)

Figure 12. Five Pivot Regions

806 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

You use the partial factorization function when, for design or storage reasons,
you must factor the matrix A in stages. When doing a partial factorization, you
must use the same skyline storage mode for all parts of the matrix as it is
progressively factored.

6. Your various arrays must have no common elements; otherwise, results are
unpredictable.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

This subroutine can factor, compute the determinant of, and solve symmetric
sparse matrix A, stored in skyline storage mode. It can use either Gaussian
elimination or Cholesky decomposition. For all computations, input matrix A can
be stored in either diagonal-out or profile-in skyline storage mode. Output matrix
A can also be stored in either of these modes and can be different from the mode
used for input.

For Gaussian elimination, matrix A is factored into the following form using
specified pivot processing:

A = LDLT

where:

D is a diagonal matrix.
L is a lower triangular matrix.

The transformed matrix A, factored into its LDLT form, is stored in packed format
in array A, such that the inverse of the diagonal matrix D is stored in the
corresponding elements of array A. The off-diagonal elements of the unit upper
triangular matrix LT are stored in the corresponding off-diagonal elements of array
A.

For Cholesky decomposition, matrix A is factored into the following form using
specified pivot processing:

A = RTR

where R is an upper triangular matrix

The transformed matrix A, factored into its RTR form, is stored in packed format in
array A, such that the inverse of the diagonal elements of the upper triangular
matrix R is stored in the corresponding elements of array A. The off-diagonal
elements of matrix R are stored in the corresponding off-diagonal elements of
array A.

The partial factorization of matrix A, which you can do when you specify the
factor-only option, assumes that the first IPARM(3) rows and columns are already
factored in the input matrix. It factors the remaining n-IPARM(3) rows and columns
in matrix A. (See “Notes ” on page 805 for an illustration.) It updates only the
elements in array A corresponding to the part of matrix A that is factored.

Chapter 10. Linear Algebraic Equations 807

The determinant can be computed with any of the factorization computations.
With a full factorization, you get the determinant for the whole matrix. With a
partial factorization, you get the determinant for only that part of the matrix
factored in this computation.

The system Ax = b, having multiple right-hand sides, is solved for x using the
transformed matrix A produced by this call or a subsequent call to this subroutine.

See references [11 on page 1314], [19 on page 1314], [32 on page 1315], [56 on page
1316], [83 on page 1318]. If n is 0, no computation is performed. If mbx is 0, no
solve is performed.

Error conditions

Resource Errors

v Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.
v Unable to allocate internal work area.

Computational Errors

1. If a pivot occurs in region i for i = 1,5 and IPARM(10+i) = 1, the pivot value
is replaced with RPARM(10+i), an attention message is issued, and processing
continues.

2. Unacceptable pivot values occurred in the factorization of matrix A.
v One or more diagonal elements of D or R contains unacceptable pivots

and no valid fixup is applicable. The row number i of the first
unacceptable pivot element is identified in the computational error
message.

v The return code is set to 2.
v i can be determined at run time by use of the ESSL error-handling

facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2126 in the ESSL error option
table; otherwise, the default value causes your program to terminate
when this error occurs. For details, see “What Can You Do about ESSL
Computational Errors?” on page 66.

Input-Argument Errors

1. n < 0
2. na < 0
3. IDIAG(n+1) > na+1
4. IDIAG(i+1) ≤ IDIAG(i) for i = 1, n
5. IDIAG(i+1) > IDIAG(i)+i and IPARM(4) = 0 for i = 1, n
6. IDIAG(i) > IDIAG(i-1)+i and IPARM(4) = 1 for i = 2, n
7. IPARM(1) ≠ 0 or 1
8. IPARM(2) ≠ 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111
9. IPARM(3) < 0

10. IPARM(3) > n
11. IPARM(3) > 0 and IPARM(2) ≠ 1, 11, 101, or 111
12. IPARM(4), IPARM(5) ≠ 0 or 1
13. IPARM(2) = 0, 1, 10, or 11 and:

IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12) ≠ -1, 0, or 1

808 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPARM(13) ≠ -1 or 1
IPARM(14), IPARM(15) ≠ -1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) = 0.0 and IPARM(10+i) = 1 for i = 1,5

14. IPARM(2) = 100, 101, 110, or 111 and:

IPARM(10) ≠ 0 or 1
IPARM(11), IPARM(12), IPARM(13) ≠ -1 or 1
IPARM(14), IPARM(15) ≠ -1, 0, or 1
RPARM(10) < 0.0
RPARM(10+i) ≤ 0.0 and IPARM(10+i) = 1 for i = 1,5

15. IPARM(2) = 0, 2, 10, 100, 102, or 110 and:

ldbx ≤ 0 and mbx ≠ 0 and n ≠ 0
ldbx < 0 and mbx = 0
ldbx < n and mbx ≠ 0
mbx < 0

16. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows how to factor a 9 by 9 symmetric sparse matrix A and
solve the system Ax = b with three right-hand sides. It uses Gaussian
elimination. The default values are used for IPARM and RPARM. Input matrix A,
shown here, is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 2.0 3.0 3.0 2.0 2.0 0.0 2.0 0.0 |
| 1.0 2.0 3.0 4.0 3.0 3.0 0.0 3.0 0.0 |
| 0.0 1.0 2.0 3.0 4.0 4.0 1.0 4.0 0.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 2.0 5.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
└ ┘

Output matrix A, shown here, is in LDLT factored form with D-1 on the
diagonal, and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

Chapter 10. Linear Algebraic Equations 809

A = (1.0, 2.0, 1.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0, 4.0,
3.0, 2.0, 1.0, 5.0, 4.0, 3.0, 2.0, 1.0, 3.0, 2.0, 1.0,
7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 4.00 8.00 12.00 |
| 10.00 20.00 30.00 |
| 15.00 30.00 45.00 |
| 19.00 38.00 57.00 |
| 19.00 38.00 57.00 |

BX = | 23.00 46.00 69.00 |
| 11.00 22.00 33.00 |
| 28.00 56.00 84.00 |
| 10.00 20.00 30.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

IDIAG =(same as input)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 8, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, . , . , . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |

BX = | 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| 1.00 2.00 3.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 2

This example shows how to factor the 9 by 9 symmetric sparse matrix A from
Example 1, solve the system Ax = b with three right-hand sides, and compute
the determinant of A. It uses Gaussian elimination. The default values for pivot
processing are used for IPARM. Input matrix A is stored in profile-in skyline
storage mode. Output matrix A is in LDLT factored form with D-1 on the
diagonal, and is stored in diagonal-out skyline storage mode. It is the same as
output matrix A in Example 1.

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

810 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = (1.0, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 4.0, 1.0,
2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0,
1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 7.0, 1.0, 2.0, 3.0, 4.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 4.00 8.00 12.00 |
| 10.00 20.00 30.00 |
| 15.00 30.00 45.00 |
| 19.00 38.00 57.00 |
| 19.00 38.00 57.00 |

BX = | 23.00 46.00 69.00 |
| 11.00 22.00 33.00 |
| 28.00 56.00 84.00 |
| 10.00 20.00 30.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Output:

A =(same as output A in Example 1)
IDIAG =(same as input IDIAG in Example 1)
IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . , 8,

. , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as output BX in Example 1)

Example 3

This example shows how to factor a 9 by 9 negative-definite symmetric sparse
matrix A, solve the system Ax = b with three right-hand sides, and compute
the determinant of A. It uses Gaussian elimination. (Default values for pivot
processing are not used for IPARM because A is negative-definite.) Input matrix
A, shown here, is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 -1.0 0.0 |
| -1.0 -2.0 -3.0 -3.0 -2.0 -2.0 0.0 -2.0 0.0 |
| -1.0 -2.0 -3.0 -4.0 -3.0 -3.0 0.0 -3.0 0.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -4.0 -1.0 -4.0 0.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -2.0 -5.0 -1.0 |
| 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -3.0 -2.0 |
| 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -3.0 -7.0 -3.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -4.0 |
└ ┘

Output matrix A, shown here, is in LDLT factored form with D-1 on the
diagonal, and is stored in diagonal-out skyline storage mode. Matrix A is:

┌ ┐
| -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 -1.0 1.0 1.0 0.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 1.0 -1.0 1.0 1.0 |

Chapter 10. Linear Algebraic Equations 811

| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 -1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

A = (-1.0, -2.0, -1.0, -3.0, -2.0, -1.0, -4.0, -3.0, -2.0,
-1.0, -4.0, -3.0, -2.0, -1.0, -5.0, -4.0, -3.0, -2.0,
-1.0, -3.0, -2.0, -1.0, -7.0, -3.0, -5.0, -4.0, -3.0,
-2.0, -1.0, -4.0, -3.0, -2.0, -1.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,

. , . , . , . , . , . , . , . , .)

RPARM = (. , . , . , . , . , . , . , . , . , 10-15, . , . ,
. , . , . , . , . , . , . , . , . , . , . , . , .)

BX =(same as input BX in Example 1)

Output:

A = (-1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0,
1.0, 1.0,

-1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0,
1.0, -1.0 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0,
1.0)

IDIAG =(same as input)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 8,

. , . , . , . , 9, 0, 0, 0, 0)
RPARM = (. , . , . , . , . , . , . , . , . ,10-15, . , . ,

. , . , . , 7.0, -1.0, 0.0, . , . , . , . , . , . , .)

┌ ┐
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |

BX = | -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| -1.00 -2.00 -3.00 |
| . . . |
| . . . |
| . . . |
└ ┘

Example 4

This example shows how to factor the first six rows and columns, referred to
as matrix A1, of the 9 by 9 symmetric sparse matrix A from Example 1 and
compute the determinant of A1. It uses Gaussian elimination. Input matrix A1,
shown here, is stored in diagonal-out skyline storage mode. Input matrix A1 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 |
| 1.0 2.0 2.0 2.0 1.0 1.0 |
| 1.0 2.0 3.0 3.0 2.0 2.0 |
| 1.0 2.0 3.0 4.0 3.0 3.0 |
| 0.0 1.0 2.0 3.0 4.0 4.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 |
└ ┘

812 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output matrix A1, shown here, is in LDLT factored form with D-1 on the
diagonal, and is stored in diagonal-out skyline storage mode. Output matrix
A1 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (6 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

A =(same as input A in Example 1)
IDIAG = (1, 2, 4, 7, 11, 15, 20)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 2.0, 1.0,
7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)

IDIAG =(same as input)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 6,

. , . , . , . , 0, 0, 0, 0, 6)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 5.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 5

This example shows how to do a partial factorization of the 9 by 9 symmetric
sparse matrix A from Example 1, where the first six rows and columns were
factored in Example 4. It factors the remaining three rows and columns and
computes the determinant of that part of the matrix. It uses Gaussian
elimination. The input matrix, referred to as A2, shown here, is made up of the
output factored matrix A1 plus the three remaining unfactored rows and
columns of matrix A Matrix A2 is:

┌ ┐
| 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 0.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 0.0 3.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 0.0 |
| 0.0 1.0 1.0 1.0 1.0 1.0 2.0 5.0 1.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
| 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
└ ┘

Chapter 10. Linear Algebraic Equations 813

Both parts of input matrix A2 are stored in diagonal-out skyline storage mode.

Output matrix A2 is the same as output matrix A in Example 1 and is stored in
diagonal-out skyline storage mode.

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (9 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

A =(same as output A in Example 4)
IDIAG =(same as input IDIAG in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

Output:

A =(same as output A in Example 1)

IDIAG =(same as output IDIAG in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 8,

. , . , . , . , 0, 0, 0, 0, 3)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

Example 6

This example shows how to solve the system Ax = b with one right-hand side
for a symmetric sparse matrix A. Input matrix A, used here, is the same as
factored output matrix A from Example 1, stored in profile-in skyline storage
mode. It specifies Gaussian elimination, as used in Example 1. Here, output
matrix A is unchanged on output and is stored in profile-in skyline storage
mode.

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS (9, A, 33, IDIAG, IPARM, RPARM, AUX, 31 , BX , 9 , 1)

A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX = (10.0, 38.0, 64.0, 87.0, 103.0, 133.0, 80.0, 174.0, 80.0)

Output:

A =(same as input)
IDIAG =(same as input)

814 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPARM =(same as input)
APARM =(same as input)
BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

Example 7

This example shows how to factor a 9 by 9 symmetric sparse matrix A and
solve the system Ax = b with four right-hand sides. It uses Cholesky
decomposition. Input matrix A, shown here, is stored in profile-in skyline
storage mode Matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 5.0 3.0 0.0 3.0 0.0 0.0 0.0 3.0 |
| 1.0 3.0 11.0 3.0 5.0 3.0 3.0 0.0 5.0 |
| 0.0 0.0 3.0 17.0 5.0 5.0 5.0 0.0 5.0 |
| 1.0 3.0 5.0 5.0 29.0 7.0 7.0 0.0 9.0 |
| 0.0 0.0 3.0 5.0 7.0 39.0 9.0 6.0 9.0 |
| 0.0 0.0 3.0 5.0 7.0 9.0 53.0 8.0 11.0 |
| 0.0 0.0 0.0 0.0 0.0 6.0 8.0 66.0 10.0 |
| 1.0 3.0 5.0 5.0 9.0 9.0 11.0 10.0 89.0 |
└ ┘

Output matrix A, shown here, is in RTR factored form with the inverse of the
diagonal of R on the diagonal, and is stored in profile-in skyline storage mode.
Matrix A is:

┌ ┐
| 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 .5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
| 1.0 1.0 .333 1.0 1.0 1.0 1.0 0.0 1.0 |
| 0.0 0.0 1.0 .25 1.0 1.0 1.0 0.0 1.0 |
| 1.0 1.0 1.0 1.0 .2 1.0 1.0 0.0 1.0 |
| 0.0 0.0 1.0 1.0 1.0 .167 1.0 1.0 1.0 |
| 0.0 0.0 1.0 1.0 1.0 1.0 .143 1.0 1.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 1.0 .125 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .111 |
└ ┘

Call Statement and Input:
N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
| | | | | | | | | | |

CALL DSKFS(9, A, 34, IDIAG, IPARM, RPARM, AUX, 43 , BX , 10 , 4)

A = (1.0, 1.0, 5.0, 1.0, 3.0, 11.0, 3.0, 17.0, 1.0, 3.0, 5.0,
5.0, 29.0, 3.0, 5.0, 7.0, 39.0, 3.0, 5.0, 7.0, 9.0, 53.0,
6.0, 8.0, 66.0, 1.0, 3.0, 5.0, 5.0, 9.0, 9.0, 11.0, 10.0,
89.0)

IDIAG = (1, 3, 6, 8, 13, 17, 22, 25, 34, 35)
IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,

. , . , . , . , . , . , . , . , . , .)

RPARM =(not relevant)
┌ ┐
| 5.00 10.00 15.00 20.00 |
| 15.00 30.00 45.00 60.00 |
| 34.00 68.00 102.00 136.00 |
| 40.00 80.00 120.00 160.00 |

BX = | 66.00 132.00 198.00 264.00 |
| 78.00 156.00 234.00 312.00 |
| 96.00 192.00 288.00 384.00 |
| 90.00 180.00 270.00 360.00 |
| 142.00 284.00 426.00 568.00 |
| |
└ ┘

Output:

Chapter 10. Linear Algebraic Equations 815

A = (1.0, 1.0, .5, 1.0, 1.0, .333, 1.0, .25, 1.0, 1.0,
1.0,

1.0, .2, 1.0, 1.0, 1.0, .167, 1.0, 1.0, 1.0, 1.0, .143,
1.0, 1.0, .125, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
.111)

IDIAG =(same as input)
IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,

9, . , . , . , . , 0, 0, 0, 0, 9)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

. , 9.89, 1.32, 11.0, . , . , . , . , . , . , .)

┌ ┐
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |

BX = | 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| 1.00 2.00 3.00 4.00 |
| |
└ ┘

816 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSRIS (Iterative Linear System Solver for a General or Symmetric
Sparse Matrix Stored by Rows)

Purpose

This subroutine solves a general or symmetric sparse linear system of equations,
using an iterative algorithm, with or without preconditioning. The methods include
conjugate gradient (CG), conjugate gradient squared (CGS), generalized minimum
residual (GMRES), more smoothly converging variant of the CGS method
(Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR). The
preconditioners include an incomplete LU factorization, an incomplete Cholesky
factorization (for positive definite symmetric matrices), diagonal scaling, or
symmetric successive over-relaxation (SSOR) with two possible choices for the
diagonal matrix: one uses the absolute values sum of the input matrix, and the
other uses the diagonal obtained from the LU factorization. The sparse matrix is
stored using storage-by-rows for general matrices and upper- or
lower-storage-by-rows for symmetric matrices. Matrix A and vectors x and b are
used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsris (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry

stor
indicates the form of sparse matrix A and the storage mode used, where:

If stor = 'G', A is a general sparse matrix, stored using storage-by-rows.

If stor = 'U', A is a symmetric sparse matrix, stored using upper-storage-by-
rows.

If stor = 'L', A is a symmetric sparse matrix, stored using lower-storage-by-
rows.

Specified as: a single character. It must be 'G', 'U', or 'L'.

init
indicates the type of computation to be performed, where:

If init = 'I', the preconditioning matrix is computed, the internal representation
of the sparse matrix is generated, and the iteration procedure is performed.
The coefficient matrix and preconditioner in internal format are saved in aux1.

If init = 'S', the iteration procedure is performed using the coefficient matrix
and the preconditioner in internal format, stored in aux1, created in a
preceding call to this subroutine with init = 'I'. You use this option to solve the
same matrix for different right-hand sides, b, optimizing your performance. As
long as you do not change the coefficient matrix and preconditioner in aux1,
any number of calls can be made with init = 'S'.

Specified as: a single character. It must be 'I' or 'S'.

Chapter 10. Linear Algebraic Equations 817

n is the order of the linear system Ax = b and the number of rows and columns
in sparse matrix A.

Specified as: an integer; n ≥ 0.

ar is the sparse matrix A of order n, stored by rows in an array, referred to as AR.
The stor argument indicates the storage variation used for storing matrix A.

Specified as: a one-dimensional array, containing long-precision real numbers.
The number of elements in this array can be determined by subtracting 1 from
the value in IA(n+1).

ja is the array, referred to as JA, containing the column numbers of each nonzero
element in sparse matrix A.

Specified as: a one-dimensional array, containing integers; 1 ≤ (JA elements) ≤
n. The number of elements in this array can be determined by subtracting 1
from the value in IA(n+1).

ia is the row pointer array, referred to as IA, containing the starting positions of
each row of matrix A in array AR and one position past the end of array AR.
Specified as: a one-dimensional array of (at least) length n+1, containing
integers; IA(i+1) ≥ IA(i) for i = 1, n+1.

b is the vector b of length n, containing the right-hand side of the matrix
problem.

Specified as: a one-dimensional array of (at least) length n, containing
long-precision real numbers.

x is the vector x of length n, containing your initial guess of the solution of the
linear system.

Specified as: a one-dimensional array of (at least) length n, containing
long-precision real numbers. The elements can have any value, and if no guess
is available, the value can be zero.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 4
IPARM(4) = 4
IPARM(5) = 1
RPARM(1) = 10-6

RPARM(2) = 1
v IPARM(2) is the flag used to select the iterative procedure used in this

subroutine.
If IPARM(2) = 1, the conjugate gradient (CG) method is used. Note that this
algorithm should only be used with positive definite symmetric matrices.
If IPARM(2) = 2, the conjugate gradient squared (CGS) method is used.
If IPARM(2) = 3, the generalized minimum residual (GMRES) method,
restarted after k steps, is used.
If IPARM(2) = 4, the more smoothly converging variant of the CGS method
(Bi-CGSTAB) is used.

818 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If IPARM(2) = 5, the transpose-free quasi-minimal residual method (TFQMR)
is used.

v IPARM(3) has the following meaning, where:
If IPARM(2) ≠ 3, then IPARM(3) is not used.
If IPARM(2) = 3, then IPARM(3) = k, where k is the number of steps after
which the generalized minimum residual method is restarted. A value for k
in the range of 5 to 10 is suitable for most problems.

v IPARM(4) is the flag that determines the type of preconditioning.
If IPARM(4) = 1, the system is not preconditioned.
If IPARM(4) = 2, the system is preconditioned by a diagonal matrix.
If IPARM(4) = 3, the system is preconditioned by SSOR splitting with the
diagonal given by the absolute values sum of the input matrix.
If IPARM(4) = 4, the system is preconditioned by an incomplete LU
factorization.
If IPARM(4) = 5, the system is preconditioned by SSOR splitting with the
diagonal given by the incomplete LU factorization.

Note: The multithreaded version of DSRIS only runs on multiple threads
when IPARM(4) = 1 or 2.

v IPARM(5) is the flag used to select the stopping criterion used in the
computation, where the following items are used in the definitions of the
stopping criteria below:
– ε is the desired relative accuracy and is stored in RPARM(1).
– xj is the solution found at the j-th iteration.
– rj and r0 are the preconditioned residuals obtained at iterations j and 0,

respectively. (The residual at iteration j is given by b-Axj.)
If IPARM(5) = 1, the iterative method is stopped when:

{rj{2 / {xj{2 < ε

Note: IPARM(5) = 1 is the default value assumed by ESSL if you do not
specify one of the values described here; therefore, if you do not update
your program to set an IPARM(5) value, you, by default, use the above
stopping criterion.
If IPARM(5) = 2, the iterative method is stopped when:

{rj{2 / {r0{2 < ε

If IPARM(5) = 3, the iterative method is stopped when:

{xj -xj-1{2 / {xj{2 < ε

Note: Stopping criterion 3 performs poorly with the TFQMR method;
therefore, if you specify TFQMR (IPARM(2) = 5), you should not specify
stopping criterion 3.

v IPARM(6), see On Return.

Specified as: an array of (at least) length 6, containing integers, where:

IPARM(1) ≥ 0
IPARM(2) = 1, 2, 3, 4, or 5
If IPARM(2) = 3, then IPARM(3) > 0

Chapter 10. Linear Algebraic Equations 819

IPARM(4) = 1, 2, 3, 4, or 5
IPARM(5) = 1, 2, or 3 (Other values default to stopping criterion 1.)

rparm
is an array of parameters, RPARM(i), where:

RPARM(1) has the following meaning, where:
v if RPARM(1) > 0, then RPARM(1) is the relative accuracy ε used in the stopping

criterion.
v if RPARM(1) = 0, then the solver is forced to evaluate at most IPARM(1)

iterations.

See 5 on page 822.

RPARM(2), see On Return.

RPARM(3) has the following meaning, where:
v If IPARM(4) ≠ 3, then RPARM(3) is not used.
v If IPARM(4) = 3, then RPARM(3) is the acceleration parameter used in SSOR.

(A value in the range 0.5 to 2.0 is suitable for most problems.)

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers, where:

RPARM(1) ≥ 0
If IPARM(4) = 3, RPARM(3) > 0

aux1
is working storage for this subroutine, where:

If init = 'I', the working storage is computed. It can contain any values.

If init = 'S', the working storage is used in solving the linear system. It contains
the coefficient matrix and preconditioner in internal format, computed in an
earlier call to this subroutine.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer, where:

In these formulas nw has the following value:

If stor = 'G', then nw = IA(n+1)-1+n.
If stor = 'U' or 'L', then nw = 2(IA(n+1)-1).

For 32-bit integer arguments

If IPARM(4) = 1, use naux1 ≥ (3/2)nw + (1/2)n + 20.
If IPARM(4) = 2, use naux1 ≥ (3/2)nw + (3/2)n + 20.
If IPARM(4) = 3, 4, or 5, use naux1 ≥ 3nw + n + 20.

For 64-bit integer arguments

If IPARM(4) = 1, use naux1 ≥ 2nw + n + 40.
If IPARM(4) = 2, use naux1 ≥ 2nw + 2n + 40.
If IPARM(4) = 3, 4, or 5, use naux1 ≥ 4nw + 4n + 40.

820 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: If you receive an attention message, you have not specified sufficient
auxiliary storage to achieve optimal performance, but it is enough to perform
the computation. To obtain optimal performance, you need to use the amount
given by the attention message.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is working storage used by this subroutine that is available for
use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, DSRIS dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise,

If IPARM(2) = 1, use naux2 ≥ 4n.
If IPARM(2) = 2, use naux2 ≥ 7n.
If IPARM(2) = 3, use naux2 ≥ (k+2)n+k(k+4)+1, where k = IPARM(3).
If IPARM(2) = 4, use naux2 ≥ 7n.
If IPARM(2) = 5, use naux2 ≥ 9n.

On Return

ar is the sparse matrix A of order n, stored by rows in an array, referred to as AR.
The stor argument indicates the storage variation used for storing matrix A.
The order of the elements in each row of A in AR may be changed on output.

Returned as: a one-dimensional array, containing long-precision real numbers.
The number of elements in this array can be determined by subtracting 1 from
the value in IA(n+1).

ja is the array, referred to as JA, containing the column numbers of each nonzero
element in sparse matrix A. These elements correspond to the arrangement of
the contents of AR on output.

Returned as: a one-dimensional array, containing integers; 1 ≤ (JA elements) ≤
n. The number of elements in this array can be determined by subtracting 1
from the value in IA(n+1).

x is the vector x of length n, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length n, containing
long-precision real numbers.

iparm
is an array of parameters, IPARM(i), where:

IPARM(1) through IPARM(5) are unchanged.

IPARM(6) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 6, containing integers.

rparm
is an array of parameters, RPARM(i), where:

Chapter 10. Linear Algebraic Equations 821

RPARM(1) is unchanged.

RPARM(2) contains the estimate of the error of the solution. If the process
converged, RPARM(2) ≤ ε.

RPARM(3) is unchanged.

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux1
is working storage for this subroutine, containing the coefficient matrix and
preconditioner in internal format, ready to be passed in a subsequent
invocation of this subroutine. Returned as: an area of storage, containing naux1
long-precision real numbers.

Notes
1. If you want to solve the same sparse linear system of equations multiple times

using a different algorithm with the same preconditioner and using a different
right-hand side each time, you get the best performance by using the following
technique. Call DSRIS the first time with init = 'I'. This solves the system, and
then stores the coefficient matrix and preconditioner in internal format in aux1.
On the subsequent invocations of DSRIS with different right-hand sides, specify
init = 'S'. This indicates to DSRIS to use the contents of aux1, saving the time to
convert your coefficient matrix and preconditioner to internal format. If you use
this technique, you should not modify the contents of aux1 between calls to
DSRIS.
In some cases, you can specify a different algorithm in IPARM(2) when making
calls with init = 'S'. (See Example 2.) However, DSRIS sometimes needs
different information in aux1 for different algorithms. When this occurs, DSRIS
issues an attention message, continues processing the computation, and then
resets the contents of aux1. Your performance is not improved in this case,
which is functionally equivalent to calling DSRIS with init = 'I'.

2. If you use the CG method with init = 'I', you must use the CG method when
you specify init = 'S'. However, if you use a different method with init = 'I', you
can use any other method, except CG, when you specify init = 'S'.

3. These subroutines accept lowercase letters for the stor and init arguments.
4. Matrix A, vector x, and vector b must have no common elements; otherwise,

results are unpredictable.
5. The algorithm computes a sequence of approximate solution vectors x that

converge to the solution. The iterative procedure is stopped when the selected
stopping criterion is satisfied or when more than the maximum number of
iterations (in IPARM(1)) is reached.
For the stopping criteria specified in IPARM(5), the relative accuracy ε (in
RPARM(1)) must be specified reasonably (10-4 to 10-8). If you specify a larger ε,
the algorithm takes fewer iterations to converge to a solution. If you specify a
smaller ε, the algorithm requires more iterations and computer time, but
converges to a more precise solution. If the value you specify is unreasonably
small, the algorithm may fail to converge within the number of iterations it is
allowed to perform.

6. For a description of how sparse matrices are stored by rows, see
“Storage-by-Rows” on page 120.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

822 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

The linear system:

Ax = b

is solved using one of the following methods: conjugate gradient (CG), conjugate
gradient squared (CGS), generalized minimum residual (GMRES), more smoothly
converging variant of the CGS method (Bi-CGSTAB), or transpose-free
quasi-minimal residual method (TFQMR), where:

A is a sparse matrix of order n. The matrix is stored in arrays AR, IA, and JA. If it is
general, it is stored by rows. If it is symmetric, it can be stored using upper- or
lower-storage-by-rows.

x is a vector of length n.

b is a vector of length n.

One of the following preconditioners is used:
v an incomplete LU factorization
v an incomplete Cholesky factorization (for positive definite symmetric matrices)
v diagonal scaling
v symmetric successive over-relaxation (SSOR) with two possible choices for the

diagonal matrix:
– the absolute values sum of the input matrix
– the diagonal obtained from the LU factorization

See references [44 on page 1316], [67 on page 1317], [97 on page 1319], [103 on
page 1319], [106 on page 1319], and [112 on page 1320].

When you call this subroutine to solve a system for the first time, you specify init
= 'I'. After that, you can solve the same system any number of times by calling this
subroutine each time with init = 'S'. These subsequent calls use the coefficient
matrix and preconditioner, stored in internal format in aux1. You optimize
performance by doing this, because certain portions of the computation have
already been performed.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
The following errors, with their corresponding return codes, can occur in this
subroutine. For details on error handling, see “What Can You Do about ESSL
Computational Errors?” on page 66.
v For error 2110, if RPARM(1) > , return code 1 indicates that the subroutine

exceeded IPARM(1) iterations without converging. Vector x contains the
approximate solution computed at the last iteration.

v For error 2130, return code 2 indicates that the incomplete LU factorization
of A could not be completed, because one pivot was 0.

Chapter 10. Linear Algebraic Equations 823

v For error 2124, the subroutine has been called with init = 'S', but the data
contained in aux1 was computed for a different algorithm. An attention
message is issued. Processing continues, and the contents of aux1 are reset
correctly.

v For error 2134, return code 3 indicates that the data contained in aux1 is not
consistent with the input sparse matrix. The subroutine has been called with
init = 'S', and aux1 contains an incomplete factorization and internal data
storage for the input matrix A that was computed by a previous call to the
subroutine when init = 'I'. This error indicates that aux1 has been modified
since the last call to the subroutine, or that the input matrix is not the same
as the one that was factored. If the default action has been overridden, the
subroutine can be called again with the same parameters, with the exception
of IPARM(4) = 1 or 4.

v For error 2131, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain zero.

v For error 2129, return code 5 indicates that the matrix is not positive definite.
v For error 2128, return code 8 indicates an internal ESSL error. Please contact

your IBM Representative.

Input-Argument Errors

1. n < 0
2. stor ≠ 'G', 'U', or 'L'
3. init ≠ 'I' or 'S'
4. IA(n+1) < 1
5. IA(i+1)-IA(i) < 0, for any i = 1, n
6. IPARM(1) < 0
7. IPARM(2) ≠ 1, 2, 3, 4, or 5
8. IPARM(3) ≤ 0 and IPARM(2) = 3
9. IPARM(4) ≠ 1, 2, 3, 4, or 5

10. RPARM(1) < 0
11. RPARM(3) ≤ 0 and IPARM(4) = 3
12. naux1 is too small—that is, less than the minimum required value. Return

code 6 is returned if error 2015 is recoverable.
13. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 7 is returned for naux2 if
error 2015 is recoverable.

Examples

Example 1

This example finds the solution of the linear system Ax = b for the sparse
matrix A, which is stored by rows in arrays AR, IA, and JA. The system is
solved using the Bi-CGSTAB algorithm. The iteration is stopped when the
norm of the residual is less than the given threshold specified in RPARM(1). The
algorithm is allowed to perform 20 iterations. The process converges after 9
iterations. Matrix A is:

┌ ┐
| 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |

824 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
└ ┘

Call Statement and Input:

AR = (2.0, 2.0, -1.0, 1.0, 2.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0,
1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0)

JA = (1, 2, 3, 2, 3, 1, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8,
9, 8, 9)

IA = (1, 2, 4, 6, 9, 12, 15, 18, 21, 23)
B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 4
IPARM(3) = 0
IPARM(4) = 1
IPARM(5) = 10
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.29D-16

Example 2

This example finds the solution of the linear system Ax = b for the same sparse
matrix A used in Example 1. It also uses the same right-hand side in b and the
same initial guesses in x. However, the system is solved using a different
algorithm, conjugate gradient squared (CGS). Because INIT is 'S', the best
performance is achieved. The iteration is stopped when the norm of the
residual is less than the given threshold specified in RPARM(1). The algorithm is
allowed to perform 20 iterations. The process converges after 9 iterations.

Call Statement and Input:

AR =(same as input AR in Example 1)
JA =(same as input JA in Example 1)
IA =(same as input IA in Example 1)
B =(same as input B in Example 1)
X =(same as input X in Example 1)
IPARM(1) = 20
IPARM(2) = 2
IPARM(3) = 0
IPARM(4) = 1
IPARM(5) = 10
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS(’G’ , ’I’ , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS(’G’ , ’S’ , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

Chapter 10. Linear Algebraic Equations 825

X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.42D-19

Example 3

This example finds the solution of the linear system Ax = b for the sparse
matrix A, which is stored by rows in arrays AR, IA, and JA. The system is
solved using the two-term conjugate gradient method (CG), preconditioned by
incomplete LU factorization. The iteration is stopped when the norm of the
residual is less than the given threshold specified in RPARM(1). The algorithm is
allowed to perform 20 iterations. The process converges after 1 iteration.
Matrix A is:

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
└ ┘

Call Statement Input:

AR = (2.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0,
2.0, -1.0, 2.0)

JA = (1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 9,
6, 8, 7, 9)

IA = (1, 3, 5, 8, 11, 14, 17, 20, 22, 24)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 1
IPARM(3) = 0
IPARM(4) = 4
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 1.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 1
RPARM(2) = 0.16D-15

Example 4

This example finds the solution of the linear system Ax = b for the same sparse
matrix A used in Example 3. However, matrix A is stored using
upper-storage-by-rows in arrays AR, IA, and JA. The system is solved using the
generalized minimum residual (GMRES), restarted after 5 steps and
preconditioned with SSOR splitting. The iteration is stopped when the norm of
the residual is less than the given threshold specified in RPARM(1). The
algorithm is allowed to perform 20 iterations. The process converges after 12
iterations.

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS(’G’ , ’I’ , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 223 , AUX2 , 36)

826 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Call Statement Input

AR = (2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0,
2.0, -1.0, 2.0, -1.0, 2.0, 2.0)

JA = (1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 9)
IA = (1, 3, 5, 7, 9, 11, 13, 15, 16, 17)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 3
IPARM(3) = 5
IPARM(4) = 3
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 2.0

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 12
RPARM(2) = 0.33D-7

STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSRIS(’U’ , ’I’ , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 219 , AUX2 , 109)

Chapter 10. Linear Algebraic Equations 827

DSMCG (Sparse Positive Definite or Negative Definite Symmetric
Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

Purpose

This subroutine solves a symmetric, positive definite or negative definite linear
system, using the conjugate gradient method, with or without preconditioning by
an incomplete Cholesky factorization, for a sparse matrix stored in
compressed-matrix storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Note:

1. These subroutines are provided only for migration purposes. You get better
performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 120, you should first use the utility subroutine DSRSM to convert your
sparse matrix to compressed-matrix storage mode. See “DSRSM (Convert a
Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)” on
page 1279

Syntax

Fortran CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsmcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A.

Specified as: an integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix A.

Specified as: an integer; nz ≥ 0.

ac is the array, referred to as AC, containing the values of the nonzero elements of
the sparse matrix, stored in compressed-matrix storage mode.

Specified as: an lda by (at least) nz array, containing long-precision real
numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix A
elements stored in the corresponding positions in array AC.

Specified as: an lda by (at least) nz array, containing integers, where 1 ≤
(elements of KA) ≤ m.

lda
is the leading dimension of the arrays specified for ac and ka.

Specified as: an integer; lda > 0 and lda ≥ m.

b is the vector b of length m, containing the right-hand side of the matrix
problem.

828 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of the
linear system.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers. The elements can have any value, and if no guess
is available, the value can be zero.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 1
IPARM(3) = 0
RPARM(1) = 10-6

v IPARM(2) is the flag used to select the stopping criterion.
If IPARM(2) = 0, the conjugate gradient iterative procedure is stopped when:

{r{2 / {x{2 < ε

where r = b-Ax is the residual, and ε is the desired relative accuracy. ε is
stored in RPARM(1).
If IPARM(2) = 1, the conjugate gradient iterative procedure is stopped when:

{r{2 / λ{x{2 < ε

where λ is an estimate to the minimum eigenvalue of the iteration matrix. λ
is computed adaptively by this program and, on output, is stored in
RPARM(2).
If IPARM(2) = 2, the conjugate gradient iterative procedure is stopped when:

{r{2 / λ{x{2 < ε

where λ is a predetermined estimate to the minimum eigenvalue of the
iteration matrix. This eigenvalue estimate, on input, is stored in RPARM(2)
and may be obtained by an earlier call to this subroutine with the same
matrix.

v IPARM(3) is the flag that determines whether the system is to be solved
using the conjugate gradient method, preconditioned by an incomplete
Cholesky factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete Cholesky
factorization.
If IPARM(3) = -10, the system is preconditioned by an incomplete Cholesky
factorization, where the factorization matrix was computed in an earlier call
to this subroutine and is stored in aux2.

v IPARM(4), see On Return.

Specified as: an array of (at least) length 4, containing integers, where:

Chapter 10. Linear Algebraic Equations 829

IPARM(1) ≥ 0
IPARM(2) = 0, 1, or 2
IPARM(3) = 0, 10, or -10

rparm
is an array of parameters, RPARM(i), where ε is stored in RPARM(1), and λ is
stored in RPARM(2).

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion.

RPARM(2) > 0, is the estimate of the smallest eigenvalue, λ, of the iteration
matrix. It is only used when IPARM(2) = 2.

RPARM(3), see On Return.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1
has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is available
for use by the calling program between calls to this subroutine. Its size is
specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1
is the size of the work area specified by aux1—that is, the number of elements
in aux1.

Specified as: an integer, where:

If naux1 = 0 and error 2015 is unrecoverable, DSMCG dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise, naux1 must have at least the following value, where:

If IPARM(2) = 0 or 2, use naux1 ≥ 3m.

If IPARM(2) = 1 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

If IPARM(2) = 1 and IPARM(1) = 0, use naux1 ≥ 3m+600.

aux2
is a storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
contain the incomplete Cholesky factorization of matrix A, computed in an
earlier call to DSMCG. The size of aux2 is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2
is the size of the work area specified by aux2—that is, the number of elements
in aux2.

Specified as: an integer. When IPARM(3) = 10 or -10, naux2 must have at least
the following value:

For 32-bit integer arguments
naux2 ≥ m(nz-1)1.5+2(m+6).

For 64-bit integer arguments
naux2 ≥ m(nz-1)2.0+3(m+6).

830 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

On Return

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm
is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing integers.

rparm
is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2) contains
λ, an estimate of the smallest eigenvalue of the iteration matrix.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ ε.

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers; λ > 0.

aux2
is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete Cholesky factorization of matrix
A.

If IPARM(3) = -10, aux2 is unchanged.

See “Notes ” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = -10, this subroutine uses the incomplete Cholesky

factorization in aux2, computed in an earlier call to this subroutine. When
IPARM(3) = 10, this subroutine computes the incomplete Cholesky factorization
and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify IPARM(3)
= 10 on the first invocation. The incomplete factorization is stored in aux2. You
may save computing time on subsequent calls by setting IPARM(3) = -10. In this
way, the algorithm reutilizes the incomplete factorization that was computed
the first time. Therefore, you should not modify the contents of aux2 between
calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10-4 to 10-8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:

Chapter 10. Linear Algebraic Equations 831

{b-Ax{2 / λ{x{2 < ε

where λ is an estimate of the minimum eigenvalue of the iteration matrix,
which is either estimated adaptively or given by the user. As a result, if you
specify a larger ε, the algorithm takes fewer iterations to converge to a solution.
If you specify a smaller ε, the algorithm requires more iterations and computer
time, but converges to a more precise solution. If the value you specify is
unreasonably small, the algorithm may fail to converge within the number of
iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 115.

6. On output, array AC and vector b are not bitwise identical to what they were on
input, because the matrix A and the right-hand side are scaled before starting
the iterative process and are unscaled before returning control to the user. In
addition, arrays AC and KA may be rearranged on output, but still contain a
mathematically equivalent mapping of the elements in matrix A.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The sparse positive definite or negative definite linear system:

Ax = b

is solved, where:

A is a symmetric, positive definite or negative definite sparse matrix of order m,
stored in compressed-matrix storage mode in AC and KA.

x is a vector of length m.

b is a vector of length m.

The system is solved using the two-term conjugate gradient method, with or
without preconditioning by an incomplete Cholesky factorization. In both cases,
the matrix is scaled by the square root of the diagonal.

See references [73 on page 1317] and [80 on page 1318]. [44 on page 1316].

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, first convert your sparse matrix to compressed-matrix storage mode by
using the subroutine DSRSM (see “DSRSM (Convert a Sparse Matrix from
Storage-by-Rows to Compressed-Matrix Storage Mode)” on page 1279).

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux1 = 0, and unable to allocate work area.

Computational Errors
The following errors, with their corresponding return codes, can occur in this
subroutine. Where a value of i is indicated, it can be determined at run time by
use of the ESSL error-handling facilities. To obtain this information, you must
use ERRSET to change the number of allowable errors for that particular error
code in the ESSL error option table; otherwise, the default value causes your

832 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

program to terminate when the error occurs. For details, see “What Can You
Do about ESSL Computational Errors?” on page 66.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = -10, and aux2
contains an incomplete factorization of the input matrix A that was
computed by a previous call to the subroutine when IPARM(3) = 10. This
error indicates that aux2 has been modified since the last call to the
subroutine, or that the input matrix is not the same as the one that was
factored. If the default action has been overridden, the subroutine can be
called again with the same parameters, with the exception of IPARM(3) = 0 or
10.

v For error 2109, return code 3 indicates that the inner product (y,Ay) is
negative in the iterative procedure after iteration i. This should not occur,
because the input matrix is assumed to be positive or negative definite.
Vector x contains the results of the last iteration. The value i is identified in
the computational error message.

v For error 2108, return code 4 indicates that the matrix is not positive definite.
AC is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors

1. m < 0
2. lda < 1
3. lda < m
4. nz < 0
5. nz = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) ≠ 0, 1, or 2
8. IPARM(3) ≠ 0, 10, or -10
9. RPARM(1) < 0

10. RPARM(2) < 0
11. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less

than the minimum required value. Return code 5 is returned if error 2015
is recoverable.

12. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Examples

Example 1

This example finds the solution of the linear system Ax = b for the sparse
matrix A, which is stored in compressed-matrix storage mode in arrays AC and
KA. The system is solved using the conjugate gradient method. Matrix A is:

┌ ┐
| 2.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 |

Chapter 10. Linear Algebraic Equations 833

| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 |
└ ┘

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 27 , AUX2, 0)

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| -1.0 2.0 0.0 |
| -1.0 2.0 -1.0 |

AC = | -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 -1.0 |
| -1.0 2.0 0.0 |
└ ┘

┌ ┐
| 1 4 . |
| 2 3 . |
| 2 3 . |
| 1 4 5 |

KA = | 4 5 6 |
| 5 6 7 |
| 6 7 8 |
| 7 8 9 |
| 8 9 . |
└ ┘

B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.351D-15

Example 2

This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-matrix storage mode
in arrays AC and KA. The system is solved using the conjugate gradient method,
preconditioned with an incomplete Cholesky factorization. The smallest
eigenvalue of the iteration matrix is computed and used in stopping the
computation.

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 67 , AUX2, 74)

IPARM(1) = 20
IPARM(2) = 1

834 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPARM(3) = 10
RPARM(1) = 1.D-7
AC =(same as input AC in Example 1)
KA =(same as input KA in Example 1)
B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 1
RPARM(3) = 0.100D-15

Chapter 10. Linear Algebraic Equations 835

DSDCG (Sparse Positive Definite or Negative Definite Symmetric
Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

Purpose

This subroutine solves a symmetric, positive definite or negative definite linear
system, using the two-term conjugate gradient method, with or without
preconditioning by an incomplete Cholesky factorization, for a sparse matrix stored
in compressed-diagonal storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsdcg (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry

iopt
indicates the type of storage used, where:

If iopt = 0, all the nonzero diagonals of the sparse matrix are stored in
compressed-diagonal storage mode.

If iopt = 1, the sparse matrix, stored in compressed-diagonal storage mode, is
symmetric. Only the main diagonal and one of each pair of identical diagonals
are stored in array AD.

Specified as: an integer; iopt = 0 or 1.

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A.

Specified as: an integer; m ≥ 0.

nd is the number of nonzero diagonals stored in the columns of array AD, the
number of columns in the array AD, and the number of elements in array LA.

Specified as: an integer; it must have the following value, where:

If m > 0, then nd > 0.

If m = 0, then nd ≥ 0.

ad is the array, referred to as AD, containing the values of the nonzero elements of
the sparse matrix stored in compressed-diagonal storage mode. If iopt = 1, the
main diagonal and one of each pair of identical diagonals is stored in this
array.

Specified as: an lda by (at least) nd array, containing long-precision real
numbers.

lda
is the leading dimension of the array specified for ad.

Specified as: an integer; lda > 0 and lda ≥ m.

la is the array, referred to as LA, containing the diagonal numbers k for the

836 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

diagonals stored in each corresponding column in array AD. For an explanation
of how diagonal numbers are assigned, see “Compressed-Diagonal Storage
Mode” on page 116.

Specified as: a one-dimensional array of (at least) length nd, containing
integers, where 1-m ≤ (elements of LA) ≤ m-1.

b is the vector b of length m, containing the right-hand side of the matrix
problem.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of the
linear system.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers. The elements can have any value, and if no guess
is available, the value can be zero.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 1
IPARM(3) = 0
RPARM(1) = 10-6

v IPARM(2) is the flag used to select the stopping criterion.
If IPARM(2) = 0, the conjugate gradient iterative procedure is stopped when:

{r{2 / {x{2 < ε

where r = b-Ax is the residual and ε is the desired relative accuracy. ε is
stored in RPARM(1).
If IPARM(2) = 1, the conjugate gradient iterative procedure is stopped when:

{r{2 / λ{x{2 < ε

where λ is an estimate to the minimum eigenvalue of the iteration matrix. λ
is computed adaptively by this program and, on output, is stored in
RPARM(2).
If IPARM(2) = 2, the conjugate gradient iterative procedure is stopped when:

{r{2 / λ{x{2 < ε

where λ is a predetermined estimate to the minimum eigenvalue of the
iteration matrix. This eigenvalue estimate, on input, is stored in RPARM(2)
and may be obtained by an earlier call to this subroutine with the same
matrix.

v IPARM(3) is the flag that determines whether the system is to be solved
using the conjugate gradient method, preconditioned by an incomplete
Cholesky factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete Cholesky
factorization.

Chapter 10. Linear Algebraic Equations 837

If IPARM(3) = -10, the system is preconditioned by an incomplete Cholesky
factorization, where the factorization matrix was computed in an earlier call
to this subroutine and is stored in aux2.

v IPARM(4), see On Return.

Specified as: an array of (at least) length 4, containing integers, where:

IPARM(1) = 0
IPARM(2) = 0, 1, or 2
IPARM(3) = 0, 10, or -10

rparm
is an array of parameters, RPARM(i), where ε is stored in RPARM(1), and λ is
stored in RPARM(2).

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion.

RPARM(2) > 0, is the estimate of the smallest eigenvalue, λ, of the iteration
matrix. It is only used when IPARM(2) = 2.

RPARM(3), see On Return.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1
has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is available
for use by the calling program between calls to this subroutine. Its size is
specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1
is the size of the work area specified by aux1—that is, the number of elements
in aux1.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, DSDCG dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise, it must have at least the following value, where:

If IPARM(2) = 0 or 2, use naux1 ≥ 3m.

If IPARM(2) = 1 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

If IPARM(2) = 1 and IPARM(1) = 0, use naux1 ≥ 3m+600.

aux2
is the storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
contain the incomplete Cholesky factorization of matrix A, computed in an
earlier call to DSDCG. Its size is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2
is the size of the work area specified by aux2—that is, the number of elements
in aux2.

838 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer. When IPARM(3) = 10 or -10, naux2 must have at least
the following value:

For 32-bit integer arguments
naux2 ≥ m(3nd + 2) + 8

For 64-bit integer arguments
naux2 ≥ m(4nd + 3) + 12

On Return

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array, containing long-precision real numbers.

iparm
As an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing integers.

rparm
is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2) contains
λ, an estimate of the smallest eigenvalue of the iteration matrix.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ ε.

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers; λ > 0.

aux2
is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete Cholesky factorization of matrix
A.

If IPARM(3) = -10, aux2 is unchanged.

See “Notes ” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = -10, this subroutine uses the incomplete Cholesky

factorization in aux2, computed in an earlier call to this subroutine. When
IPARM(3) = 10, this subroutine computes the incomplete Cholesky factorization
and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify IPARM(3)
= 10 on the first invocation. The incomplete factorization is stored in aux2. You
may save computing time on subsequent calls by setting IPARM(3) = -10. In this
way, the algorithm reutilizes the incomplete factorization that was computed
the first time. Therefore, you should not modify the contents of aux2 between
calls.

Chapter 10. Linear Algebraic Equations 839

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10-4 to 10-8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:

{b-Ax{2 / λ{x{2 < ε

where λ is an estimate of the minimum eigenvalue of the iteration matrix,
which is either estimated adaptively or given by the user. As a result, if you
specify a larger ε, the algorithm takes fewer iterations to converge to a solution.
If you specify a smaller ε, the algorithm requires more iterations and computer
time, but converges to a more precise solution. If the value you specify is
unreasonably small, the algorithm may fail to converge within the number of
iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 115.

6. On output, array AD and vector b are not bitwise identical to what they were on
input, because the matrix A and the right-hand side are scaled before starting
the iterative process and are unscaled before returning control to the user. In
addition, arrays AD and LA may be rearranged on output, but still contain a
mathematically equivalent mapping of the elements in matrix A.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The sparse positive definite or negative definite linear system:

Ax = b

is solved, where:

A is a symmetric, positive definite or negative definite sparse matrix of order m,
stored in compressed-diagonal storage mode in arrays AD and LA.

x is a vector of length m.

b is a vector of length m.

The system is solved using the two-term conjugate gradient method, with or
without preconditioning by an incomplete Cholesky factorization. In both cases,
the matrix is scaled by the square root of the diagonal.

See references [73 on page 1317] and [80 on page 1318]. [44 on page 1316].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux1 = 0, and unable to allocate work area.

Computational Errors
The following errors, with their corresponding return codes, can occur in this
subroutine. Where a value of i is indicated, it can be determined at run time by

840 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

use of the ESSL error-handling facilities. To obtain this information, you must
use ERRSET to change the number of allowable errors for that particular error
code in the ESSL error option table; otherwise, the default value causes your
program to terminate when the error occurs. For details, see “What Can You
Do about ESSL Computational Errors?” on page 66.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = -10, and aux2
contains an incomplete factorization of the input matrix A that was
computed by a previous call to the subroutine when IPARM(3) = 10. This
error indicates that aux2 has been modified since the last call to the
subroutine, or that the input matrix is not the same as the one that was
factored. If the default action has been overridden, the subroutine can be
called again with the same parameters, with the exception of IPARM(3) = 0 or
10.

v For error 2109, return code 3 indicates that the inner product (y,Ay) is
negative in the iterative procedure after iteration i. This should not occur,
because the input matrix is assumed to be positive or negative definite.
Vector x contains the results of the last iteration. The value i is identified in
the computational error message.

v For error 2108, return code 4 indicates that the matrix is not positive definite.
AC is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors

1. iopt ≠ 0 or 1
2. m < 0
3. lda < 1
4. lda < m
5. nd < 0
6. nd = 0 and m > 0
7. |λ(i)| > m-1 for i = 1, nd

8. IPARM(1) < 0
9. IPARM(2) ≠ 0, 1, or 2

10. IPARM(3) ≠ 0, 10, or -10
11. RPARM(1) < 0
12. RPARM(2) < 0
13. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less

than the minimum required value. Return code 5 is returned if error 2015
is recoverable.

14. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Examples

Example 1

This example finds the solution of the linear system Ax = b for sparse matrix
A, which is stored in compressed-diagonal storage mode in arrays AD and LA.
The system is solved using the two-term conjugate gradient method. In this
example, IOPT = 0.. Matrix A is:

Chapter 10. Linear Algebraic Equations 841

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
└ ┘

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 -1.0 |
| 2.0 0.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |

AD = | 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 -1.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
└ ┘

LA = (0, -2, 2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.46D-16

Example 2

This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-diagonal storage
mode in arrays AD and LA. The system is solved using the two-term conjugate
gradient method. In this example, IOPT = 1, indicating that the matrix is
symmetric, and only the main diagonal and one of each pair of identical
diagonals are stored in array AD.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 |
| 2.0 0.0 |

IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSDCG(0 , 9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 0)

IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL DSDCG(1 , 9 , 2 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 80)

842 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 2.0 -1.0 |
| 2.0 -1.0 |

AD = | 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
| 2.0 -1.0 |
└ ┘

LA = (0, -2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 0
RPARM(3) = 0.89D-16

Chapter 10. Linear Algebraic Equations 843

DSMGCG (General Sparse Matrix Iterative Solve Using
Compressed-Matrix Storage Mode)

Purpose

This subroutine solves a general sparse linear system of equations using an
iterative algorithm, conjugate gradient squared or generalized minimum residual,
with or without preconditioning by an incomplete LU factorization. The subroutine
is suitable for positive real matrices—that is, when the symmetric part of the
matrix, (A+AT)/2, is positive definite. The sparse matrix is stored in
compressed-matrix storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Note:

1. These subroutines are provided only for migration purposes. You get better
performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on
page 120, you should first use the utility subroutine DSRSM to convert your
sparse matrix to compressed-matrix storage mode. See “DSRSM (Convert a
Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)” on
page 1279.

Syntax

Fortran CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsmgcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A.

Specified as: an integer; m ≥ 0.

nz is the maximum number of nonzero elements in each row of sparse matrix A.

Specified as: an integer; nz ≥ 0.

ac is the array, referred to as AC, containing the values of the nonzero elements of
the sparse matrix, stored in compressed-matrix storage mode.

Specified as: an lda by (at least) nz array, containing long-precision real
numbers.

ka is the array, referred to as KA, containing the column numbers of the matrix A
elements stored in the corresponding positions in array AC.

Specified as: an lda by (at least) nz array, containing integers, where 1 ≤
(elements of KA) ≤ m.

lda
is the leading dimension of the arrays specified for ac and ka.

Specified as: an integer; lda > 0 and lda ≥ m.

b is the vector b of length m, containing the right-hand side of the matrix
problem.

844 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

x is the vector x of length m, containing your initial guess of the solution of the
linear system.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers. The elements can have any value, and if no guess
is available, the value can be zero.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 10-6

v IPARM(2) is the flag used to select the iterative procedure used in this
subroutine.
If IPARM(2) = 0, the conjugate gradient squared method is used.
If IPARM(2) = k, the generalized minimum residual method, restarted after k
steps, is used. Note that the size of the work area aux1 becomes larger as k
increases. A value for k in the range of 5 to 10 is suitable for most problems.

v IPARM(3) is the flag that determines whether the system is to be
preconditioned by an incomplete LU factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete LU
factorization.
If IPARM(3) = -10, the system is preconditioned by an incomplete LU
factorization, where the factorization matrix was computed in an earlier call
to this subroutine and is stored in aux2.

v IPARM(4), see On Return.

Specified as: an array of (at least) length 4, containing integers, where:

IPARM(1) ≥ 0
IPARM(2) ≥ 0
IPARM(3) = 0, 10, or -10

rparm
is an array of parameters, RPARM(i), where:

RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion. The
iterative procedure is stopped when:

{b-Ax{2 / {x{2 < ε

RPARM(2) is reserved.

RPARM(3), see On Return.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

Chapter 10. Linear Algebraic Equations 845

aux1
has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is available
for use by the calling program between calls to this subroutine. Its size is
specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1
is the size of the work area specified by aux1—that is, the number of elements
in aux1.

Specified as: an integer, where:

If naux1 = 0 and error 2015 is unrecoverable, DSMGCG dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, it must have at least the following value, where:

If IPARM(2) = 0, use naux1 ≥ 7m.

If IPARM(2) > 0, use naux1 ≥ (k+2)m+k(k+4)+1, where k = IPARM(2).

aux2
is the storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
contain the incomplete LU factorization of matrix A, computed in an earlier
call to DSMGCG. The size of aux2 is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2
is the size of the work area specified by aux2—that is, the number of elements
in aux2.

Specified as: an integer. When IPARM(3) = 10, naux2 must have at least the
following value:

For 32-bit integer arguments
naux2 ≥ 3 + 2m + 1.5nz(m)

For 64-bit integer arguments
naux2 ≥ 12 + 3m + 2nz(m)

On Return

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm
is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing integers.

rparm
is an array of parameters, RPARM(i), where:

846 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

RPARM(1) is unchanged.

RPARM(2) is reserved.

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ RPARM(1)

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux2
is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete LU factorization of matrix A.

If IPARM(3) = -10, aux2 is unchanged.

See “Notes ” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = -10, this subroutine uses the incomplete LU factorization in

aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this
subroutine computes the incomplete LU factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides using the preconditioned algorithm, specify IPARM(2)
= 10 on the first invocation. The incomplete factorization is stored in aux2. You
may save computing time on subsequent calls by setting IPARM(3) equal to -10.
In this way, the algorithm reutilizes the incomplete factorization that was
computed the first time. Therefore, you should not modify the contents of aux2
between calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10-4 to 10-8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:

{b-Ax{2 / {x{2 < ε

As a result, if you specify a larger ε, the algorithm takes fewer iterations to
converge to a solution. If you specify a smaller ε, the algorithm requires more
iterations and computer time, but converges to a more precise solution. If the
value you specify is unreasonably small, the algorithm may fail to converge
within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix
storage mode, see “Compressed-Matrix Storage Mode” on page 115.

6. On output, array AC is not bitwise identical to what it was on input because the
matrix A is scaled before starting the iterative process and is unscaled before
returning control to the user.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Chapter 10. Linear Algebraic Equations 847

Function

The linear system:

Ax = b

is solved using either the conjugate gradient squared method or the generalized
minimum residual method, with or without preconditioning by an incomplete LU
factorization, where:

A is a sparse matrix of order m, stored in compressed-matrix storage mode in
arrays AC and KA.

x is a vector of length m.

b is a vector of length m.

See references [103 on page 1319] and [105 on page 1319]. [44 on page 1316].

If your program uses a sparse matrix stored by rows and you want to use this
subroutine, first convert your sparse matrix to compressed-matrix storage mode by
using the subroutine DSRSM (see “DSRSM (Convert a Sparse Matrix from
Storage-by-Rows to Compressed-Matrix Storage Mode)” on page 1279).

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux1 = 0, and unable to allocate work area.

Computational Errors
The following errors, with their corresponding return codes, can occur in this
subroutine. For details on error handling, see “What Can You Do about ESSL
Computational Errors?” on page 66.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = -10, and aux2
contains an incomplete factorization of the input matrix A that was
computed by a previous call to the subroutine when IPARM(3) = 10. This
error indicates that aux2 has been modified since the last call to the
subroutine, or that the input matrix is not the same as the one that was
factored. If the default action has been overridden, the subroutine can be
called again with the same parameters, with the exception of IPARM(3) = 0 or
10.

v For error 2112, return code 3 indicates that the incomplete LU factorization
of A could not be completed, because one pivot was 0.

v For error 2116, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain 0. Array AC is partially modified
and does not represent the same matrix as on entry.

Input-Argument Errors

1. m < 0
2. lda < 1
3. lda < m

848 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. nz < 0
5. nz = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) < 0
8. IPARM(3) ≠ 0, 10, or -10
9. RPARM(1) < 0

10. RPARM(2) < 0
11. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less

than the minimum required value. Return code 5 is returned if error 2015
is recoverable.

12. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Examples

Example 1

This example finds the solution of the linear system Ax = b for the sparse
matrix A, which is stored in compressed-matrix storage mode in arrays AC and
KA. The system is solved using the conjugate gradient squared method. Matrix
A is:

┌ ┐
| 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
└ ┘

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 0.0 0.0 |
| 2.0 -1.0 0.0 |
| 1.0 2.0 0.0 |
| 1.0 2.0 -1.0 |

AC = | 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 -1.0 |
| 1.0 2.0 0.0 |
└ ┘

┌ ┐
| 1 . . |
| 2 3 . |
| 2 3 . |

M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

Chapter 10. Linear Algebraic Equations 849

| 1 4 5 |
KA = | 4 5 6 |

| 5 6 7 |
| 6 7 8 |
| 7 8 9 |
| 8 9 . |
└ ┘

B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 9
RPARM(3) = 0.150D-19

Example 2

This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-matrix storage mode
in arrays AC and KA. The system is solved using the generalized minimum
residual method, restarted after 5 steps and preconditioned with an incomplete
LU factorization. Most of the input is the same as in Example 1.

Note: For input matrix KA, (.) indicates any value between 1 and 9.

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 5
IPARM(3) = 10
RPARM(1) = 1.D-7
AC =(same as input AC in Example 1)
KA =(same as input KA in Example 1)
B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 2
RPARM(3) = 0.290D-15

M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

850 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSDGCG (General Sparse Matrix Iterative Solve Using
Compressed-Diagonal Storage Mode)

Purpose

This subroutine solves a general sparse linear system of equations using an
iterative algorithm, conjugate gradient squared or generalized minimum residual,
with or without preconditioning by an incomplete LU factorization. The subroutine
is suitable for positive real matrices—that is, when the symmetric part of the
matrix, (A+AT)/2, is positive definite. The sparse matrix is stored in
compressed-diagonal storage mode. Matrix A and vectors x and b are used:

Ax = b

where A, x, and b contain long-precision real numbers.

Syntax

Fortran CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

C and C++ dsdgcg (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

On Entry

m is the order of the linear system Ax = b and the number of rows in sparse
matrix A.

Specified as: an integer; m ≥ 0.

nd is the number of nonzero diagonals stored in the columns of array AD, the
number of columns in array AD, and the number of elements in array LA.

Specified as: an integer; it must have the following value, where:

If m > 0, then nd > 0.

If m = 0, then nd ≥ 0.

ad is the array, referred to as AD, containing the values of the nonzero elements of
the sparse matrix, stored in compressed-matrix storage mode.

Specified as: an lda by (at least) nd array, containing long-precision real
numbers.

lda
is the leading dimension of the arrays specified for ad.

Specified as: an integer; lda > 0 and lda ≥ m.

la is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. For an explanation
of how diagonal numbers are stored, see “Compressed-Diagonal Storage
Mode” on page 116.

Specified as: a one-dimensional array of (at least) length nd, containing
integers, where 1-m ≤ (elements of LA) ≤ (m-1).

b is the vector b of length m, containing the right-hand side of the matrix
problem.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

Chapter 10. Linear Algebraic Equations 851

x is the vector x of length m, containing your initial guess of the solution of the
linear system.

Specified as: a one-dimensional array of (at least) length m, containing
long-precision real numbers. The elements can have any value, and if no guess
is available, the value can be zero.

iparm
is an array of parameters, IPARM(i), where:
v IPARM(1) controls the number of iterations.

If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
If IPARM(1) = 0, the following default values are used:

IPARM(1) = 300
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 10-6

v IPARM(2) is the flag used to select the iterative procedure used in this
subroutine.
If IPARM(2) = 0, the conjugate gradient squared method is used.
If IPARM(2) = k, the generalized minimum residual method, restarted after k
steps, is used. Note that the size of the work area aux1 becomes larger as k
increases. A value for k in the range of 5 to 10 is suitable for most problems.

v IPARM(3) is the flag that determines whether the system is to be
preconditioned by an incomplete LU factorization with no fill-in.
If IPARM(3) = 0, the system is not preconditioned.
If IPARM(3) = 10, the system is preconditioned by an incomplete LU
factorization.
If IPARM(3) = -10, the system is preconditioned by an incomplete LU
factorization, where the factorization matrix was computed in an earlier call
to this subroutine and is stored in aux2.

v IPARM(4), see On Return.

Specified as: an array of (at least) length 4, containing integers, where:

IPARM(1) ≥ 0
IPARM(2) ≥ 0
IPARM(3) = 0, 10, or -10

rparm
is an array of parameters, RPARM(i), where:

If RPARM(1) > 0, is the relative accuracy ε used in the stopping criterion. The
iterative procedure is stopped when:

{b-Ax{2 / {x{2 < ε

RPARM(2) is reserved.

RPARM(3), see On Return.

Specified as: a one-dimensional array of (at least) length 3, containing
long-precision real numbers.

aux1
has the following meaning:

If naux1 = 0 and error 2015 is unrecoverable, aux1 is ignored.

852 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Otherwise, it is a storage work area used by this subroutine, which is available
for use by the calling program between calls to this subroutine. Its size is
specified by naux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1
is the size of the work area specified by aux1—that is, the number of elements
in aux1.

Specified as: an integer, where:

If naux1 = 0 and error 2015 is unrecoverable, DSDGCG dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, naux1 > 0 and must have at least the following value, where:

If IPARM(2) = 0, use naux1 ≥ 7m.

If IPARM(2) > 0, use naux1 ≥ (k+2)m+k(k+4)+1, where k = PARM(2).

aux2
is a storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
contain the incomplete LU factorization of matrix A, computed in an earlier
call to DSDGCG. The size of aux2 is specified by naux2.

Specified as: an area of storage, containing long-precision real numbers.

naux2
is the size of the work area specified by aux2—that is, the number of elements
in aux2.

Specified as: an integer. When IPARM(3) = 10 or -10, naux2 must have at least
the following value:

For 32-bit integer arguments
naux2 ≥ 3 + 2m + 1.5nd(m)

For 64-bit integer arguments
naux2 ≥ 12 + 3m + 2nd(m)

On Return

x is the vector x of length m, containing the solution of the system Ax = b.
Returned as: a one-dimensional array of (at least) length m, containing
long-precision real numbers.

iparm
is an array of parameters, IPARM(i), where:

IPARM(1) is unchanged.

IPARM(2) is unchanged.

IPARM(3) is unchanged.

IPARM(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing integers.

rparm
is an array of parameters, RPARM(i), where:

RPARM(1) is unchanged.

RPARM(2) is reserved.

Chapter 10. Linear Algebraic Equations 853

RPARM(3) contains the estimate of the error of the solution. If the process
converged, RPARM(3) ≤ RPARM(1).

Returned as: a one-dimensional array of length 3, containing long-precision
real numbers.

aux2
is the storage work area used by this subroutine.

If IPARM(3) = 10, aux2 contains the incomplete LU factorization of matrix A.

If IPARM(3) = -10, aux2 is unchanged.

See “Notes ” for additional information on aux2. Returned as: an area of
storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = -10, this subroutine uses the incomplete LU factorization in

aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this
subroutine computes the incomplete LU factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with
different right-hand sides, using the preconditioned algorithm, specify IPARM(3)
= 10 on the first invocation. The incomplete factorization is stored in aux2. You
may save computing time on subsequent calls by setting IPARM(3) = -10. In this
way, the algorithm reutilizes the incomplete factorization that was computed
the first time. Therefore, you should not modify the contents of aux2 between
calls.

3. Matrix A must have no common elements with vectors x and b; otherwise,
results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
must be specified “reasonably” (10-4 to 10-8). The algorithm computes a
sequence of approximate solution vectors x that converge to the solution. The
iterative procedure is stopped when the norm of the residual is sufficiently
small—that is, when:

{b-Ax{2 / {x{2 < ε

As a result, if you specify a larger ε, the algorithm takes fewer iterations to
converge to a solution. If you specify a smaller ε, the algorithm requires more
iterations and computer time, but converges to a more precise solution. If the
value you specify is unreasonably small, the algorithm may fail to converge
within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-diagonal
storage mode, see “Compressed-Diagonal Storage Mode” on page 116.

6. On output, array AD is not bitwise identical to what it was on input, because
matrix A is scaled before starting the iterative process and is unscaled before
returning control to the user.

7. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The linear system:

Ax = b

854 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

is solved using either the conjugate gradient squared method or the generalized
minimum residual method, with or without preconditioning by an incomplete LU
factorization, where:

A is a sparse matrix of order m, stored in compressed-diagonal storage mode in
arrays AD and LA.

x is a vector of length m.

b is a vector of length m.

See references [103 on page 1319] and [105 on page 1319]. [44 on page 1316].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux1 = 0, and unable to allocate work area.

Computational Errors
The following errors, with their corresponding return codes, can occur in this
subroutine. For details on error handling, see “What Can You Do about ESSL
Computational Errors?” on page 66.
v For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1)

iterations without converging. Vector x contains the approximate solution
computed at the last iteration.

v For error 2111, return code 2 indicates that aux2 contains an incorrect
factorization. The subroutine has been called with IPARM(3) = -10, and aux2
contains an incomplete factorization of the input matrix A that was
computed by a previous call to the subroutine when IPARM(3) = 10. This
error indicates that aux2 has been modified since the last call to the
subroutine, or that the input matrix is not the same as the one that was
factored. If the default action has been overridden, the subroutine can be
called again with the same parameters, with the exception of IPARM(3) = 0 or
10.

v For error 2112, return code 3 indicates that the incomplete LU factorization
of A could not be completed, because one pivot was 0.

v For error 2116, return code 4 indicates that the matrix is singular, because all
elements in one row of the matrix contain 0. Array AC is partially modified
and does not represent the same matrix as on entry.

Input-Argument Errors

1. m < 0
2. lda < 1
3. lda < m
4. nd < 0
5. nd = 0 and m > 0
6. IPARM(1) < 0
7. IPARM(2) < 0
8. IPARM(3) ≠ 0, 10, or -10
9. RPARM(1) < 1.D0

10. Error 2015 is recoverable or naux1≠0, and naux1 is too small—that is, less
than the minimum required value. Return code 5 is returned if error 2015
is recoverable.

Chapter 10. Linear Algebraic Equations 855

11. naux2 is too small—that is, less than the minimum required value. Return
code 5 is returned if error 2015 is recoverable.

Examples

Example 1

This example finds the solution of the linear system Ax = b for the sparse
matrix A, which is stored in compressed-diagonal storage mode in arrays AD
and LA. The system is solved using the conjugate gradient squared method.
Matrix A is:

┌ ┐
| 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
| 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
| 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 |
| 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 |
| 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 |
| 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 |
└ ┘

Call Statement and Input:

IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

┌ ┐
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |
| 2.0 -1.0 0.0 |

AD = | 2.0 -1.0 1.0 |
| 2.0 -1.0 1.0 |
| 2.0 -1.0 1.0 |
| 2.0 0.0 1.0 |
| 2.0 0.0 1.0 |
└ ┘

LA = (0, 2, -4)
B = (1, 1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 8
RPARM(3) = 0.308D-17

Example 2

This example finds the solution of the linear system Ax = b for the same sparse
matrix A as in Example 1, which is stored in compressed-diagonal storage
mode in arrays AD and LA. The system is solved using the generalized
minimum residual method, restarted after 5 steps and preconditioned with an
incomplete LU factorization. Most of the input is the same as in Example 1.

Call Statement and Input:

M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

856 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IPARM(1) = 20
IPARM(2) = 5
IPARM(3) = 10
RPARM(1) = 1.D-7
AD =(same as input AD in Example 1)
LA =(same as input LA in Example 1)
B = (1, 1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

Output:
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 6
RPARM(3) = 0.250D-15

M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

Chapter 10. Linear Algebraic Equations 857

Linear Least Squares Subroutines

This contains the linear least squares subroutine descriptions.

858 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGESVD, DGESVD, CGESVD, and ZGESVD (Singular Value
Decomposition for a General Matrix)

Purpose

These subroutines compute the singular value decomposition of a general matrix
A, optionally computing the left and/or right singular vectors. The singular value
decomposition is written:

For SGESVD and DGESVD, A = UΣVT, where UT = U-1 and VT = V-1

For CGESVD and ZGESVD, A = UΣVH, where UH = U-1 and VH = V-1

In the formulas above:
v U and V are general matrices whose first min(m,n) columns are the left and right

singular vectors of A.
v Σ is a diagonal matrix whose min(m,n) diagonal elements are the singular values

of A.

Table 176. Data Types

A, U, vt, work s, rwork Subroutine

Short-precision real Short-precision real SGESVD∆

Long-precision real Long-precision real DGESVD∆

Short-precision complex Short-precision real CGESVD∆

Long-precision complex Long-precision real ZGESVD∆

∆LAPACK

Syntax

Fortran
CALL SGESVD | DGESVD (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)

CALL CGESVD | ZGESVD (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)

C and C++ sgesvd | dgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info);

cgesvd | zgesvd (jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info);

On Entry

jobu
indicates the options for computing all or part of matrix U, where:
v If jobu='A', all m columns are returned in array U.
v If jobu='S', the first min(m,n) columns (the left singular vectors) are returned

in array U.
v If jobu='O', the first min(m,n) columns (the left singular vectors) are

overwritten on the array A.
v If jobu='N', no columns (no left singular vectors) are computed.

jobvt
indicates the options for computing all or part of VT (for SGESVD/DGESVD)
or VH (for CGESVD/ZGESVD), where:

If jobvt='A', all n rows are returned in array VT.

Chapter 10. Linear Algebraic Equations 859

If jobvt='S', the first min(m,n) rows (the right singular vectors) are returned in
array VT.

If jobvt='O', the first min(m,n) rows (the right singular vectors) are returned in
array A.

If jobvt='N', no rows (no right singular vectors) are computed.

m is the number of rows in matrix A.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A.

Specified as: an integer; n ≥ 0.

a is the m by n general matrix A, whose singular value decomposition is to be
computed.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 176 on page 859.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda>0 and lda ≥ m.

s See "On Return".

u See "On Return".

ldu
is the leading dimension of the array specified for U.

Specified as: an integer; ldu>0 and:

If jobu = 'A' or 'S', ldu ≥ m.

vt See "On Return".

ldvt
is the leading dimension of the array specified for VT.

Specified as: an integer; ldvt>0 and:

If jobvt = 'A', ldvt ≥ n.

If jobvt = 'S', ldvt ≥ min(m,n).

work
is the work area used by these subroutines, where:

If lwork=0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork=-1, work is (at least) of length 1.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 176 on page 859.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork=0, the subroutine dynamically allocates the workspace needed for

use during this computation. The work area is deallocated before control is
returned to the calling program.

860 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v If lwork = -1, the subroutine performs a workspace query and returns the
optimal required size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise:

For SGESVD and DGESVD
lwork ≥ max(1,3*min(m,n) + max(m,n), 5*min(m,n))

Note: If jobu = 'N' or jobvt = 'N', depending on m, n and the
implementation, lwork ≥ max(1,5*min(m,n)) may be sufficient and
less than the value shown above.

For CGESVD and ZGESVD
lwork ≥ max(1,2*min(m,n) + max(m,n))

Note: If jobu = 'N' or jobvt = 'N', depending on m, n and the
implementation, lwork ≥ max(1,3*min(m,n)) may be sufficient and
less than the value shown above.

rwork
is a work area of size (at least) 5*min(m,n).

Specified as: an area of storage containing numbers of the data type indicated
in Table 176 on page 859.

On Return

a is overwritten as follows:

If jobu = 'O', u is not referenced. Instead, a is overwritten with the first
min(m,n) columns of U. These are the left singular vectors, stored row-wise.

If jobvt='O', vt is not referenced. Instead, a is overwritten with the first
min(m,n) rows of VT (for SGESVD/DGESVD) or VH (for CGESVD/ZGESVD).
These are the right singular vectors, stored row-wise.

If jobu ≠ 'O' and jobvt ≠ 'O', the contents of a are overwritten on return.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 176 on page 859.

s is the vector s containing the non-negative singular values in descending order
in the first min(m,n) elements of s.

Returned as: a one-dimensional array of (at least) length min(m,n) containing
numbers of the data type indicated in Table 176 on page 859.

u

If jobu='A', u contains the m by m matrix U.

If jobu='S', u contains first min(m,n) columns of U. These are the left singular
vectors, stored column-wise.

If jobu='O' or 'N', u is not referenced.

Returned as: an ldu by (at least) m (if jobu = 'A') or min(m,n) (if jobu = 'S') array
containing numbers of the data type indicated in Table 176 on page 859.

vt

For SGESVD and DGESVD:

v If jobvt='A', vt contains the matrix VT of order n.
v If jobvt='S', vt contains the first min(m,n) elements of VT. These are

the right singular vector, stored row-wise.

Chapter 10. Linear Algebraic Equations 861

v If jobvt='O' or 'N', vt is not referenced.

Note: These subroutines return VT instead of V

For CGESVD and ZGESVD:

v If jobvt='A', vt contains the matrix VH of order n.
v If jobvt='S', vt contains the first min(m,n) elements of VH. These are

the right singular vector, stored row-wise.
v If jobvt='O' or 'N', vt is not referenced.

Note: These subroutines return VH instead of V

Returned as: an ldvt by (at least) n array, containing numbers of the data type
indicated in Table 176 on page 859.

work
is a work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, it size is (at least) of length 1.

Returned as: an area of storage where:

If lwork ≥ 1 or lwork=-1, then work1 is set to the optimal lwork value.

For SGESVD or DGESVD, if lwork ≥ 1 and info > 0, work2:min(m,n) contains the
unconverged superdiagonal elements of an upper bidiagonal matrix B, whose
diagonal is in array S (not necessarily sorted). B satisfies A = UBVT, so it has
the same singular values as A, and singular vectors related by U and VT.

rwork
is a work area used by this subroutine.

Returned as: an area of storage where:

If info > 0, rwork1:min(m,n)-1 contains the unconverged superdiagonal elements of
an upper bidiagonal matrix B whose diagonal is in array s (not necessarily
sorted). B satisfies A = UBVH, so it has the same singular values as A, and
singular vectors related by U and VH.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, info specifies how many superdiagonals of an intermediate
bidiagonal form B did not converge to zero.

Returned as: an integer, info ≥ 0.

Notes
1. These subroutines accept lowercase letters for the jobu and jobvt arguments.
2. In your C program, argument info must be passed by reference.
3. When you specify jobu= 'O' or 'N', you must specify a dummy argument for u.
4. When you specify jobvt= 'O' or 'N', you must specify a dummy argument for vt.
5. You cannot specify both jobu='O' and jobvt='O'.
6. a, s, u, vt, work and rwork must have no common elements; otherwise, results

are unpredictable.
7. For best performance, specify lwork = 0.

862 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

These subroutines compute the singular value decomposition of a general matrix
A, optionally computing the left and/or right singular vectors. The singular value
decomposition is written:

For SGESVD and DGESVD, A = UΣVT, where UT = U-1 and VT = V-1

For CGESVD and ZGESVD, A = UΣVH, where UH = U-1 and VH = V-1

In the formulas above:
v U and V are general matrices whose first min(m,n) columns are the left and right

singular vectors of A.
v Σ is a diagonal matrix whose min(m,n) diagonal elements are the singular values

of A.

The computation involves the following steps:
1. If necessary, scale A
2. If necessary, compute QR or LQ factorization
3. Bidiagonalize the matrix
4. Compute the singular values and, optionally, the left and/or right singular

vectors from the bidiagonalized matrix
5. If necessary, update the singular vectors
6. If necessary, undo scaling

If m or n is 0, no computation is performed and the subroutine returns after doing
some parameter checking.

See references [73 on page 1317, 102 on page 1319].

Error conditions

Resource Errors
lwork = 0 and unable to allocate work space

Computational Errors
At least info superdiagonals of an intermediate bidiagonal form B did not
converge to zero.

Input-Argument Errors

1. jobu ≠ 'A', 'S', 'O', or 'N'
2. jobvt ≠ 'A', 'S', 'O', or 'N'
3. jobu = 'O' and jobvt = 'O'
4. m < 0
5. n < 0
6. lda ≤ 0
7. m > lda

8. ldu ≤ 0
9. m > ldu and (jobu = 'A' or jobu = 'S')

10. ldvt ≤ 0
11. n > ldvt and jobvt = 'A'
12. min(m,n) > ldvt and jobvt = 'S'

Chapter 10. Linear Algebraic Equations 863

13. lwork ≠ 0 and lwork ≠ -1 and lwork < the required value

Examples

Example 1

This example shows how to find the singular values only of the real general
matrix A.

Notes:

1. Because jobu= 'N', argument u is not referenced.
2. Because jobvt= 'N', argument vt is not referenced.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO
| | | | | | | | | | | | | |

CALL DGESVD(’N’ , ’N’ , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , INFO)

┌ ┐
| 1.0 1.0 0.0 0.0 |

A = | 0.0 2.0 1.0 0.0 |
| 0.0 0.0 3.0 1.0 |
| 0.0 0.0 0.0 4.0 |
└ ┘

Output:

Array A is overwritten.
┌ ┐
| 4.260007 |

S = | 3.107349 |
| 2.111785 |
| 0.858542 |
└ ┘

INFO = 0

Example 2

This example shows how to find the singular values of the real general matrix
A and return all its left and right singular vectors U and VT in arrays U and VT.

Note:

1. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO
| | | | | | | | | | | | | |

CALL DGESVD(’A’ , ’A’ , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , INFO)

┌ ┐
| 1.0 2.0 3.0 |

A = | 2.0 4.0 5.0 |
| 3.0 5.0 6.0 |
└ ┘

Output:

Array A is overwritten.
┌ ┐
| 11.344814 |

S = | 0.515729 |
| 0.170915 |
└ ┘

864 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| -0.327985 -0.736976 -0.591009 |

U = | -0.591009 -0.327985 0.736976 |
| -0.736976 0.591009 -0.327985 |
└ ┘

┌ ┐
| -0.327985 -0.591009 -0.736976 |

VT = | 0.736976 0.327985 -0.591009 |
| -0.591009 0.736976 -0.327985 |
└ ┘

INFO = 0

Example 3

This example shows how to find the singular values of the real general matrix
A. Additionally:

The first min(m,n) columns of its left singular vectors U are returned in array
U.

The first min(m,n) rows of its right singular vectors VT are returned in array A.

Notes:

1. Because jobvt = 'O', argument vt is not referenced.
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO

| | | | | | | | | | | | | |
CALL DGESVD(’S’ , ’O’ , 2 , 4 , A , 2 , S , U , 2 , VT , 1 , WORK , 0 , INFO)

┌ ┐
A = | 1.0 2.0 3.0 4.0 |

| 5.0 6.0 7.0 8.0 |
└ ┘

Output:
┌ ┐

A = | -0.352062 -0.443626 -0.535190 -0.626754 |
| 0.758981 0.321242 -0.116498 -0.554238 |
└ ┘

┌ ┐
S = | 14.227407 |

| 1.257330 |
└ ┘

┌ ┐
U = | -0.376168 -0.926551 |

| -0.926551 0.376168 |
└ ┘

INFO = 0

Example 4

This example shows how to find the singular values only of the complex
general matrix A.

Notes:

1. Because jobu= 'N', argument u is not referenced.
2. Because jobvt= 'N', argument vt is not referenced.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:

Chapter 10. Linear Algebraic Equations 865

JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO
| | | | | | | | | | | | | | |

CALL ZGESVD(’N’ , ’N’ , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , RWORK , INFO)

┌ ┐
| (1.0, 1.0) (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) |

A = | (0.0, 0.0) (2.0,-1.0) (1.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 1.0) (1.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0,-1.0) |
└ ┘

Output:

Array A is overwritten.
┌ ┐
| 4.389511 |

S = | 3.276236 |
| 2.346361 |
| 1.221907 |
└ ┘

INFO = 0

Example 5

This example shows how to find the singular values of the complex general
matrix A and its left and right singular vectors.

Note:

1. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO

| | | | | | | | | | | | | | |
CALL ZGESVD(’A’ , ’A’ , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , RWORK , INFO)

┌ ┐
| (1.0, 1.0) (2.0,-1.0) (3.0, 0.0) |

A = | (2.0,-1.0) (4.0, 1.0) (5.0,-1.0) |
| (3.0, 0.0) (5.0,-1.0) (6.0, 1.0) |
└ ┘

Output:

Array A is overwritten.
┌ ┐
| 11.370686 |

S = | 2.386257 |
| 1.006620 |
└ ┘

┌ ┐
| (-0.3265, 0.0409) (0.0558, 0.4814) (0.3504,-0.7308) |

U = | (-0.5822, 0.0725) (-0.0823,-0.7730) (0.1017,-0.2026) |
| (-0.7396, 0.0233) (0.0036, 0.4009) (-0.2805, 0.4616) |
└ ┘

┌ ┐
| (-0.3290, 0.0000) (-0.5867,-0.0004) (-0.7367,-0.0688) |

VT = | (0.4846, 0.0000) (-0.7774,-0.0071) (0.3987, 0.0425) |
| (-0.8105, 0.0000) (-0.2267,-0.0041) (0.5375, 0.0533) |
└ ┘

INFO = 0

Example 6

This example shows how to find the singular values of the complex general
matrix A. Additionally:

866 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The first min(m,n) columns of its left singular vectors U are returned in array
U.

The first min(m,n) rows of its right singular vectors VH are returned in array A.

Notes:

1. Because jobvt = 'O', argument vt is not referenced.
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO

| | | | | | | | | | | | | | |
CALL ZGESVD(’S’ , ’O’ , 4 , 2 , A , 4 , S , U , 4 , VT , 1 , WORK , 0 , RWORK , INFO)

┌ ┐
| (1.0, 1.0) (2.0, 0.0) |

A = | (3.0, 0.0) (4.0,-1.0) |
| (5.0, 1.0) (6.0, 0.0) |
| (7.0, 0.0) (8.0,-1.0) |
└ ┘

Output:
┌ ┐
| (-0.642481, 0.000000) (-0.754181, 0.135753) |

A = | (-0.766302, 0.000000) (0.632319,-0.113817) |
| . . |
| . . |
└ ┘

┌ ┐
S = | 14.394066 |

| 0.900474 |
└ ┘

┌ ┐
| (-0.149426,-0.063497) (0.553415,-0.598204) |

U = | (-0.352918, 0.014671) (0.382229,-0.196618) |
| (-0.537547,-0.101222) (-0.041751,-0.092615) |
| (-0.741039,-0.023054) (-0.212937, 0.308971) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 867

SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR
Factorization)

Purpose

This subroutine computes the QR factorization of a general matrix

A = QR

where:

For SGEQRF and DGEQRF, Q is an orthogonal matrix.
For CGEQRF and ZGEQRF, Q is a unitary matrix.
For m ≥ n, R is an upper triangular matrix.
For m < n, R is an upper trapezoidal matrix.

Table 177. Data Types

A, τ, work Subroutine

Short-precision real SGEQRF⌂

Long-precision real DGEQRF⌂

Short-precision complex CGEQRF⌂

Long-precision complex ZGEQRF⌂

⌂LAPACK

Syntax

Fortran CALL SGEQRF | DGEQRF | CGEQRF | ZGEQRF (m, n, a, lda, tau, work, lwork, info)

C and C++ sgeqrf | dgeqrf | cgeqrf | zgeqrf (m, n, a, lda, tau, work, lwork, info);

On Entry

m is the number of rows in matrix A used in the computation.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A used in the computation.

Specified as: an integer; n ≥ 0.

a is the m by n general matrix A whose QR factorization is to be computed.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 177.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

tau
See On Return.

work
has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:

868 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v If lwork ≠ -1, its size is (at least) of length lwork.
v If lwork = -1, its size is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated in
Table 177 on page 868.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork = 0, these subroutines dynamically allocate the work area used by

this subroutine. The work area is deallocated before control is returned to
the calling program. This option is an extension to the LAPACK standard.

v If lwork = -1, these subroutines perform a work area query and return the
optimal size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, n)

info
See On Return.

On Return

a is the updated general matrix A, containing the results of the computation.

The elements on and above the diagonal of the array contain the min(m, n) × n
upper trapezoidal matrix R (R is upper triangular if m ≥ n). The elements
below the diagonal with τ represent the matrix Q as a product of min(m, n)
elementary reflectors.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 177 on page 868.

tau
is the vector τ, of length min(m, n), containing the scalar factors of the
elementary reflectors.

Returned as: a one-dimensional array of (at least) length min(m, n), containing
numbers of the data type indicated in Table 177 on page 868.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 177 on page 868. Except
for work1, the contents of work are overwritten on return.

info
indicates that a successful computation occurred.

Returned as: an integer; info = 0.

Notes and Coding Rules
1. In your C program, argument info must be passed by reference.
2. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.

Chapter 10. Linear Algebraic Equations 869

3. For best perfomance specify lwork = 0.

Function

Compute the QR factorization of a general matrix A

A = QR

where:

The matrix Q is represented as a product of elementary reflectors:
Q = H1 H2 ... Hk

where:

k = min(m, n)
For each i:
For SGEQRF and DGEQRF, Hi = I-τvvT

For CGEQRF and ZGEQRF, Hi = I-τvvH

τ is a scalar, stored on return in τi

v is a real vector with v1:i-1 = zero, vi = one.
vi+1:m is stored on return in Ai+1:m, i

I is the identity matrix

For m ≥ n, R is an upper triangular matrix.
For m < n, R is an upper trapezoidal matrix.

If m = 0 or n = 0, no computation is performed and the subroutine returns after
doing some parameter checking.

See references [61 on page 1317, 8 on page 1313, 76 on page 1318, 59 on page 1317,
60 on page 1317].

Error conditions

Resource Errors
lwork = 0 and unable to allocate work space.

Computational Errors
None.

Input-Argument Errors

1. m < 0
2. n < 0
3. lda ≤ 0

4. lda < m
5. lwork ≠ 0, lwork ≠ -1, and lwork < max(1, n)

Examples

Example 1

This example shows the QR factorization of a general matrix A of size 6 × 2.

Note: Because lwork = 0, DGEQRF dynamically allocates the work area used
by this subroutine.

Call Statements and Input:

870 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL DGEQRF (6 , 2 , A , 6 , TAU , WORK , 0 , INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000 2.000000 |
| 2.000000 -1.000000 |

A = | 2.000000 -1.000000 |
| .000000 1.500000 |
| 2.000000 -1.000000 |
| 2.000000 -1.000000 |
└ ┘

Output:

General matrix A of size 6 × 2.
┌ ┐
| -4.000000 2.000000 |
| .500000 2.500000 |

A = | .500000 .285714 |
| .000000 -.428571 |
| .500000 .285714 |
| .500000 .285714 |
└ ┘

Vector τ of length 2:
┌ ┐

TAU = | 1.000000 1.400000 |
└ ┘

INFO = 0

Example 2

This example shows the QR factorization of a general matrix A of size 4x5.

Note: Because lwork = 0, DGEQRF dynamically allocates the work area used
by this subroutine.

Call Statements and Input:
M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL DGEQRF (4 , 5 , A , 4 , TAU , WORK , 0 , INFO)

General matrix A of size 4 × 5:
┌ ┐
| .500000 .500000 1.207107 .000000 1.707107 |

A = | .500000 -1.500000 -.500000 2.414214 .707107 |
| .500000 .500000 .207107 .000000 .292893 |
| .500000 -1.500000 -.500000 -.414214 -.707107 |
└ ┘

Output:

General matrix A of size 4 × 5:
┌ ┐
| -1.000000 1.000000 -.207107 -1.000000 -1.000000 |

A = | .333333 2.000000 1.207107 -1.000000 1.000000 |
| .333333 -.200000 .707107 .000000 1.000000 |
| .333333 .400000 .071068 -2.000000 -1.000000 |
└ ┘

Vector τ of length 4:

Chapter 10. Linear Algebraic Equations 871

┌ ┐
TAU = | 1.500000 1.666667 1.989949 .000000 |

└ ┘
INFO = 0

Example 3

This example shows the QR factorization of a general matrix A of size 6 × 2.

Note: Because lwork = 0, ZGEQRF dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL ZGEQRF (6 , 2 , A , 6 , TAU , WORK , 0 , INFO)

General matrix A of size 6 × 2:
┌ ┐
| (-1.800000, -0.900000) (1.100000, -0.800000) |
| (-1.600000, 1.000000) (1.700000, 1.400000) |

A = | (-1.000000, -0.300000) (1.200000, 0.300000) |
| (1.100000, -0.100000) (0.700000, -1.900000) |
| (0.500000, 0.700000) (-0.200000, -1.500000) |
| (-1.500000, -0.700000) (1.800000, -0.600000) |
└ ┘

Output:

General matrix A of size 6 × 2:
┌ ┐
| (3.660601, 0.000000) (-1.731956, -0.524504) |
| (0.255874, -0.225302) (-3.865905, 0.000000) |

A = | (0.187102, 0.024101) (0.135165, -0.000348) |
| (-0.193177, 0.050152) (0.057186, -0.451900) |
| (-0.109713, -0.110108) (-0.065903, -0.220144) |
| (0.288000, 0.080724) (0.110147, -0.200172) |
└ ┘

Vector τ of length 2:
┌ ┐

TAU = | (1.491723, 0.245861) (1.268358, 0.545419) |
└ ┘

INFO = 0

Example 4

This example shows the QR factorization of a general matrix A of size 3 × 4.

Note: Because lwork = 0, ZGEQRF dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
M N A LDA TAU WORK LWORK INFO
| | | | | | | |

CALL ZGEQRF (3 , 4 , A , 3 , TAU , WORK , 0 , INFO)

General matrix A of size 3 × 4:
┌ ┐
| (-1.60, 0.10) (0.30, 1.70) (0.30, 0.20) (-0.50, -1.80) |
| (-1.20, 0.00) (-0.90, -0.50) (1.50, 0.80) (1.50, -1.10) |

A = | (-0.10, 1.30) (-1.10, 0.50) (0.40, -1.30) (1.60, 0.70) |
└ ┘

872 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:

General matrix A of size 3 × 4:
┌ ┐
| (2.39, 0.00) (0.64, -0.32) (-1.67, -0.71) (-0.18, 0.88) |

A = | (0.30, 0.01) (2.23, 0.00) (-0.70, 0.81) (-2.25, -0.01) |
| (0.03, -0.33) (0.48, -0.28) (0.65, 0.00) (-1.00, -1.77) |
└ ┘

Vector τ of length 3:
┌ ┐

TAU = | (1.67, -0.04) (1.35, 0.49) (1.99, 0.14) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 873

SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution
for a General Matrix)

Purpose

SGELS and DGELS compute the linear least squares solution for a real general
matrix A or its transpose using a QR factorization without column pivoting, where
A is assumed to have full rank.

CGELS and ZGELS compute the linear least squares solution for a complex general
matrix A or its conjugate transpose using a QR factorization without column
pivoting, where A is assumed to have full rank.

The following options are provided:
v If transa = 'N' and m ≥ n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - AX{

v If transa = 'N' and m < n: find the minimum norm solution of an
underdetermined system; that is, the problem is: AX = B

v For SGELS and DGELS:
– If transa = 'T' and m ≥ n: find the minimum norm solution of an

underdetermined system; that is, the problem is ATX = B
– If transa = 'T' and m < n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - ATX{

v For CGELS and ZGELS:
– If transa = 'C' and m ≥ n: find the minimum norm solution of an

underdetermined system; that is, the problem is AHX = B
– If transa = 'C' and m < n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - AHX{

Table 178. Data Types

A, B, work Subroutine

Short-precision real SGELS⌂

Long-precision real DGELS⌂

Short-precision complex CGELS⌂

Long-precision complex ZGELS⌂

⌂LAPACK

Syntax

Fortran CALL SGELS | DGELS | CGELS | ZGELS (transa, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

C and C++ sgels | dgels | cgels | zgels (transa, m, n, nrhs, a, lda, b, ldb, work, lwork, info);

On Entry

transa
indicate the form of matrix A to use in the computation, where:

If transa = 'N', matrix A is used.

If transa = 'T', matrix AT is used.

If transa = 'C', matrix AH is used.

874 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a single character, where:
v For SGELS and DGELS, it must be 'N' or 'T'.
v For CGELS and ZGELS, it must be 'N' or 'C'.

m is the number of rows in matrix A used in the computation.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A used in the computation.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns in matrix B
used in the computation.

Specified as: an integer; nrhs ≥ 0.

a is the m by n coefficient matrix A.

Note: No data should be moved to form AT or AH; that is, the matrix A should
always be stored in its untransposed form.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 178 on page 874.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

b is the matrix B of right-hand side vectors.

If transa = 'N', matrix B has m rows and nrhs columns.

For DGELS and SGELS, if transa = 'T', matrix B has n rows and nrhs columns.

For CGELS and ZGELS, if transa = 'C', matrix B has n rows and nrhs columns.

Specified as: the ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 178 on page 874.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ max(m,n).

work
has the following meaning:

If lwork = 0, work is ignored.

If lwork ≠ 0, work is the work area used by this subroutine, where:
v If lwork ≠ -1, its size is (at least) of length lwork.
v If lwork = -1, its size is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated in
Table 178 on page 874.

lwork
is the number of elements in array work.

Specified as: an integer; where:
v If lwork = 0, these subroutines dynamically allocate the work area used by

this subroutine. The work area is deallocated before control is returned to
the calling program. This option is an extension to the LAPACK standard.

Chapter 10. Linear Algebraic Equations 875

v If lwork = -1, these subroutines perform a work area query and return the
optimal size of work in work1. No computation is performed, and the
subroutine returns after error checking is complete.

v Otherwise, it must be:
lwork ≥ max(1, mn + max(mn, nrhs))
where mn = min(m, n).

info
See On Return.

On Return

a is the updated general matrix A. The matrix A is overwritten; that is, the
original input is not preserved.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 178 on page 874.

b is the updated general matrix B, containing the results of the computation. B is
overwritten by the solution vectors, stored columnwise:
v If transa = 'N' and m ≥ n, rows 1 to n of B contain the least squares solution

vectors; the residual sum of squares for the solution in each column is given
by the sum of squares of elements n+1 to m in that column.

v If transa = 'N' and m < n, rows 1 to n of B contain the minimum norm
solution vectors.

v For SGELS and DGELS:
– If transa = 'T' and m ≥ n, rows 1 to m of B contain the minimum norm

solution vectors.
– If transa = 'T' and m < n, rows 1 to m of B contain the least squares

solution vectors; the residual sum of squares for the solution in each
column is given by the sum of squares of elements m+1 to n in that
column.

v For CGELS and ZGELS:
– If transa = 'C' and m ≥ n, rows 1 to m of B contain the minimum norm

solution vectors.
– If transa = 'C' and m < n, rows 1 to m of B contain the least squares

solution vectors; the residual sum of squares for the solution in each
column is given by the sum of squares of elements m+1 to n in that
column.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 178 on page 874.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 178 on page 874.

Except for work1, the contents of work are overwritten on return.

info
indicates that a successful computation occurred.

876 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Returned as: an integer; info = 0.

Notes and Coding Rules
1. In your C program, argument info must be passed by reference.
2. All subroutines accept lowercase letters for the transa argument.
3. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.
4. For best perfomance specify lwork = 0.

Function

SGELS and DGELS compute the linear least squares solution for a real general
matrix A or its transpose using a QR factorization without column pivoting, where
A is assumed to have full rank.

CGELS and ZGELS compute the linear least squares solution for a complex general
matrix A or its conjugate transpose using a QR factorization without column
pivoting, where A is assumed to have full rank.

The following options are provided:
v If transa = 'N' and m ≥ n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - AX{

v If transa = 'N' and m < n: find the minimum norm solution of an
underdetermined system; that is, the problem is: AX = B

v For SGELS and DGELS:
– If transa = 'T' and m ≥ n: find the minimum norm solution of an

underdetermined system; that is, the problem is ATX = B
– If transa = 'T' and m < n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - ATX{

v For CGELS and ZGELS:
– If transa = 'C' and m ≥ n: find the minimum norm solution of an

underdetermined system; that is, the problem is AHX = B
– If transa = 'C' and m < n: find the least squares solution of an overdetermined

system; that is, solve the least squares problem: minimize {B - AHX{

If (m = 0 and n = 0) or nrhs = 0, then no computation is performed and the
subroutine returns after doing some parameter checking.

See reference [73 on page 1317].

Error conditions

Resource Errors
lwork = 0 and unable to allocate work space.

Computational Errors
None.

Input-Argument Errors

1. For SGELS and DGELS, transa ≠ 'N' or 'T'
For CGELS and ZGELS, transa ≠ 'N' or 'C'

2. m < 0
3. n < 0

Chapter 10. Linear Algebraic Equations 877

4. nrhs < 0
5. lda < m
6. lda ≤ 0
7. ldb < max(m, n)
8. ldb ≤ 0
9. lwork ≠ 0, lwork ≠ -1, and lwork < max(1, mn + max(mn, nrhs)) where mn =

min(m, n)

Examples

Example 1

This example finds the least squares solution of an overdetermined real general
system; that is, it solves the least squares problem: minimize {B-AX{. Matrix
A is size 6 × 2 and matrix B is size 6 × 3.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS (’N’ , 6 , 2 , 3 , A , 6 , B, 6, WORK, 0, INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000000 2.000000000 |
| 2.000000000 -1.000000000 |

A = | 2.000000000 -1.000000000 |
| .000000000 1.500000000 |
| 2.000000000 -1.000000000 |
| 2.000000000 -1.000000000 |
└ ┘

General matrix B of size 6 × 3:
┌ ┐
| 1.000000000 4.000000000 1.000000000 |
| 1.000000000 1.000000000 2.000000000 |

B = | 1.000000000 -1.000000000 1.000000000 |
| 1.000000000 3.000000000 2.000000000 |
| 1.000000000 1.000000000 1.000000000 |
| 1.000000000 -1.000000000 1.000000000 |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| .780000000 1.000000000 1.025000000 |
| .560000000 2.000000000 .800000000 |

B = | .042857143 -1.285714286 -.250000000 |
| .185714286 .428571429 1.250000000 |
| .042857143 .714285714 -.250000000 |
| .042857143 -1.285714286 -.250000000 |
└ ┘

INFO = 0

Example 2

878 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example finds the minimum norm solution of an underdetermined real
general system ATX = B. Matrix A is size 6 × 2. On input, matrix B is size 2 ×
1, stored in array b with leading dimension 6.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS (’T’ , 6 , 2 , 1 , A , 6 , B, 6, WORK, 0, INFO)

General matrix A of size 6 × 2:
┌ ┐
| .000000000 2.000000000 |
| 2.000000000 -1.000000000 |

A = | 2.000000000 -1.000000000 |
| .000000000 1.500000000 |
| 2.000000000 -1.000000000 |
| 2.000000000 -1.000000000 |
└ ┘

General matrix B of size 2 × 1:
┌ ┐

B = | 1.000000000 |
| 1.000000000 |
| . |
| . |
| . |
| . |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| .480000000 |
| .125000000 |

B = | .125000000 |
| .360000000 |
| .125000000 |
| .125000000 |
└ ┘

INFO = 0

Example 3

This example finds the minimum norm solution of an underdetermined real
general system AX = B. Matrix A is size 3 × 4. On input, matrix B is size 3 × 4,
stored in array b with leading dimension 4.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS (’N’ , 3 , 4 , 4 , A , 3 , B, 4, WORK, 0, INFO)

General matrix A of size 3 × 4:

Chapter 10. Linear Algebraic Equations 879

┌ ┐
| .500000000 .500000000 .500000000 .500000000 |

A = | .500000000 -1.500000000 .500000000 -1.500000000 |
| 1.000000000 1.000000000 .000000000 1.000000000 |
└ ┘

General matrix B of size 3 × 4:
┌ ┐
| 1.000000000 1.000000000 1.000000000 .000000000 |

B = | 1.000000000 -1.000000000 2.500000000 1.000000000 |
| 1.000000000 1.000000000 3.000000000 .000000000 |
| |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| 1.000000000 .000000000 3.500000000 .500000000 |

B = | .000000000 .500000000 -.250000000 -.250000000 |
| 1.000000000 1.000000000 -1.000000000 .000000000 |
| .000000000 .500000000 -.250000000 -.250000000 |
└ ┘

INFO = 0

Example 4

This example finds the least squares solution of an overdetermined real general
system; that is, it solves the least squares problem: minimize {B-ATX{.
Matrix A is size 3 × 4. On input, matrix B is size 4 × 4.

Note: Because lwork = 0, DGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL DGELS (’T’ , 3 , 4 , 4 , A , 3 , B , 4 , WORK , 0 , INFO)

General matrix A of size 3 × 4:
┌ ┐
| .500000000 .500000000 .500000000 .500000000 |

A = | .500000000 -1.500000000 .500000000 -1.500000000 |
| 1.207106781 -.500000000 .207106781 -.500000000 |
└ ┘

General matrix B of size 4 × 4:
┌ ┐
| 1.000000000 1.000000000 1.000000000 .000000000 |

B = | 1.000000000 -1.000000000 2.000000000 2.414213562 |
| 1.000000000 1.000000000 3.000000000 .000000000 |
| 1.000000000 -1.000000000 4.000000000 -.414213562 |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| 2.000000000 1.000000000 6.121320344 .500000000 |

B = | .000000000 1.000000000 .707106781 -.500000000 |

880 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| .000000000 .000000000 -2.000000000 .000000000 |
| .000000000 .000000000 1.414213562 -2.000000000 |
└ ┘

INFO = 0

Example 5

This example finds the minimum norm solution of an underdetermined
complex general system AX = B. Matrix A is size 3 × 4. Matrix B is size 3 × 3,
stored in array b with leading dimension 4.

Note: Because lwork = 0, ZGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL ZGELS (’N’ , 3 , 4 , 3 , A , 3 , B , 4 , WORK , 0 , INFO)

General matrix A of size 3 × 4:
┌ ┐
| (1.00, 0.00) (-2.00, 1.00) (-3.00, -1.00) (4.00, -3.00) |

A = | (1.00, -1.00) (2.00, 2.00) (-3.00, 0.00) (-4.00, -2.00) |
| (1.00, -2.00) (-2.00, 3.00) (-3.00, 1.00) (4.00, -1.00) |
└ ┘

General matrix B of size 3 × 3:
┌ ┐
| (1.00, 0.00) (0.00, 1.00) (1.00, 1.00) |

B = | (-1.00, 1.00) (1.00, -1.00) (0.00, 0.00) |
| (2.00, 1.00) (1.00, 2.00) (-1.00, -1.00) |
| . . . |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| (-0.16, 0.15) (-0.08, 0.18) (0.16, -0.31) |

B = | (0.11, 0.02) (0.21, -0.50) (-0.38, 0.65) |
| (-0.13, -0.32) (0.16, 0.12) (-0.27, -0.28) |
| (0.37, -0.05) (0.04, 0.06) (-0.19, 0.33) |
└ ┘

INFO = 0

Example 6

This example finds the least squares solution of an overdetermined complex
general system A; that is, it solves the least squares problem: minimize
{B-AX{. Matrix A is size 6 × 2. Matrix B is size 6 × 1.

Note: Because lwork = 0, ZGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL ZGELS (’N’ , 6 , 2 , 1 , A , 6 , B , 6 , WORK , 0 , INFO)

Matrix A is the same used as input in Example 3 for ZGEQRF.

General matrix B of 6 × 1:

Chapter 10. Linear Algebraic Equations 881

┌ ┐
| (6.0, 0.0) |

B = | (5.0, 0.0) |
| (4.0, 0.0) |
| (3.0, 0.0) |
| (2.0, 0.0) |
| (1.0, 0.0) |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:

INFO = 0

Example 7

This example finds the minimum norm solution of an underdetermined
complex general system AHX = B. Matrix A is size 3 × 3. Matrix B is size 3 × 2.

Note: Because lwork = 0, ZGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:
TRANSA M N NRHS A LDA B LDB WORK LWORK INFO

| | | | | | | | | | |
CALL ZGELS (’C’ , 3 , 3 , 2 , A , 3 , B , 3 , WORK , 0 , INFO)

Matrix A is the same used as input in Example 4 for CPOSV.

Matrix B is the same used as input in Example 4 for CPOSV.

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| (2.0, -1.0) (2.0, 0.0) |

B = | (1.0, -1.0) (0.0, 1.0) |
| (3.0, 0.0) (1.0, -1.0) |
└ ┘

INFO = 0

Example 8

This example finds the least squares solution of an overdetermined complex
general system; that is, it solves the least squares problem: minimize
{B-AHX{. Matrix A is size 2 × 6. Matrix B is size 6 × 1.

Note: Because lwork = 0, ZGELS dynamically allocates the work area used by
this subroutine.

Call Statements and Input:

┌ ┐
| (-1.135350, 0.520298) |

B = | (0.944064, 0.624509) |
| (1.062824, -0.899701) |
| (2.570856, 1.687827) |
| (2.556854, 2.835820) |
| (-3.982815, -0.231572) |
└ ┘

882 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
| | | | | | | | | | |

CALL ZGELS (’C’ , 2 , 6 , 1 , A , 2 , B , 6 , WORK , 0 , INFO)

General matrix A of size 2 × 6:
┌ ┐

A = | (2.0, 0.0) (6.0, 0.0) (10.0, 0.0) (14.0, 0.0) (18.0, 0.0) (22.0, 0.0) |
| (4.0, 0.0) (8.0, 0.0) (12.0, 0.0) (16.0, 0.0) (20.0, 0.0) (24.0, 0.0) |
└ ┘

General matrix B of size 6 × 1:
┌ ┐
| (6.0, 0.0) |

B = | (5.0, 0.0) |
| (4.0, 0.0) |
| (3.0, 0.0) |
| (2.0, 0.0) |
| (1.0, 0.0) |
└ ┘

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| (-3.50, 0.00) |

B = | (3.25, 0.00) |
| (0.00, 0.00) |
| (0.00, 0.00) |
| (0.00, 0.00) |
| (0.00, 0.00) |
└ ┘

INFO = 0

Chapter 10. Linear Algebraic Equations 883

SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares
Solution for a General Matrix Using the Singular Value Decomposition)

Purpose

These subroutines compute the linear least squares solution for a general matrix A
using the singular value decomposition.

The following options are provided:
v If m ≥ n: find the least squares solution of an overdetermined system; that is,

solve the least squares problem: minimize ||B - AX||
v If m < n: find the minimum norm solution of an undedetermined system; that is,

the problem is: AX=B

Table 179. Data Types

A, B, work s, rcond, rwork Subroutine

Short-precision real Short-precision real SGELSD∆

Long-precision real Long-precision real DGELSD∆

Short-precision complex Short-precision real CGELSD∆

Long-precision complex Long-precision real ZGELSD∆

∆LAPACK

Syntax

Fortran CALL SGELSD | DGELSD (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)

CALL CGELSD | ZGELSD (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork,
info)

C and C++ sgelsd | dgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info);

cgelsd | zgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info);

On Entry

m is the number of rows in matrix A and B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A.

Specified as: an integer; n ≥ 0.

nrhs
is the number of right-hand sides; that is, the number of columns in matrix B.

Specified as: an integer; nrhs ≥ 0.

a is the m by n general matrix A.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 179.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ m.

884 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

b is the general matrix B containing the nrhs right-hand sides of the system. The
right-hand sides, each of length m, reside in the columns of matrix B.

Specified as: the ldb by (at least) nrhs array, containing numbers of the data
type indicated in Table 179 on page 884.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb ≥ max(m,n).

rcond
is used to determine the effective rank of matrix A. Singular values of
si ≤ (rcond)(si) are treated as zero.

If rcond is less than or equal to zero or rcond is greater than or equal to one,
then an rcond value of ε is used, where ε is the machine precision.

Specified as: a number of data type indicated in Table 179 on page 884.

work
is the work area used by this subroutine, where:

If lwork=0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork=-1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of data type indicated in
Table 179 on page 884.

lwork
is the number of elements in array work.

Specified as: an integer; where:
v If lwork=0, these subroutines dynamically allocate the work area used by this

subroutine. The work area is deallocated before control is returned to the
calling program. This option is an extension to the LAPACK standard.

v If lwork=-1, these subroutines perform a work area query and return the
optimal size of work in work1. No computation is performed, and the
subroutine returns after error checking is complete.

v Otherwise:

For SGELSD and DGELSD
lwork ≥ 12r + 2(r)(smlsiz) + 8(r)(nlvl) + (r)(nrhs) + (smlsiz+1)2, where:
– r = min(m,n)
– smlsiz = 25
– nlvl = max(0, int(log2(r/(smlsiz+1)))+1)

For CGELSD and ZGELSD
lwork ≥ max(1,m+n+r,2r + (r)(nrhs)), where r = min(m, n).

Note: These formulas represent the minimum workspace required. For best
performance, specify either lwork = -1 (to obtain the optimal size to use) or
lwork = 0 (to direct the subroutine to dynamically allocate the workspace).

rwork
is a work area of size max(1, lrwork), where:

lrwork ≥ 10r + 2(r)(smlsiz) + 8(r)(nlvl) +2(smlsiz)(nrhs) + max((smlsiz+1)2, n(1 +
nrhs) + 2nrhs), where:

Chapter 10. Linear Algebraic Equations 885

v r = min(m, n)
v smlsiz = 25
v nlvl = max(0, int(log2(r/(smlsiz+1))) + 1)

Specified as: an area of storage containing numbers of data type indicated in
Table 179 on page 884.

iwork
is a work area of size max(1, liwork), where:

liwork ≥ 3(r)(nlvl) + 11r where:
v r = min(m, n)
v smlsiz = 25
v nlvl = max(0,int(log2(r/(smlsiz+1))) + 1)

Specified as: an area of storage containing integers.

info
See On Return.

On Return

a The matrix A is overwritten; that is, the original input is not preserved.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 179 on page 884.

b is the updated general matrix B, containing the results of the computation. B is
overwritten by the n by nrhs solution matrix X.
v If m ≥ n and rank = n, rows 1 to n of B contain the least squares solution

vectors; the residual sum of squares for the solution in each column is given
by the sum of squares of elements n + 1 to m in that column.

v If m < n, rows 1 to n of B contain the minimum norm solution vectors.

Returned as: an ldb by (at least) nrhs array, containing numbers of the data type
indicated in Table 179 on page 884.

s is the vector s containing the singular values of matrix A.

Returned as: a one-dimensional array of (at least) length min(m,n) containing
numbers of the data type indicated in Table 179 on page 884.

rank
is the effective rank of A; that is the number of singular values that are greater
than rcond(s1).

Returned as: an integer.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork=-1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork=-1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 179 on page 884.

Except for work1, the contents of work are overwritten on return.

rwork
is a work area used by these subroutines.

886 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Returned as: an area of storage where, if info = 0, rwork1 is set to the minimum
size of rwork.

iwork
is a work area used by these subroutines.

Returned as: an area of storage where, if info = 0, iwork1 is set to the minimum
size of iwork.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If 0 < info ≤ max(m, n), info specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

If info = max(m, n) + 1, a singular value failed to converge.

Returned as: an integer, info ≥ 0.

Notes and Coding Rules
1. In your C program, arguments rank and info must be passed by reference.
2. a, b, s, work, rwork and iwork must have no common elements; otherwise, results

are unpredictable.
3. For best performance, specify lwork = 0.

Function

These subroutines compute the linear least squares solution for a general matrix A
using the singular value decomposition.

The following options are provided:
v If m ≥ n: find the least squares solution of an overdetermined system; that is,

solve the least squares problem: minimize ||B - AX||
v If m < n: find the minimum norm solution of an undedetermined system; that is,

the problem is: AX=B

See reference [34 on page 1315], [73 on page 1317].

Error conditions

Resource Errors
lwork=0 and unable to allocate work space.

Computational Errors

v Superdiagonals of an intermediate bidiagonal form did not converge to zero.
v A singular value failed to converge.

Input-Argument Errors

1. m < 0
2. n < 0
3. nrhs < 0
4. lda ≤ 0
5. lda < m
6. ldb ≤ 0
7. ldb < max(m,n)

Chapter 10. Linear Algebraic Equations 887

8. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value
9. rwork ≠ 0 and rwork ≠ -1 and rwork < the minimum required value

10. iwork ≠ 0 and iwork ≠ -1 and iwork < the minimum required value

Examples

Example 1

This example finds the least squares solution of an overdetermined real general
system; that is, it solves the least squares problem: minimize {B-AX{. Matrix
A is size 6 × 2 and matrix B is size 6 × 3.

Notes®:
v Because lwork=0, DGELSD dynamically allocates the work area used by this

subroutine.
v iwork is an integer work array of size 22.

Call Statements and Input:
M N NRHS A LDA B LDB S RCOND RANK WORK LWORK IWORK INFO
| | | | | | | | | | | | | |

CALL DGELSD (6 , 2 , 3 , A , 6 , B , 6 , S , RCOND , RANK , WORK , 0 , IWORK , INFO)

A = (same as input A in Example 1 for DGELS)
B = (same as input B in Example 1 for DGELS)
RCOND = .745058D-08

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| 0.780000000 1.000000000 1.025000000 |
| 0.560000000 2.000000000 0.800000000 |

B = | 0.042857143 -1.285714286 -0.250000000 |
| 0.185714286 0.428571429 1.250000000 |
| 0.042857143 0.714285714 -0.250000000 |
| 0.042857143 -1.285714286 -0.250000000 |
└ ┘

┌ ┐
| 4.650367627 |

S = | 2.150367627 |
└ ┘

RANK = 2

INFO = 0

Example 2

This example finds the minimum norm solution of an underdetermined real
general system AX = B. Matrix A is size 3 × 4. On input, matrix B is size 3 × 3,
stored in array b with leading dimension 4.

Notes :
v Because lwork=0, DGELSD dynamically allocates the work area used by this

subroutine.
v iwork is an integer work array of size 33.

Call Statements and Input:
M N NRHS A LDA B LDB S RCOND RANK WORK LWORK IWORK INFO
| | | | | | | | | | | | | |

CALL DGELSD (3 , 4 , 4 , A , 3 , B , 4 , S , RCOND , RANK , WORK , 0 , IWORK , INFO)

888 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

A = (same as input A in Example 3 for DGELS)
B = (same as input B in Example 3 for DGELS)
RCOND = -1

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| 1.000000000 0.000000000 3.500000000 0.500000000 |

B = | 0.000000000 0.500000000 -0.250000000 -0.250000000 |
| 1.000000000 1.000000000 -1.000000000 0.000000000 |
| 0.000000000 0.500000000 -0.250000000 -0.250000000 |
└ ┘

┌ ┐
| 2.672011881 |

S = | 1.297080811 |
| 0.407712367 |
└ ┘

RANK = 3

INFO = 0

Example 3

This example finds the least squares solution of an overdetermined complex
general system; that is, it solves the least squares problem: minimize {B-AX{.
Matrix A is size 6 × 2 and matrix B is size 6 × 1.

Notes:
v Because lwork=0, ZGELSD dynamically allocates the work area used by this

subroutine.
v rwork is a real work array of size 871.
v iwork is an integer work array of size 22.

Call Statements and Input:
M N NRHS A LDA B LDB S RCOND RANK WORK LWORK RWORK IWORK INFO
| | | | | | | | | | | | | | |

CALL ZGELSD (6 , 2 , 1 , A , 6 , B , 6 , S , RCOND , RANK , WORK , 0 , RWORK , IWORK , INFO)

A = (same as input A in Example 6 for ZGELS)
B = (same as input B in Example 6 for ZGELS)
RCOND = .745058D-08

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| (-1.135350, 0.520298) |
| (0.944064, 0.624509) |

B = | (1.062824, -0.899701) |
| (2.570856, 1.687826) |
| (2.556854, 2.835820) |
| (-3.982815, -0.231572) |
└ ┘

┌ ┐
| 4.781121271 |

S = | 2.959878261 |
└ ┘

RANK = 2

Chapter 10. Linear Algebraic Equations 889

INFO = 0

Example 4

This example finds the minimum norm solution of an underdetermined
complex general system AX = B. Matrix A is size 3 × 4. On input, matrix B is
size 3 × 3, stored in array b with leading dimension 4.

Notes :
v Because lwork=0, ZGELSD dynamically allocates the work area used by this

subroutine.
v rwork is a real work array of size 1081.
v iwork is an integer work array of size 33.

Call Statements and Input:
M N NRHS A LDA B LDB S RCOND RANK WORK LWORK RWORK IWORK INFO
| | | | | | | | | | | | | | |

CALL ZGELSD (3 , 4 , 3 , A , 3 , B , 4 , S , RCOND , RANK , WORK , 0 , RWORK , IWORK , INFO)

A = (same as input A in Example 5 for ZGELS)
B = (same as input B in Example 5 for ZGELS)
RCOND = -1

Output:

General matrix A is overwritten.

Solution matrix X overwrites B:
┌ ┐
| (-0.16, 0.15) (-0.08, 0.18) (0.16,-0.31) |

B = | (0.11, 0.02) (0.21,-0.50) (-0.38, 0.65) |
| (-0.13,-0.32) (0.16, 0.12) (-0.27,-0.28) |
| (0.37,-0.05) (0.04, 0.06) (-0.19, 0.33) |
└ ┘

┌ ┐
| 9.895527537 |

S = | 4.876518979 |
| 1.816066467 |
└ ┘

RANK = 3

INFO = 0

890 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGESVF and DGESVF (Singular Value Decomposition for a General
Matrix)

Purpose

These subroutines compute the singular value decomposition of general matrix A
in preparation for solving linear least squares problems. To compute the minimal
norm linear least squares solution of AX≅B, follow the call to these subroutines
with a call to SGESVS or DGESVS, respectively.

Table 180. Data Types

A, B, s, aux Subroutine

Short-precision real SGESVF

Long-precision real DGESVF

Syntax

Fortran CALL SGESVF | DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux)

C and C++ sgesvf | dgesvf (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);

On Entry

iopt
indicates the type of computation to be performed, where:

If iopt = 0 or 10, singular values are computed.

If iopt = 1 or 11, singular values and V are computed.

If iopt = 2 or 12, singular values, V, and UTB are computed.

Specified as: an integer; iopt = 0, 1, 2, 10, 11, or 12.

If iopt < 10, singular values are unordered.

If iopt ≥ 10, singular values are sorted in descending order and, if applicable,
the columns of V and the rows of UTB are swapped to correspond to the sorted
singular values.

a is the m by n general matrix A, whose singular value decomposition is to be
computed.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 180.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ max(m, n).

b has the following meaning, where:

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the m by nb matrix B.

Specified as: an ldb by (at least) nb array, containing numbers of the data type
indicated in Table 180.

If this subroutine is followed by a call to SGESVS or DGESVS, B should
contain the right-hand side of the linear least squares problem, AX≅B. (The nb

Chapter 10. Linear Algebraic Equations 891

column vectors of B contain right-hand sides for nb distinct linear least squares
problems.) However, if the matrix UT is desired on output, B should be equal
to the identity matrix of order m.

ldb
has the following meaning, where:

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the leading dimension of the array specified for b.

Specified as: an integer. It must have the following values, where:

If iopt = 0, 1, 10, or 11, ldb > 0.

If iopt = 2 or 12, ldb > 0 and ldb ≥ max(m, n).

nb has the following meaning, where:

If iopt = 0, 1, 10, or 11, this argument is not used in the computation.

If iopt = 2 or 12, it is the number of columns in matrix B.

Specified as: an integer; if iopt = 2 or 12, nb > 0.

s See On Return.

m is the number of rows in matrices A and B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A and the number of elements in vector s.

Specified as: an integer; n ≥ 0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 180 on page 891.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SGESVF and DGESVF dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, It must have the following value, where:

If iopt = 0 or 10, naux ≥ n+max(m, n).

If iopt = 1 or 11, naux ≥ 2n+max(m, n).

If iopt = 2 or 12, naux ≥ 2n+max(m, n, nb).

On Return

a has the following meaning, where:

If iopt = 0, or 10, A is overwritten; that is, the original input is not preserved.

892 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If iopt = 1, 2, 11, or 12, A contains the real orthogonal matrix V, of order n, in
its first n rows and n columns. If iopt = 11 or 12, the columns of V are swapped
to correspond to the sorted singular values. If m > n, rows n+1, n+2, ..., m of
array A are overwritten; that is, the original input is not preserved.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 180 on page 891.

b has the following meaning, where:

If iopt = 0, 1, 10, or 11, B is not used in the computation.

If iopt = 2 or 12, B is overwritten by the n by nb matrix UTB.

If iopt = 12, the rows of UTB are swapped to correspond to the sorted singular
values. If m > n, rows n+1, n+2, ..., m of array B are overwritten; that is, the
original input is not preserved.

Returned as: an ldb by (at least) nb array, containing numbers of the data type
indicated in Table 180 on page 891.

s is a the vector s of length n, containing the singular values of matrix A.
Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 180 on page 891; si ≥ 0, where:

If iopt < 10, the singular values are unordered in s.

If iopt ≥ 10, the singular values are sorted in descending order in s; that is, s1 ≥
s2 ≥ ... ≥ sn ≥ 0. If applicable, the columns of V and the rows of UTB are
swapped to correspond to the sorted singular values.

Notes
1. The following items must have no common elements; otherwise, results are

unpredictable: matrices A and B, vector s, and the data area specified for aux.
2. When you specify iopt = 0, 1, 10, or 11, you must also specify:
v A dummy argument for b
v A positive value for ldb

See Example.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The singular value decomposition of a real general matrix is computed as follows:

A = UΣVT

where:

UTU = VTV = VVT = I

A is an m by n real general matrix.

V is a real general orthogonal matrix of order n. On output, V overwrites the first n
rows and n columns of A.

UTB is an n by nb real general matrix. On output, UTB overwrites the first n rows
and nb columns of B.

Chapter 10. Linear Algebraic Equations 893

Σ is an n by n real diagonal matrix. The diagonal elements of Σ are the singular
values of A, returned in the vector s.

If m or n is equal to 0, no computation is performed.

One of the following algorithms is used:
1. Golub-Reinsch Algorithm (See pages 134 to 151 in reference [116 on page

1320].)
a. Reduce the real general matrix A to bidiagonal form using Householder

transformations.
b. Iteratively reduce the bidiagonal form to diagonal form using a variant of

the QR algorithm.
2. Chan Algorithm (See reference [20 on page 1314].)

a. Compute the QR decomposition of matrix A using Householder
transformations; that is, A = QR.

b. Apply the Golub-Reinsch Algorithm to the matrix R.
If R = XWYT is the singular value decomposition of R, the singular value
decomposition of matrix A is given by:

where:

Also, see references [20 on page 1314], [69 on page 1317], [90 on page 1318], and
pages 134 to 151 in reference [116 on page 1320]. These algorithms have a tendency
to generate underflows that may hurt overall performance. The system default is to
mask underflow, which improves the performance of these subroutines.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
Singular value (i) failed to converge after (x) iterations.
v The singular values (sj, j = n, n-1, ..., i+1) are correct. If iopt < 10, they are

unordered. Otherwise, they are ordered.
v a has been modified.
v If iopt = 2 or 12, then b has been modified.
v The return code is set to 1.

894 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v i and x can be determined at run time by use of the ESSL error-handling
facilities. To obtain this information, you must use ERRSET to change the
number of allowable errors for error code 2107 in the ESSL error option
table; otherwise, the default value causes your program to terminate when
this error occurs. See “What Can You Do about ESSL Computational
Errors?” on page 66.

Input-Argument Errors

1. iopt ≠ 0, 1, 2, 10, 11, or 12
2. lda ≤ 0
3. max(m, n) > lda

4. ldb ≤ 0 and iopt = 2, 12
5. max(m, n) > ldb and iopt = 2, 12
6. nb ≤ 0 and iopt = 2, 12
7. m < 0
8. n < 0
9. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 2 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows how to find only the singular values, s, of a real
long-precision general matrix A, where:
v M is greater than N.
v NAUX is greater than or equal to N+max(M, N) = 7.
v LDB has been set to 1 to avoid a Fortran error message.
v DUMMY is a placeholder for argument b, which is not used in the computation.
v The singular values are returned in S.
v On output, matrix A is overwritten; that is, the original input is not

preserved.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(0 , A , 4 , DUMMY , 1 , 0 , S , 4 , 3 , AUX , 7)

┌ ┐
| 1.0 2.0 3.0 |

A = | 4.0 5.0 6.0 |
| 7.0 8.0 9.0 |
| 10.0 11.0 12.0 |
└ ┘

Output:
S = (25.462, 1.291, 0.000)

Example 2

This example computes the singular values, s, of a real long-precision general
matrix A and the matrix V, where:
v M is equal to N.
v NAUX is greater than or equal to 2N+max(M, N) = 9.
v LDB has been set to 1 to avoid a Fortran error message.

Chapter 10. Linear Algebraic Equations 895

v DUMMY is a placeholder for argument b, which is not used in the computation.
v The singular values are returned in S.
v The matrix V is returned in A.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(1 , A , 3 , DUMMY , 1 , 0 , S , 3 , 3 , AUX , 9)

┌ ┐
| 2.0 1.0 1.0 |

A = | 4.0 1.0 0.0 |
| -2.0 2.0 1.0 |
└ ┘

Output:
┌ ┐
| -0.994 0.105 -0.041 |

A = | -0.112 -0.870 0.480 |
| -0.015 -0.482 -0.876 |
└ ┘

S = (4.922, 2.724, 0.597)

Example 3

This example computes the singular values, s, and computes matrices V and
UTB in preparation for solving the underdetermined system AX≅B, where:
v M is less than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 9.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(2 , A , 3 , B , 3 , 1 , S , 2 , 3 , AUX , 9)

┌ ┐
| 1.0 2.0 2.0 |

A = | 2.0 4.0 5.0 |
| . . . |
└ ┘

┌ ┐
| 1.0 |

B = | 4.0 |
| . |
└ ┘

Output:
┌ ┐
| -0.304 -0.894 0.328 |

A = | -0.608 0.447 0.656 |
| -0.733 0.000 -0.680 |
└ ┘

┌ ┐
| -4.061 |

B = | 0.000 |

896 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| -0.714 |
└ ┘

S = (7.342, 0.000, 0.305)

Example 4

This example computes the singular values, s, and matrices V and UTB in
preparation for solving the overdetermined system AX≅B, where:
v M is greater than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 7.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(2 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

Output:
┌ ┐
| 0.922 -0.386 |

A = | -0.386 -0.922 |
| . . |
└ ┘

┌ ┐
| -1.310 -2.321 |

B = | -13.867 -18.963 |
| . . |
└ ┘

X = (0.773, 9.508)

Example 5

This example computes the singular values, s, and matrices V and UTB in
preparation for solving the overdetermined system AX≅B. The singular values
are sorted in descending order, and the columns of V and the rows of UTB are
swapped to correspond to the sorted singular values.
v M is greater than N.
v NAUX is greater than or equal to 2N+max(M, N, NB) = 7.
v The singular values are returned in S.
v The matrix V is returned in A.
v The matrix UTB is returned in B.

Call Statement and Input:
IOPT A LDA B LDB NB S M N AUX NAUX
| | | | | | | | | | |

CALL DGESVF(12 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

Chapter 10. Linear Algebraic Equations 897

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

Output:
┌ ┐
| -0.386 0.922 |

A = | -0.922 -0.386 |
| . . |
└ ┘

┌ ┐
| -13.867 -18.963 |

B = | -1.310 -2.321 |
| . . |
└ ┘

S = (9.508, 0.773)

898 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGESVS and DGESVS (Linear Least Squares Solution for a General
Matrix Using the Singular Value Decomposition)

Purpose

These subroutines compute the minimal norm linear least squares solution of
AX≅B, where A is a general matrix, using the singular value decomposition
computed by SGESVF or DGESVF.

Table 181. Data Types

V, UB, X, s, τ Subroutine

Short-precision real SGESVS

Long-precision real DGESVS

Syntax

Fortran CALL SGESVS | DGESVS (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau)

C and C++ sgesvs | dgesvs (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau);

On Entry

v is the orthogonal matrix V of order n in the singular value decomposition of
matrix A. It is produced by a preceding call to SGESVF or DGESVF, where it
corresponds to output argument a.

Specified as: an ldv by (at least) n array, containing numbers of the data type
indicated in Table 181.

ldv
is the leading dimension of the array specified for v.

Specified as: an integer; ldv > 0 and ldv ≥ n.

ub is an n by nb matrix, containing UTB. It is produced by a preceding call to
SGESVF or DGESVF, where it corresponds to output argument b. On output,
UTB is overwritten; that is, the original input is not preserved.

Specified as: an ldub by (at least) nb array, containing numbers of the data type
indicated in Table 181.

ldub
is the leading dimension of the array specified for ub.

Specified as: an integer; ldub > 0 and ldub ≥ n.

nb is the number of columns in matrices X and UTB.

Specified as: an integer; nb > 0.

s is the vector s of length n, containing the singular values of matrix A. It is
produced by a preceding call to SGESVF or DGESVF, where it corresponds to
output argument s.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 181; si ≥ 0.

x See On Return.

ldx
is the leading dimension of the array specified for x.

Chapter 10. Linear Algebraic Equations 899

Specified as: an integer; ldx > 0 and ldx ≥ n.

m is the number of rows in matrix A.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A, the order of matrix V, the number of
elements in vector s, the number of rows in matrix UB, and the number of
rows in matrix X. Specified as: an integer; n ≥ 0.

tau
is the error tolerance τ. Any singular values in vector s that are less than τ are
treated as zeros when computing matrix X.

Specified as: a number of the data type indicated in Table 181 on page 899; τ ≥
0. For more information on the values for τ, see “Notes .”

On Return

x is an n by nb matrix, containing the minimal norm linear least solutions of
AX≅B. The nb column vectors of X contain minimal norm solution vectors for
nb distinct linear least squares problems.

Returned as: an ldx by (at least) nb array, containing numbers of the data type
indicated in Table 181 on page 899.

Notes
1. V, X, s, and UTB can have no common elements; otherwise the results are

unpredictable.
2. In problems involving experimental data, τ should reflect the absolute accuracy

of the matrix elements:

τ ≥ max(|∆ij|)
where ∆ij are the errors in aij. In problems where the matrix elements are known
exactly or are only affected by roundoff errors:

where:
ε is equal to 0.11920E-06 for SGESVS and 0.22204D-15 for DGESVS. s is a vector
containing the singular values of matrix A.
For more information, see references [20 on page 1314], [69 on page 1317], [90
on page 1318], and pages 134 to 151 in reference [116 on page 1320].

Function

The minimal norm linear least squares solution of AX≅B, where A is a real general
matrix, is computed using the singular value decomposition, produced by a
preceding call to SGESVF or DGESVF. From SGESVF or DGESVF, the singular
value decomposition of A is given by the following:

A = UΣVT

The linear least squares of solution X, for AX≅B, is given by the following formula:

X = VΣ+UTB

900 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

If m or n is equal to 0, no computation is performed. See references [20 on page
1314], [69 on page 1317], [90 on page 1318], and pages 134 to 151 in reference [116
on page 1320]. These algorithms have a tendency to generate underflows that may
hurt overall performance. The system default is to mask underflow, which
improves the performance of these subroutines.

Error conditions

Computational Errors
None

Input-Argument Errors

1. ldv ≤ 0
2. n > ldv

3. ldub ≤ 0
4. n > ldub

5. ldx ≤ 0
6. n > ldx

7. nb ≤ 0
8. m < 0
9. n < 0

10. τ < 0

Examples

Example 1

This example finds the linear least squares solution for the underdetermined
system AX≅B, using the singular value decomposition computed by DGESVF.
Matrix A is:

┌ ┐
| 1.0 2.0 2.0 |
| 2.0 4.0 5.0 |
└ ┘

and matrix B is:
┌ ┐
| 1.0 |
| 4.0 |
└ ┘

On output, matrix UTB is overwritten.

Note: This example corresponds to DGESVF Example 3.

Call Statement and Input:
V LDV UB LDUB NB S X LDX M N TAU
| | | | | | | | | | |

CALL DGESVS(V , 3 , UB , 3 , 1 , S , X , 3 , 2 , 3 , TAU)

Chapter 10. Linear Algebraic Equations 901

┌ ┐
| -0.304 -0.894 0.328 |

V = | -0.608 0.447 0.656 |
| -0.733 0.000 -0.680 |
└ ┘

┌ ┐
| -4.061 |

UB = | 0.000 |
| -0.714 |
└ ┘

S = (7.342, 0.000, 0.305)
TAU = 0.3993D-14

Output:
┌ ┐
| -0.600 |

X = | -1.200 |
| 2.000 |
└ ┘

Example 2

This example finds the linear least squares solution for the overdetermined
system AX≅B, using the singular value decomposition computed by DGESVF.
Matrix A is:

┌ ┐
| 1.0 4.0 |
| 2.0 5.0 |
| 3.0 6.0 |
└ ┘

and where B is:
┌ ┐
| 7.0 10.0 |
| 8.0 11.0 |
| 9.0 12.0 |
└ ┘

On output, matrix UTB is overwritten.

Note: This example corresponds to DGESVF Example 4.

Call Statement:
V LDV UB LDUB NB S X LDX M N TAU
| | | | | | | | | | |

CALL DGESVS(V , 3 , UB , 3 , 2 , S , X , 2 , 3 , 2 , TAU)

Input:
┌ ┐
| 0.922 -0.386 |

V = | -0.386 -0.922 |
| . . |
└ ┘

┌ ┐
| -1.310 -2.321 |

UB = | -13.867 -18.963 |
| . . |
└ ┘

S = (0.773, 9.508)
TAU = 0.5171D-14

Output:

902 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
X = | -1.000 -2.000 |

| 2.000 3.000 |
└ ┘

Chapter 10. Linear Algebraic Equations 903

SGELLS and DGELLS (Linear Least Squares Solution for a General
Matrix with Column Pivoting)

Purpose

These subroutines compute the minimal norm linear least squares solution of
AX≅B, using a QR decomposition with column pivoting.

Table 182. Data Types

A, B, X, rn, τ, aux Subroutine

Short-precision real SGELLS

Long-precision real DGELLS

Syntax

Fortran CALL SGELLS | DGELLS (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux)

C and C++ sgells | dgells (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux);

On Entry

iopt
indicates the type of computation to be performed, where:

If iopt = 0, X is computed.

If iopt = 1, X and the Euclidean Norm of the residual vectors are computed.

Specified as: an integer; iopt = 0 or 1.

a is the m by n coefficient matrix A. On output, A is overwritten; that is, the
original input is not preserved.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 182.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ m.

b is the m by nb matrix B, containing the right-hand sides of the linear systems.
The nb column vectors of B contain right-hand sides for nb distinct linear least
squares problems. On output, B is overwritten; that is, the original input is not
preserved.

Specified as: an ldb by (at least) nb array, containing numbers of the data type
indicated in Table 182.

ldb
is the leading dimension of the array specified for b.

Specified as: an integer; ldb > 0 and ldb ≥ m.

x See On Return.

ldx
is the leading dimension of the array specified for x.

Specified as: an integer; ldx > 0 and ldx ≥ n.

rn See On Return.

904 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

tau
is the tolerance τ, used to determine the subset of the columns of A used in the
solution.

Specified as: a number of the data type indicated in Table 182 on page 904; τ ≥
0. For more information on how to select a value for τ, see “Notes ” on page
906.

m is the number of rows in matrices A and B.

Specified as: an integer; m ≥ 0.

n is the number of columns in matrix A and the number of rows in matrix X.

Specified as: an integer; n ≥ 0.

nb is the number of columns in matrices B and X and the number of elements in
vector rn.

Specified as: an integer; nb > 0.

k See On Return.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 182 on page 904. On output, the contents of aux are overwritten.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SGELLS and DGELLS dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, it must have the following values:

For SGELLS
For SGELLS, it must have the following values:

For 32-bit integer arguments
naux ≥ 3n + max(n, nb)

For 64-bit integer arguments
naux ≥ 4n + max(n, nb) + 3

For DGELLS
For DGELLS, it must have the following values:

For 32-bit integer arguments
naux ≥ [ceiling(2.5n) + max(n, nb)]

For 64-bit integer arguments
naux ≥ 3n + max(n, nb)

On Return

x is the solution matrix X, with n rows and nb columns, where:

Chapter 10. Linear Algebraic Equations 905

If k ≠ 0, the nb column vectors of X contain minimal norm least squares
solutions for nb distinct linear least squares problems. The elements in each
solution vector correspond to the original columns of A.

If k = 0, the nb column vectors of X are set to 0.

Returned as: an ldx by (at least) nb array, containing numbers of the data type
indicated in Table 182 on page 904.

rn is the vector rn of length nb, where:

If iopt = 0 or k = 0, rn is not used in the computation.

If iopt = 1, rni is the Euclidean Norm of the residual vector for the linear least
squares problem defined by the i-th column vector of B.

Returned as: a one-dimensional array of (at least) nb, containing numbers of
the data type indicated in Table 182 on page 904.

k is the number of columns of matrix A used in the solution. Returned as: an
integer; k = (the number of diagonal elements of matrix R exceeding τ in
magnitude).

Notes
1. In your C program, argument k must be passed by reference.
2. If ldb ≥ max(m, n), matrix X and matrix B can be the same; otherwise, matrix X

and matrix B can have no common elements, or the results are unpredictable.
3. The following items must have no common elements; otherwise, results are

unpredictable:
v Matrices A and X, vector rn, and the data area specified for aux

v Matrices A and B, vector rn, and the data area specified for aux.
4. If the relative uncertainty in the matrix B is ρ, then:

τ ≥ ρ{A{F

See references [52 on page 1316], [73 on page 1317], and [90 on page 1318] for
additional guidance on determining suitable values for τ.

5. When you specify iopt = 0, you must also specify a dummy argument for rn.
For more details, see Example 1.

6. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The minimal norm linear least squares solution of AX≅B is computed using a QR
decomposition with column pivoting, where:

A is an m by n real general matrix.
B is an m by nb real general matrix.
X is an n by nb real general matrix.

Optionally, the Euclidean Norms of the residual vectors can be computed.
Following are the steps involved in finding the minimal norm linear least squares
solution of AX≅B. A is decomposed, using Householder transformations and
column pivoting, into the following form:

AP = QR

906 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

P is a permutation matrix.
Q is an orthogonal matrix.
R is an upper triangular matrix.

k is the first index, where:

|rk+1,k+1| ≤ τ

If k = n, the minimal norm linear least squares solution is obtained by solving RX
= QTB and reordering X to correspond to the original columns of A.

If k < n, R has the following form:

To find the minimal norm linear least squares solution, it is necessary to zero the
submatrix R12 using Householder transformations. See references [52 on page
1316], [73 on page 1317], and [90 on page 1318]. If m or n is equal to 0, no
computation is performed. These algorithms have a tendency to generate
underflows that may hurt overall performance. The system default is to mask
underflow, which improves the performance of these subroutines.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. iopt ≠ 0 or 1
2. lda ≤ 0
3. m > lda

4. ldb ≤ 0
5. m > ldb

6. ldx ≤ 0
7. n > ldx

8. m < 0
9. n < 0

10. nb ≤ 0
11. τ < 0
12. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

Chapter 10. Linear Algebraic Equations 907

This example solves the underdetermined system AX≅B. On output, A and B
are overwritten. DUMMY is used as a placeholder for argument rn, which is not
used in the computation.

Call Statement and Input:
IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(0 , A , 2 , B , 2 , X , 3 , DUMMY , TAU , 2 , 3 , 1 , K , AUX , 11)

┌ ┐
A = | 1.0 2.0 2.0 |

| 2.0 4.0 5.0 |
└ ┘

┌ ┐
B = | 1.0 |

| 4.0 |
└ ┘

TAU = 0.0

Output:
┌ ┐
| -0.600 |

X = | -1.200 |
| 2.000 |
└ ┘

K = 2

Example 2

This example solves the overdetermined system AX≅B. On output, A and B are
overwritten. DUMMY is used as a placeholder for argument rn, which is not used
in the computation.

Call Statement and Input:
IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(0 , A , 3 , B , 3 , X , 2 , DUMMY , TAU , 3 , 2 , 2 , K , AUX , 7)

┌ ┐
| 1.0 4.0 |

A = | 2.0 5.0 |
| 3.0 6.0 |
└ ┘

┌ ┐
| 7.0 10.0 |

B = | 8.0 11.0 |
| 9.0 12.0 |
└ ┘

TAU = 0.0

Output:
┌ ┐

X = | -1.000 -2.000 |
| 2.000 3.000 |
└ ┘

K = 2

Example 3

This example solves the overdetermined system AX≅B and computes the
Euclidean Norms of the residual vectors. On output, A and B are overwritten.

Call Statement and Input:

908 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
| | | | | | | | | | | | | | |

CALL DGELLS(1 , A , 3 , B , 3 , X , 2 , RN , TAU , 3 , 2 , 2 , K , AUX , 7)

┌ ┐
| 1.1 -4.3 |

A = | 2.0 -5.0 |
| 3.0 -6.0 |
└ ┘

┌ ┐
| -7.0 10.0 |

B = | -8.0 11.0 |
| -9.0 12.0 |
└ ┘

TAU = 0.0

Output:
┌ ┐

X = | 0.543 -1.360 |
| 1.785 -2.699 |
└ ┘

┌ ┐
RN = | 0.196 |

| 0.275 |
└ ┘

K = 2

Chapter 10. Linear Algebraic Equations 909

910 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 11. Eigensystem Analysis

The eigensystem analysis subroutines are described here.

Overview of the Eigensystem Analysis Subroutines
The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem and the generalized eigensystem analysis problem.
These subroutines correspond to the LAPACK routines described in reference [8 on
page 1313].

Table 183. List of LAPACK Eigensystem Analysis Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SGEEVX⌂

CGEEVX⌂
DGEEVX⌂

ZGEEVX⌂
“SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally,
Right Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for
Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a
General Matrix)” on page 913

SSPEVX⌂

CHPEVX⌂

SSYEVX⌂

CHEEVX⌂

DSPEVX⌂

ZHPEVX⌂

DSYEVX⌂

ZHEEVX⌂

“SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and
ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric
or Complex Hermitian Matrix)” on page 927

SSPEVD⌂

CHPEVD⌂

SSYEVD⌂

CHEEVD⌂

DSPEVD⌂

ZHPEVD⌂

DSYEVD⌂

ZHEEVD⌂

“SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and
ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer
Algorithm)” on page 942

SGGEV⌂

CGGEV⌂
DGGEV⌂

ZGGEV⌂
“SGGEV, DGGEV, CGGEV, and ZGGEV (Eigenvalues and, Optionally, Left
and/or Right Eigenvectors of a General Matrix Generalized Eigenproblem)”
on page 955

SSPGVX⌂

CHPGVX⌂

SSYGVX⌂

CHEGVX⌂

DSPGVX⌂

ZHPGVX⌂

DSYGVX⌂

ZHEGVX⌂

“SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and
ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)”
on page 965

⌂ LAPACK

Performance and Accuracy Considerations
1. The short precision subroutines provide increased accuracy by accumulating

intermediate results in long precision when the AltiVec or VSX unit is not used.
Occasionally, for performance reasons, these intermediate results are stored.

2. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 62.

© Copyright IBM Corp. 1986, 2015 911

Eigensystem Analysis Subroutines

This contains the eigensystem analysis subroutine descriptions.

912 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and,
Optionally, Right Eigenvectors, Left Eigenvectors, Reciprocal
Condition Numbers for Eigenvalues, and Reciprocal Condition
Numbers for Right Eigenvectors of a General Matrix)

Purpose

These subroutines compute the eigenvalues and, optionally, right eigenvectors, left
eigenvectors, reciprocal condition numbers for eigenvalues, and reciprocal
condition numbers for right eigenvectors of a general matrix.

For a right eigenvector v of A:

Av = λv

For a left eigenvector u of A:

uHA = λuH

The computed eigenvectors are normalized to have the Euclidean norm equal to
one and the largest component real.

Table 184. Data Types

A, vl, vr, work, wr, wi, w scale, abnrm, rconde, rcondv, rwork Subroutine

Short-precision real Short-precision real SGEEVX∆

Long-precision real Long-precision real DGEEVX∆

Short-precision complex Short-precision real CGEEVX∆

Long-precision complex Long-precision real ZGEEVX∆

⌂ LAPACK

Syntax

Fortran

CALL SGEEVX | DGEEVX (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, iwork, info)

CALL CGEEVX | ZGEEVX (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, rwork, info)

C and C++ sgeevx | dgeevx (balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo, ihi, scale,
abnrm, rconde, rcondv, work, lwork, iwork, info);

cgeevx | zgeevx (balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi, scale, abnrm,
rconde, rcondv, work, lwork, rwork, info);

On Entry

balanc
indicates whether or not to scale A diagonally and whether or not to permute
its rows and columns to improve the conditioning of its eigenvalues, where
balanc can have any of the following values:

N Neither diagonally scale nor permute A.

P Permute A, but do not diagonally scale it.

Chapter 11. Eigensystem Analysis 913

S Diagonally scale A, but do not permute it.

B Both diagonally scale and permute A.

When diagonal scaling is specified, the subroutine replaces A with DAD-1

where D is a diagonal matrix chosen to make the rows and columns of A more
equal in norm and the condition numbers of its eigenvalues and eigenvectors
smaller.

When permuting is specified, the subroutine makes A more nearly upper
triangular.

The computed reciprocal condition numbers correspond to the balanced
matrix. In exact arithmetic, permuting rows and columns does not change the
condition numbers, but diagonal scaling does change the condition numbers.

Specified as: a single character. It must be 'N', 'P', 'S', or 'B'.

jobvl
indicates whether or not to compute the left eigenvectors of A, where jobvl can
have either of the following values:

N Do not compute the left eigenvectors of A.

V Compute the left eigenvectors of A.

Note: If sense = 'E' or 'B', jobvl must = 'V'.

Specified as: a single character. It must be 'N' or 'V'.

jobvr
indicates whether or not to compute the right eigenvectors of A, where jobvr
can have either of the following values:

N Do not compute the right eigenvectors of A.

V Compute the right eigenvectors of A.

Note: If sense = 'E' or 'B', jobvr must = 'V'.

Specified as: a single character. It must be 'N' or 'V'.

sense
indicates which reciprocal numbers to compute (if any), where sense can have
any of the following values:

N Do not compute reciprocal condition numbers.

E Compute reciprocal condition numbers for eigenvalues only.

V Compute reciprocal condition numbers for right eigenvectors only.

B Compute reciprocal condition numbers for eigenvalues and right
eigenvectors.

Note: If sense = 'E' or 'B', both jobvl and jobvr must equal 'V' (so that both
left and right eigenvectors are also computed).

Specified as: a single character. It must be 'N', 'E', 'V', or 'B'.

n is the order of the general matrix A.

Specified as: an integer; n ≥ 0.

a is the general matrix A of order n.

914 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 184 on page 913.

lda
is the leading dimension of the array specified for a.

Specified as: an integer; lda > 0 and lda ≥ n.

wr See On Return.

wi See On Return.

w See On Return.

ldvl
is the leading dimension of the array specified for vl.

Specified as: an integer; ldvl > 0; if jobvl = 'V', ldvl ≥ n.

ldvr
is the leading dimension of the array specified for vr.

Specified as: an integer; ldvr > 0; if jobvr = 'V', ldvr ≥ n.

work
is the storage work area used by this subroutine. Its size is specified by lwork.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 184 on page 913.

lwork
is the number of elements in array WORK.

Specified as an integer, where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The dynamically allocated workspace will be
freed prior to returning control to the calling program.

v If lwork = -1, a workspace query is assumed. The subroutine only calculates
the optimal size of the WORK array and returns this value as the first entry of
the WORK array.

Otherwise:
v For SGEEVX and DGEEVX:

– If sense = 'N' or 'E':
- If jobvl = 'N' and jobvr = 'N', lwork ≥ max(1, 2n).
- If jobvl = 'V' or jobvr = 'V', lwork ≥ 3n.

– If sense = 'V' or 'B', lwork ≥ n(n + 6).
v For CGEEVX and ZGEEVX:

– If sense = 'N' or 'E', lwork ≥ max(1, 2n).
– If sense = 'V' or 'B', lwork ≥ n2 + 2n.

Note: These formulas represent the minimum workspace required. For best
performance, specify either lwork = -1 (to obtain the optimal size to use) or
lwork = 0 (to direct the subroutine to dynamically allocate the workspace).

rwork
is a storage work area of size 2n.

Specified as: an area of storage containing numbers of the data type indicated
in Table 184 on page 913.

Chapter 11. Eigensystem Analysis 915

iwork
is a storage work area of size 2n-2.

If sense = 'N' or 'E', iwork is not referenced by the subroutine.

Specified as: an integer array.

On Return

a is the updated general matrix A of order n. On output, A is overwritten; that is,
the original input is not preserved. If jobvl = 'V' or jobvr = 'V', A contains the
Schur form of the balanced matrix.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 184 on page 913.

wr contains the real part of the computed eigenvalues.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 184 on page 913.

wi contains the imaginary part of the computed eigenvalues.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 184 on page 913.

w contains the computed eigenvalues.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 184 on page 913.

vl contains the left eigenvectors.
v If jobvl = 'V', the left eigenvectors are stored one after another in the columns

of vl, in the same order as their eigenvalues.
– For SGEEVX and DGEEVX:

- If the jth eigenvalue is real, then the jth column of vl contains its
eigenvector.

- If the jth and (j+1)st eigenvalues form a complex conjugate pair, then
the jth and (j+1)st columns of vl contain the real and imaginary parts of
the eigenvector corresponding to the jth eigenvalue. The conjugate of
this eigenvector is the eigenvector for the (j+1)st eigenvalue.

v If jobvl = 'N', vl is not referenced.

Returned as: an array of size (ldvl, n) containing numbers of the data type
indicated in Table 184 on page 913.

vr contains the right eigenvectors.
v If jobvr = 'V', the left eigenvectors are stored one after another in the

columns of vr, in the same order as their eigenvalues.
– For SGEEVX and DGEEVX:

- If the jth eigenvalue is real, then the jth column of vr contains its
eigenvector.

- If the jth and (j+1)st eigenvalues form a complex conjugate pair, then
the jth and (j+1)st columns of vr contain the real and imaginary parts
of the eigenvector corresponding to the jth eigenvalue. The conjugate of
this eigenvector is the eigenvector for the (j+1)st eigenvalue.

v If jobvr = 'N', vr is not referenced.

Returned as: an array of size (ldvr, n) containing numbers of the data type
indicated in Table 184 on page 913.

916 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ilo
has the following meaning:

If balanc = 'N', ilo = 1.

Otherwise, the value of ilo is determined when A is balanced.

The balanced aij = 0 if i > j and j = 1, ..., (ilo-1) or i = (ihi+1), ..., n.

Returned as: an integer; 1 ≤ ilo ≤ n.

ihi
has the following meaning:

If balanc = 'N', ihi = n.

Otherwise, the value of ihi is determined when A is balanced.

The balanced ai, j = 0 if i > j and j = 1, ..., (ilo-1) or i = (ihi+1), ..., n.

Returned as: an integer; 1 ≤ ihi ≤ n.

scale
contains the details of the permutations and scaling factors applied when
balancing A.

If pj is the index of the row and column interchanged with row and column j,
and dj is the scaling factor applied to row and column j, then:
v scalej = pj, for j = 1, ..., (ilo-1)
v scalej = dj, for j = ilo, ..., ihi

v scalej = pj, for j = (ihi+1), ..., n

Returned as: a one-dimensional array of (at least) length n containing numbers
of the data type indicated in Table 184 on page 913.

abnrm
is the one-norm of the balanced matrix (the maximum of the sum of absolute
values of elements of any column).

Returned as: a number of the data type indicated in Table 184 on page 913;
abnrm ≥ 0.

rconde
contains the computed reciprocal condition numbers of the eigenvalues, where
rcondej is the reciprocal condition number of the jth eigenvalue.

Returned as: an array of dimension n containing numbers of the data type
indicated in Table 184 on page 913.

rcondv
contains the computed reciprocal condition numbers of the eigenvectors, where
rcondvj is the reciprocal condition number of the jth right eigenvector.

Returned as: an array of dimension n containing numbers of the data type
indicated in Table 184 on page 913.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 184 on page 913.

Chapter 11. Eigensystem Analysis 917

Except for work1, the contents of work are overwritten on return.

rwork
is a storage work area of size 2n.

Returned as: an area of storage containing numbers of the data type indicated
in Table 184 on page 913.

iwork
is a storage work area of size 2n-2.

If sense = 'N' or 'E', iwork is not referenced by the subroutine.

Returned as: an integer array.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info > 0, the QR algorithm failed to compute all the eigenvalues, and no
eigenvectors or reciprocal condition numbers were computed; elements 1:(ilo-1)
and (i+1):n of the eigenvalue arrays contain eigenvalues that have converged.

Returned as: an integer; info ≥ 0.

Notes
1. When you specify jobvl = 'N', you must specify a dummy argument for vl.
2. When you specify jobvr = 'N', you must specify a dummy argument for vr.
3. When you specify sense = 'N', you must specify a dummy argument for rconde.
4. When you specify sense = 'N' or 'E', you must specify dummy arguments for

rcondv and iwork.
5. In your C program, the ilo, ihi, abnrm, info arguments must be passed by

reference.
6. These subroutines accept lowercase letters for the balanc, jobvl, jobvr, and sense

arguments.
7. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.
8. For best performance, specify lwork = 0.

Function

These subroutines compute the following for a general matrix A :
v eigenvalues
v optionally, the right eigenvectors, left eigenvectors, or both
v optionally, the reciprocal condition numbers for the eigenvalues
v optionally, the reciprocal condition numbers for the right eigenvectors

Computing eigenvalues only
The eigenvalues (only) of general matrix A are computed as follows:
1. If necessary, scale the general matrix A.
2. Balance the general matrix A.
3. Reduce the balanced matrix to an upper Hessenberg matrix using the

following types of transformations:
SGEEVX and DGEEVX

Orthogonal similarity transformations
CGEEVX and ZGEEVX

Unitary similarity transformations

918 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. Compute the eigenvalues of the upper Hessenberg matrix using the
multi-shift QR algorithm or the implicit double-shift QR algorithm.

5. If specified, compute reciprocal condition numbers.
6. If necessary, undo scaling.

Computing eigenvalues and right eigenvectors or left eigenvectors or both
The eigenvalues and right eigenvectors or left eigenvectors, or both, of general
matrix A are computed as follows:
1. If necessary, scale the general matrix A.
2. Balance the general matrix A.
3. Reduce the balanced matrix to an upper Hessenberg matrix using the

following types of transformations:
SGEEVX and DGEEVX

Orthogonal similarity transformations
CGEEVX and ZGEEVX

Unitary similarity transformations
4. Accumulate the transformations.
5. Compute the eigenvalues of the upper Hessenberg matrix, and the

appropriate eigenvectors of the corresponding balanced matrix, using the
multi-shift QR algorithm or the implicit double-shift QR algorithm.

6. If appropriate, compute reciprocal condition numbers.
7. Undo balancing the eigenvectors; normalize the eigenvectors; and make the

largest component real.
8. If necessary, undo scaling.

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking.

For more information, see references [14 on page 1314], [15 on page 1314], [65 on
page 1317], [66 on page 1317], and [74 on page 1317].

Error conditions

Resource Errors
lwork = 0, and unable to allocate work area.

Computational Errors
1. Eigenvalue (i) failed to converge.
v Elements 1:(ilo-1) and (i+1):n of wr and wi contain eigenvalues that have

converged. No eigenvectors or condition numbers have been computed.
v The computational error message may occur multiple times with

processing continuing after each error because the default for the number
of allowable errors for error code 2153 is set to be unlimited in the ESSL
error option table.

2. The subroutine computed the eigenvalues using multiple algorithms.
v Performance may be degraded.
v The computational error message may occur multiple times with

processing continuing after each error because the default for the number
of allowable errors for error code 2613 is set to be unlimited in the ESSL
error option table.

Input-Argument Errors
1. balanc ≠ 'N', 'S', 'P', or 'B'
2. jobvl ≠ 'N', or 'V'
3. jobvr ≠ 'N', or 'V'
4. sense ≠ 'N', 'E', 'V', or 'B'
5. (sense = 'E' or sense = 'B') and (jobvl ≠ 'V' or jobvr ≠ 'V')
6. n < 0

Chapter 11. Eigensystem Analysis 919

7. lda ≤ 0
8. n > lda
9. ldvl ≤ 0

10. ldvr ≤ 0
11. jobvl ≠ 'V' and ldvl < n
12. jobvr ≠ 'V' and ldvr < n
13. For SGEEVX and DGEEVX:

v If sense = 'N' or 'E':
– If jobvl = 'N' and jobvr = 'N', lwork < max(1, 2n).
– If jobvl = 'V' or jobvr = 'V', lwork < 3n.

v If sense = 'V' or 'B', lwork < n(n + 6).
For CGEEVX and ZGEEVX:
v If sense = 'N' or 'E', lwork < max(1, 2n).
v If sense = 'V' or 'B', lwork < n2 + 2n.

Examples

Example 1

This example shows how to find the eigenvalues only of a long-precision real
general matrix A of order 4, where:
v LDVL and LDVR are set to 1 to avoid an error condition.
v DUMMY1 is a placeholder for VL. VL is not used.
v DUMMY2 is a placeholder for VR. VR is not used.
v DUMMY3 is a placeholder for RCONDE. RCONDE is not used.
v DUMMY4 is a placeholder for RCONDV. RCONDV is not used.
v IDUMMY is a placeholder for IWORK. IWORK is not used.

Note:

1. This matrix is used in Example 5.5 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.
3. On output, A has been overwritten.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | | |
CALL DGEEVX(’N’, ’N’, ’N’, ’N’, 4, A, 4, WR, WI, DUMMY1, 1, DUMMY2, 1, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
| | | | | | | |

SCALE, ABNRM, DUMMY3, DUMMY4, WORK, 0, IDUMMY, INFO)

┌ ┐
| -2.0 2.0 2.0 2.0 |

A = | -3.0 3.0 2.0 2.0 |
| -2.0 0.0 4.0 2.0 |
| -1.0 0.0 0.0 5.0 |
└ ┘

Output:
┌ ┐
| 1.000000 |

WR = | 2.000000 |
| 3.000000 |
| 4.000000 |
└ ┘

┌ ┐
| 0.000000 |

WI = | 0.000000 |
| 0.000000 |
| 0.000000 |
└ ┘

920 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 1.000000 |

SCALE = | 1.000000 |
| 1.000000 |
| 1.000000 |
└ ┘

ILO = 1
IHI = 4
ABNRM = 11.0
INFO = 0

Example 2

This example shows how to find the eigenvalues, left and right eigenvectors,
and reciprocal condition numbers for the eigenvalues and right eigenvectors of
a balanced long-precision real general matrix A of order 4, where:

Note:

1. This matrix is used in Example 5.5 in referenced text [74 on page 1317].
2. IWORK is an integer work array of size 6.
3. On output, A has been overwritten by the Schur form of the balanced

matrix.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | | |
CALL DGEEVX(’B’, ’V’, ’V’, ’B’, 4, A, 4, WR, WI, VL, 4, VR, 4, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
| | | | | | | |

SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, IWORK, INFO)

┌ ┐
| -2.0 2.0 2.0 2.0 |

A = | -3.0 3.0 2.0 2.0 |
| -2.0 0.0 4.0 2.0 |
| -1.0 0.0 0.0 5.0 |
└ ┘

Output:
┌ ┐
| 1.000000 -6.949732 -1.320184 0.103510 |

A = | 0.000000 2.000000 -2.415229 1.002262 |
| 0.000000 0.000000 3.000000 -0.780869 |
| 0.000000 0.000000 0.000000 4.000000 |
└ ┘

┌ ┐
| 1.000000 |

WR = | 2.000000 |
| 3.000000 |
| 4.000000 |
└ ┘

┌ ┐
| 0.000000 |

WI = | 0.000000 |
| 0.000000 |
| 0.000000 |
└ ┘

┌ ┐
| -0.707107 -0.408248 0.000000 0.000000 |

VL = | 0.707107 0.816497 0.408248 0.000000 |
| 0.000000 -0.408248 -0.816497 -0.447214 |
| 0.000000 0.000000 0.408248 0.894427 |
└ ┘

Chapter 11. Eigensystem Analysis 921

┌ ┐
| -0.730297 0.625543 -0.554700 0.500000 |

VR = | -0.547723 0.625543 -0.554700 0.500000 |
| -0.365148 0.417029 -0.554700 0.500000 |
| -0.182574 0.208514 -0.277350 0.500000 |
└ ┘

┌ ┐
| 0.087287 |

RCONDE = | 0.053722 |
| 0.096561 |
| 0.282843 |
└ ┘

┌ ┐
| 0.448959 |

RCONDV = | 0.244976 |
| 0.289148 |
| 0.508520 |
└ ┘

┌ ┐
| 1.000000 |

SCALE = | 2.000000 |
| 1.000000 |
| 0.500000 |
└ ┘

ILO = 1
IHI = 4
ABNRM = 7.5
INFO = 0

Example 3

This example shows how to find the eigenvalues, left and right eigenvectors,
and reciprocal condition numbers for the eigenvalues and right eigenvectors of
a balanced long-precision real general matrix A of order 3.

Note:

1. This matrix is used in Example 5.4 in referenced text [74 on page 1317].
2. IWORK is an integer work array of size 4.
3. On output, A has been overwritten by the Schur form of the balanced

matrix.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | | |
CALL DGEEVX(’B’, ’V’, ’V’, ’B’, 3, A, 3, WR, WI, VL, 3, VR, 3, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
| | | | | | | |

SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, IWORK, INFO)

┌ ┐
| 8.0 -1.0 -5.0 |

A = | -4.0 4.0 -2.0 |
| 18.0 -5.0 -7.0 |
└ ┘

Output:
┌ ┐
| 2.000000 -6.928203 -13.435029 |

A = | 2.309401 2.000000 -10.206207 |
| 0.000000 0.000000 1.000000 |
└ ┘

922 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 2.000000 |

WR = | 2.000000 |
| 1.000000 |
└ ┘

┌ ┐
| 4.000000 |

WI = | -4.000000 |
| 0.000000 |
└ ┘

┌ ┐
| -0.877058 0.000000 -0.816497 |

VL = | 0.263117 -0.087706 0.408248 |
| 0.350823 0.175412 0.408248 |
└ ┘

┌ ┐
| 0.316228 -0.316228 0.408248 |

VR = | 0.632456 0.000000 0.816497 |
| 0.000000 -0.632456 0.408248 |
└ ┘

┌ ┐
| 0.301511 |

RCONDE = | 0.301511 |
| 0.192450 |
└ ┘

┌ ┐
| 1.671856 |

RCONDV = | 1.671856 |
| 1.174058 |
└ ┘

┌ ┐
| 0.500000 |

SCALE = | 1.000000 |
| 1.000000 |
└ ┘

ILO = 1
IHI = 3
ABNRM = 19.0
INFO = 0

Example 4

This example shows how to find the eigenvalues and right eigenvectors of a
long-precision complex general matrix A of order 4, where:
v LDVL is set to 1 to avoid an error condition.
v DUMMY1 is a placeholder for VL. VL is not used.
v DUMMY2 is a placeholder for RCONDE. RCONDE is not used.
v DUMMY3 is a placeholder for RCONDV. RCONDV is not used.

Note:

1. This matrix is used in Example 6.5 in referenced text [74 on page 1317].
2. On output, A has been overwritten by the Schur form of the balanced

matrix.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | |
CALL ZGEEVX(’N’, ’N’, ’V’, ’N’, 4, A, 4, W, DUMMY1, 1, VR, 4, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
| | | | | | | |

SCALE, ABNRM, DUMMY2, DUMMY3, WORK, 0, RWORK, INFO)

Chapter 11. Eigensystem Analysis 923

┌ ┐
| (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |

A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
| (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
| (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
└ ┘

Output:
┌ ┐
| (2.0000, 6.0000) (-1.1081, 4.9368) (-3.3663, 3.6542) (-19.9524, 4.0936) |

A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1597, 0.5962) (-2.1519, 5.6785) |
| (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (0.8130, 4.9939) |
| (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
└ ┘

┌ ┐
| (2.0000, 6.0000) |

W = | (4.0000, 8.0000) |
| (3.0000, 7.0000) |
| (1.0000, 5.0000) |
└ ┘

┌ ┐
| (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |

VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
└ ┘

┌ ┐
| 1.000000 |

SCALE = | 1.000000 |
| 1.000000 |
| 1.000000 |
└ ┘

ILO = 1
IHI = 4
ABNRM = 29.5
INFO = 0

Example 5

This example shows how to find the eigenvalues, left and right eigenvectors,
and reciprocal condition numbers for the eigenvalues and right eigenvectors of
a long-precision complex general matrix A of order 4.

Note:

1. This matrix is used in Example 6.5 in referenced text [74 on page 1317].
2. RWORK is a real array of length 8.
3. On output, A has been overwritten by the Schur form of the balanced

matrix.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | |
CALL ZGEEVX(’P’, ’V’, ’V’, ’B’, 4, A, 4, W, VL, 4, VR, 4, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
| | | | | | | |

SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, RWORK, INFO)

┌ ┐
| (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |

A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
| (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
| (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
└ ┘

Output:

924 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (2.0000, 6.0000) (-1.1081, 4.9368) (-3.3663, 3.6542) (-19.9524, 4.0936) |

A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1597, 0.5962) (-2.1519, 5.6785) |
| (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (0.8130, 4.9939) |
| (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
└ ┘

┌ ┐
| (2.0000, 6.0000) |

W = | (4.0000, 8.0000) |
| (3.0000, 7.0000) |
| (1.0000, 5.0000) |
└ ┘

┌ ┐
| (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |

VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
└ ┘

┌ ┐
| (-0.5774, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (0.0000, 0.0000) |

VL = | (0.0000, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (-0.5774, 0.0000) |
| (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000) (0.5774, 0.0000) |
| (0.5774, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000) (0.5774, 0.0000) |
└ ┘

┌ ┐
| 0.2182 |

RCONDE = | 0.2182 |
| 0.2182 |
| 0.2182 |
└ ┘

┌ ┐
| 0.3089 |

RCONDV = | 0.6450 |
| 0.1770 |
| 0.5504 |
└ ┘

┌ ┐
| 1.000000 |

SCALE = | 1.000000 |
| 1.000000 |
| 1.000000 |
└ ┘

ILO = 1
IHI = 4
ABNRM = 29.5
INFO = 0

Example 6

This example shows how to find the eigenvalues, left and right eigenvectors,
and reciprocal condition numbers for the eigenvalues and right eigenvectors of
a balanced long-precision complex general matrix A of order 4.

Note:

1. This matrix is used in Example 6.5 in referenced text [74 on page 1317].
2. RWORK is a real array of length 8.
3. On output, A has been overwritten by the Schur form of the balanced

matrix.

Call Statement and Input:
BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI

| | | | | | | | | | | | | |
CALL ZGEEVX(’B’, ’V’, ’V’, ’B’, 4, A, LDA, W, VL, 4, VR, 4, ILO, IHI,

SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
| | | | | | | |

SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, RWORK, INFO)

Chapter 11. Eigensystem Analysis 925

┌ ┐
| (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |

A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
| (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
| (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
└ ┘

Output:
┌ ┐
| (2.0000, 6.0000) (0.2165, -4.9088) (6.7861, -7.6319) (-16.4572, 4.8125) |

A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1841, 1.7868) (1.5401, -3.1335) |
| (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (-0.6773, -2.9469) |
| (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
└ ┘

┌ ┐
| (2.0000, 6.0000) |

W = | (4.0000, 8.0000) |
| (3.0000, 7.0000) |
| (1.0000, 5.0000) |
└ ┘

┌ ┐
| (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |

VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
| (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
└ ┘

┌ ┐
| (-0.5774, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (0.0000, 0.0000) |

VL = | (0.0000, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (-0.5774, 0.0000) |
| (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000) (0.5774, 0.0000) |
| (0.5774, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000) (0.5774, 0.0000) |
└ ┘

┌ ┐
| 0.1633 |

RCONDE = | 0.2108 |
| 0.2108 |
| 0.2887 |
└ ┘

┌ ┐
| 0.4507 |

RCONDV = | 0.4293 |
| 0.1317 |
| 0.5114 |
└ ┘

┌ ┐
| 2.000000 |

SCALE = | 1.000000 |
| 1.000000 |
| 1.000000 |
└ ┘

ILO = 1
IHI = 4
ABNRM = 27.3
INFO = 0

926 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX,
and ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real
Symmetric or Complex Hermitian Matrix)

Purpose

These subroutines compute selected eigenvalues and, optionally, the eigenvectors
of a real symmetric matrix or a complex Hermitian matrix:
v SSPEVX and DSPEVX compute selected eigenvalues and, optionally, the

eigenvectors of real symmetric matrix A, stored in lower- or upper-packed
storage mode.

v CHPEVX and ZHPEVX compute selected eigenvalues and, optionally, the
eigenvectors of complex Hermitian matrix A, stored in lower- or upper-packed
storage mode.

v SSYEVX and DSYEVX compute selected eigenvalues and, optionally, the
eigenvectors of real symmetric matrix A, stored in lower or upper storage mode.

v CHEEVX and ZHEEVX compute selected eigenvalues and, optionally, the
eigenvectors of complex Hermitian matrix A, stored in lower or upper storage
mode.

Eigenvalues are returned in vector w, and eigenvectors are returned in matrix Z:

Az = wz

where A = AT or A = AH.

Table 185. Data Types

vl, vu, abstol, w, rwork A, z, work Subroutine

Short-precision real Short-precision real
SSPEVX∆

SSYEVX∆

Long-precision real Long-precision real
DSPEVX∆

DSYEVX∆

Short-precision real Short-precision complex
CHPEVX∆

CHEEVX∆

Long-precision real Long-precision complex
ZHPEVX∆

ZHEEVX∆

⌂ LAPACK

Chapter 11. Eigensystem Analysis 927

Syntax

Fortran

CALL SSPEVX | DSPEVX (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)

CALL CHPEVX | ZHPEVX (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work,
rwork, iwork, ifail, info)

CALL SSYEVX | DSYEVX (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info)

CALL CHEEVX | ZHEEVX (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info)

C and C++ sspevx | dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail,
info);

chpevx | zhpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork,
ifail, info);

ssyevx | dsyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork,
ifail, info);

cheevx | zheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info);

On Entry

jobz
indicates the type of computation to be performed, where:

If jobz = 'N', eigenvalues only are computed.

If jobz = 'V', eigenvalues and eigenvectors are computed.

Specified as: a single character; jobz = 'N' or 'V'.

range
indicates the type of computation to be performed, where:

If range = 'A', all eigenvalues are to be found.

If range = 'V', all eigenvalues in the interval [vl, vu] are to be found.

If range = 'I', the il-th through iu-th eigenvalues are to be found.

Specified as: a single character; range = 'A', 'V', or 'I'.

uplo
indicates whether the upper or lower triangular part of the matrix A is
referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrix A used in the computation.

Specified as: an integer; n ≥ 0.

ap is the real symmetric or complex Hermitian matrix A of order n. It is stored in
an array, referred to as AP, where:

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

928 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 185 on page 927.

a is the real symmetric or complex Hermitian matrix A of order n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 185 on page 927.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

vl has the following meaning:

If range = 'V', it is the lower bound of the interval to be searched for
eigenvalues.

If range ≠ 'V', this argument is ignored.

Specified as: a number of the data type indicated in Table 185 on page 927. If
range = 'V', vl < vu.

vu has the following meaning:

If range = 'V', it is the upper bound of the interval to be searched for
eigenvalues.

If range ≠ 'V', this argument is ignored.

Specified as: a number of the data type indicated in Table 185 on page 927. If
range = 'V', vl < vu.

il has the following meaning:

If range = 'I', it is the index (from smallest to largest) of the smallest eigenvalue
to be returned.

If range ≠ 'I', this argument is ignored.

Specified as: an integer; il ≥ 1.

iu has the following meaning:

If range = 'I', it is the index (from smallest to largest) of the largest eigenvalue
to be returned.

If range ≠ 'I', this argument is ignored.

Specified as: an integer; min(il, n) ≤ iu ≤ n.

abstol
is the absolute tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a, b] of
width less than or equal to:

abstol + ε(max(|a|, |b|))

where ε is the machine precision. If abstol is less than or equal to zero, then
ε(norm(T)) is used in its place, where norm(T) is the one-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form. For most
problems, this is the appropriate level of accuracy to request.

For certain strongly graded matrices, greater accuracy can be obtained in very
small eigenvalues by setting abstol to a very small positive number. However, if

Chapter 11. Eigensystem Analysis 929

abstol is less than:

where unfl is the underflow threshold, then:

is used in its place.

Eigenvalues are computed most accurately when abstol is set to twice the
underflow threshold—that is, (2)(unfl).

If jobz = 'V', setting abstol to unfl (the underflow threshold) yields the most
orthogonal eigenvectors.

Note:

1. The approximate values of the constants used for abstol are listed below:

For SSPEVX, CHPEVX, SSYEVX, and CHEEVX

ε 0.119209289550781250E-06

unfl 0.1175494351E-37

0.1084202172E-18

For DSPEVX, ZHPEVX, DSYEVX, and ZHEEVX

ε 0.222044604925031308E-15

unfl 0.222507385850720138E-307

0.149166814624004135E-153
2. The value of abstol can affect which algorithm is used to compute the

eigenvalues and eigenvectors. See Function.

Specified as: a number of the data type indicated in Table 185 on page 927.

m See On Return.

w See On Return.

z See On Return.

ldz
is the leading dimension of the array specified for Z.

Specified as: an integer; ldz > 0 and, if jobz = 'V', ldz ≥ n.

work
is a work area used by these subroutines, where:

For SSPEVX and DSPEVX
Its size is 8n.

For CHPEVX and ZHPEVX
Its size is 2n.

For SSYEVX, DSYEVX, CHEEVX, and ZHEEVX

930 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If lwork = 0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork = -1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of the data type indicated
in Table 185 on page 927.

lwork
is used to determine the size of the WORK array.

Specified as: an integer, where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The dynamically allocated workspace will be
freed prior to returning control to the calling program.

v If lwork = -1, a workspace query is assumed. The subroutine only calculates
the optimal size of the WORK array and returns this value as the first entry of
the WORK array.

Otherwise:

For SSYEVX and DSYEVX
lwork ≥ max(1, 8n).

For CHEEVX and ZHEEVX
lwork ≥ max(1, 2n).

Note: These formulas represent the minimum workspace required. For best
performance, specify either lwork = -1 (to obtain the optimal size to use) or
lwork = 0 (to direct the subroutine to dynamically allocate the workspace).

rwork
is a work area of size 7n.

Specified as: an area of storage containing real numbers of the data type
indicated in Table 185 on page 927.

iwork
is a work area of size 5n.

Specified as: an area of storage containing integers.

ifail
See On Return.

On Return

ap On exit, the matrix A is overwritten by values generated during the reduction
to tridiagonal form.

If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T
overwrite the corresponding elements of A.

If uplo = 'L', the diagonal and first subdiagonal of T overwrite the
corresponding elements of A.

Returned as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 185 on page 927.

a On exit, the matrix A is overwritten by values generated during the reduction
to tridiagonal form.

Chapter 11. Eigensystem Analysis 931

If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T
overwrite the corresponding elements of A.

If uplo = 'L', the diagonal and first subdiagonal of T overwrite the
corresponding elements of A.

Returned as: an array of dimension lda by (at least) n, containing numbers of
the data type indicated in Table 185 on page 927.

m is the number of eigenvalues found.

Returned as: an integer; 0 ≤ m ≤ n .

w is the vector w, containing the computed eigenvalues in ascending order in the
first m elements of w.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 185 on page 927.

z has the following meaning, where:

If jobz = 'N', then z is ignored.

If jobz = 'V', the first m columns of z contain the orthonormal eigenvectors of
the matrix A corresponding to the computed eigenvalues, with the i-th column
of z holding the eigenvector associated with w(i). If an eigenvector fails to
converge, then that column of z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned in ifail.

Note: You must ensure that at least max(1, m) columns are supplied in the
array z; if range = 'V', the exact value of m is not known in advance and an
upper bound must be used.

Returned as: an ldz by (at least) max(1, m) array, containing numbers of the
data type indicated in Table 185 on page 927.

work
is a work area used by these subroutines.

Returned as: an area of storage where:

If lwork = -1, then work is (at least) of length 1 and work1 contains the calculated
optimal size of the WORK array.

If lwork ≠ -1 and lwork ≠ 0, then work is (at least) of length lwork and work1
contains the value specified for lwork.

Except for work1, the contents of work are overwritten on return.

ifail
has the following meaning:

If jobz = 'N', ifail is ignored.

If jobz = 'V':
v If info = 0, the first m elements of ifail are zero.
v If info > 0, ifail contains the indices of the eigenvectors that failed to

converge.

Returned as: an array of length n, containing integers.

info
has the following meaning:

If info = 0, then all eigenvectors converged. This indicates a normal exit.

932 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If info = i, then i eigenvectors failed to converge. Their indices are saved in
array ifail.

Returned as: an integer; info ≥ 0.

Notes
1. This subroutine accepts lowercase letters for the jobz, range, and uplo arguments.
2. In your C program, the arguments info and m must be passed by reference.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. A, Z, w, ifail, work, rwork, iwork must have no common elements; otherwise,
results are unpredictable.

5. For a description of how real symmetric matrices are stored in lower- or
upper-packed storage mode, see “Lower-Packed Storage Mode” on page 83 or
“Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

6. For best performance specify lwork = 0.

Function

These subroutines compute selected eigenvalues and, optionally, the eigenvectors
of a real symmetric or complex Hermitian matrix A, stored in lower-packed or
upper-packed storage mode or in lower or upper storage mode. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues. (If n = 0, the subroutine returns after
completing parameter checking.)

The computation involves the following steps:
1. Reduce the matrix to real symmetric tridiagonal form.
2. Compute the selected eigenvalues and, optionally, the eigenvectors. The

algorithm used depends on the value specified for abstol and whether or not all
eigenvalues are requested.
a. If abstol ≤ 0 and all eigenvalues were requested (that is, range = 'A' or range

= 'I' with il = 1 and iu = n), do the following:
v If jobz = 'N', compute all the eigenvalues of the symmetric tridiagonal

matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm.
v Otherwise, for jobz = 'V', compute all eigenvalues and eigenvectors of the

symmetric tridiagonal matrix using the implicit QL or QR method.
b. Otherwise, if abstol > 0, or if a subset of the eigenvalues was requested via

range = 'I' or range = 'V', or if the previous step failed to compute all
eigenvalues, do the following:
1) Compute the requested eigenvalues using bisection. If abstol ≤ 0, then

ε(norm(T)) is used in its place, where norm(T) is the one-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form.

2) If the eigenvectors were also requested, compute the eigenvectors using
inverse iteration.

For more information on these methods, see references [8 on page 1313], [74 on
page 1317], and [34 on page 1315].

Chapter 11. Eigensystem Analysis 933

Error conditions

Resource Errors

1. lwork = 0, and unable to allocate work area.

Computational Errors

1. Bisection failed to converge for some eigenvalues. The eigenvalues may not
be as accurate as the absolute and relative tolerances.

2. The number of eigenvalues computed does not match the number of
eigenvalues requested.

3. No eigenvalues were computed because the Gershgorin interval initially
used was incorrect.

4. Some eigenvectors failed to converge. The indices are stored in ifail.
5. The subroutine computed the eigenvalues using multiple algorithms.

Performance may be degraded.

Note: The default for the number of allowable errors for error conditions 2154,
2155, 2156, 2157, and 2613 is set to be unlimited in the ESSL error option table;
therefore, each computational error message may occur multiple times with
processing continuing after each error.

Input-Argument Errors
1. jobz ≠ 'N' or 'V'
2. range ≠ 'A', 'V', or 'I'
3. uplo ≠ 'U' or 'L'
4. n < 0
5. range = 'V', n > 0, and vu ≤ vl
6. range = 'I' and (il < 1 or il > max(1, n))
7. range = 'I' and (iu < min(n, il) or iu > n)
8. lda ≤ 0
9. lda < n

10. ldz ≤ 0
11. jobz = 'V' and ldz < n
12. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value

Examples

Example 1

This example shows how to find the eigenvalues only of a real symmetric
matrix A of order 4, stored in lower-packed storage mode.

Note: This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
| 5.0 4.0 1.0 1.0 |
| 4.0 5.0 1.0 1.0 |
| 1.0 1.0 4.0 2.0 |
| 1.0 1.0 2.0 4.0 |
└ ┘

Call Statement and Input:

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | |

CALL DSPEVX (’N’, ’A’, ’L’, 4, AP, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 1.0, 1.0, 5.0, 1.0, 1.0, 4.0, 2.0, 4.0)

934 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
M = 4

AP = (5.000000, -4.242641, 0.121320, 0.121320, 6.0000000, 1.414214, 0.414214, 5.000000, 0.000000, 2.000000)

┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

Z is not used when JOBZ = ’N’.

IFAIL is not used when JOBZ = ’N’.

INFO = 0

Example 2

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix A of order 4, stored in upper-packed storage mode. This
example also illustrates the use of the il and iu arguments when range = 'I'.

Note: This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is the same matrix used for DSPEVX in Example 1.

Call Statement and Input:

Output:
M = 3

┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| . |
└ ┘

┌ ┐
| 0.707107 0.000000 -0.316228 |

Z = | -0.707107 0.000000 -0.316228 |
| 0.000000 -0.707107 0.632456 |
| 0.000000 0.707107 0.632456 |
└ ┘

IFAIL = (0,0,0,.)
INFO = 0

Example 3

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix A of order 4, stored in upper-packed storage mode. This
example also illustrates the use of the vl and vu arguments when range = 'V'.

Note: This matrix is Example 4.1 in Reference [74 on page 1317].

Matrix A is the same matrix used for DSPEVX in Example 1.

Call Statement and Input:

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | |

CALL DSPEVX (’V’, ’I’, ’U’, 4, AP, VL, VU, 1, 3, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

AP = (1.000000, 0.000000, 6.000000, 0.414214, 2.828427, 7.000000, 0.224745, 0.224725, -2.449490, 4.000000)

Chapter 11. Eigensystem Analysis 935

Output:
M = 2

┌ ┐
| 5.000000 |

W = | 10.000000 |
| . |
| . |
└ ┘

┌ ┐
| -0.316228 -0.632456 |

Z = | -0.316228 -0.632456 |
| 0.632456 -0.316228 |
| 0.632456 -0.316228 |
└ ┘

IFAIL = (0,0,.,.)
INFO = 0

Example 4

This example shows how to find the eigenvalues only of a complex Hermitian
matrix A of order 3, stored in lower-packed storage mode.

Note: This matrix is Example 6.3 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
| (2.0, 0.0) (0.0, 1.0) (0.0, 0.0) |
| (0.0, -1.0) (2.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
└ ┘

Call Statement and Input:

Output:
M = 3

AP = ((2.0, 0.0), (-1.0, 0.0), (0.0, 0.0), (2.0, 0.0), (0.0, 0.0), (3.0, 0.0))

┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

Z is not used when JOBZ = ’N’.

IFAIL is not used when JOBZ = ’N’.

INFO = 0

Example 5

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | |

CALL DSPEVX (’V’, ’V’, ’U’, 4, AP, 3.0, 11.0, 0, 0, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

AP = (1.000000, 0.000000, 6.000000, 0.414214, 2.828427, 7.000000, 0.224745, 0.224725, -2.449490, 4.000000)

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | |

CALL ZHPEVX (’N’, ’A’, ’L’, 3, AP, VL, VU, IL, IU, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, -1.0), (0.0, 0.0), (2.0, .), (0.0, 0.0), (3.0, .))

936 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix A of order 3, stored in upper-packed storage mode.
This example also illustrates the use of the il and iu arguments when range =
'I'.

Note: This matrix is Example 6.3 in referenced text [74 on page 1317].

Matrix A is the same matrix used for ZHPEVX in Example 4.

Call Statement and Input:

Output:
M = 2
AP = ((2.0, 0.0), (-1.0, 0.0), (2.0, 0.0), (0.0, 0.0), (0.0, 0.0), (3.0, 0.0))

┌ ┐
| 1.000000 |

W = | 3.000000 |
| . |
└ ┘

┌ ┐
| (0.0000, -0.7071), (0.0000, 0.1591) |

Z = | (0.7071, 0.0000), (0.1591, 0.0000) |
| (0.0000, 0.0000), (0.9744, 0.0000) |
└ ┘

IFAIL = (0,0,.)
INFO = 0

Example 6

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix A of order 3, stored in upper-packed storage mode.
This example also illustrates the use of the vl and vu arguments when range =
'V'.

Note: This matrix is Example 6.3 in referenced text [74 on page 1317].

Matrix A is the same matrix used for ZHPEVX in Example 4.

Call Statement and Input:

Output:
M = 2
AP = ((2.0, 0.0), (-1.0, 0.0), (2.0, 0.0), (0.0, 0.0), (0.0, 0.0), (3.0, 0.0))

┌ ┐
| 3.000000 |

W = | 3.000000 |
| . |
└ ┘

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | |

CALL ZHPEVX (’V’, ’I’, ’U’, 3, AP, VL, VU, 1, 2, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, 1.0), (2.0, .), (0.0, 0.0), (0.0, 0.0), (3.0, .))

JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | |

CALL ZHPEVX (’V’, ’V’, ’U’, 3, AP, 2.0, 4.0, IL, IU, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, 1.0), (2.0, .), (0.0, 0.0), (0.0, 0.0), (3.0, .))

Chapter 11. Eigensystem Analysis 937

┌ ┐
| (0.0000, -0.6634), (0.0000, -0.2447) |

Z = | (-0.6634, 0.0000), (-0.2447, 0.0000) |
| (-0.3460, 0.0000), (0.9382, 0.0000) |
└ ┘

IFAIL = (0,0,.)
INFO = 0

Example 7

This example shows how to find the eigenvalues only of a symmetric matrix A
of order 4.

Note:

1. This matrix is Example 4.1 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Matrix A is the same matrix used for DSPEVX in Example 1.

Call Statement and Input:

Output:
M = 4

┌ ┐
| 5.000000 . . . |

A = | -4.242641 6.000000 . . |
| 0.121320 1.414214 5.000000 . |
| 0.121320 1.414214 0.000000 2.000000 |
└ ┘

┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

Z is not used when JOBZ = ’N’.

IFAIL is not used when JOBZ = ’N’.
INFO = 0

Example 8

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix A of order 4. This example also illustrates the use of the il
and iu arguments when range = 'I'.

Note:

1. This matrix is Example 4.1 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Matrix A is the same matrix used for DSPEVX in Example 1.

Call Statement and Input:

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | | |

CALL DSYEVX (’N’, ’A’, ’L’, 4, A, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | | |

CALL DSYEVX (’V’, ’I’, ’U’, 4, A, 4, VL, VU, 1, 3, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

938 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
M = 3

┌ ┐
| 1.000000 0.000000 0.414214 0.224745 |

A = | . 6.000000 2.828427 0.224745 |
| . . 7.000000 -2.449490 |
| . . . 4.000000 |
└ ┘

┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| . |
└ ┘

┌ ┐
| 0.707107 0.000000 -0.316228 |

Z = | -0.707107 0.000000 -0.316228 |
| 0.000000 -0.707107 0.632456 |
| 0.000000 0.707107 0.632456 |
└ ┘

IFAIL = (0,0,0,.)
INFO = 0

Example 9

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix A of order 4. This example also illustrates the use of the vl
and vu arguments when range = 'V'.

Note:

1. This matrix is Example 4.1 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Matrix A is the same matrix used for DSPEVX in Example 1.

Call Statement and Input:

Output:
M = 2

┌ ┐
| 1.000000 0.000000 0.414214 0.224745 |

A = | . 6.000000 2.828427 0.224745 |
| . . 7.000000 -2.449490 |
| . . . 4.000000 |
└ ┘

┌ ┐
| 5.000000 |

W = | 10.000000 |
| . |
| . |
└ ┘

┌ ┐
| -0.316228 -0.632456 |

Z = | -0.316228 -0.632456 |
| 0.632456 -0.316228 |
| 0.632456 -0.316228 |
└ ┘

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | | |

CALL DSYEVX (’V’, ’V’, ’U’, 4, A, 4, 3.0, 11.0, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

Chapter 11. Eigensystem Analysis 939

IFAIL = (0,0,.,.)
INFO = 0

Example 10

This example shows how to find the eigenvalues only of a complex Hermitian
matrix A of order 3.

Note:

1. This matrix is Example 6.3 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Note:

Matrix A is the same matrix used for ZHPEVX in Example 4.

Call Statement and Input:

Output:
M = 3

┌ ┐
| (2.0, 0.0) . . |

A = | (-1.0, 0.0) (2.0, 0.0) . |
| (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
└ ┘

┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

Z is not used when JOBZ = ’N’.

IFAIL is not used when JOBZ = ’N’
INFO = 0

Example 11

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix A of order 3. This example also illustrates the use of
the il and iu arguments when range = 'I'.

Note:

1. This matrix is Example 6.3 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Matrix A is the same matrix used for ZHPEVX in Example 4.

Call Statement and Input:

Output:
M = 2

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
| |

CALL ZHEEVX (’N’, ’A’, ’L’, 3, A, LDA, VL, VU, IL, IU, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
| |

CALL ZHEEVX (’V’, ’I’, ’U’, 3, A, LDA, VL, VU, 1, 2, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

940 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| (2.0, 0.0) (-1.0, 0.0) (0.0, 0.0) |

A = | . (2.0, 0.0) (0.0, 0.0) |
| . . (3.0, 0.0) |
└ ┘

┌ ┐
| 1.000000 |

W = | 3.000000 |
| . |
└ ┘

┌ ┐
| (0.0000, -0.7071), (0.0000, 0.1591) |

Z = | (0.7071, 0.0000), (0.1591, 0.0000) |
| (0.0000, 0.0000), (0.9744, 0.0000) |
└ ┘

IFAIL = (0,0,.)
INFO = 0

Example 12

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix A of order 3. This example also illustrates the use of
the vl and vu arguments when range = 'V'.

Note:

1. This matrix is Example 6.3 in referenced text [74 on page 1317].
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Matrix A is the same matrix used for ZHPEVX in Example 4.

Call Statement and Input:

Output:
M = 2

┌ ┐
| (2.0, 0.0) (-1.0, 0.0) (0.0, 0.0) |

A = | . (2.0, 0.0) (0.0, 0.0) |
| . . (3.0, 0.0) |
└ ┘

┌ ┐
| 3.000000 |

W = | 3.000000 |
| . |
└ ┘

┌ ┐
| (0.0000, 0.6634), (0.0000, 0.2447) |

Z = | (-0.6634, 0.0000), (-0.2447, 0.0000) |
| (-0.3460, 0.0000), (0.9382, 0.0000) |
└ ┘

IFAIL = (0,0,.)
INFO = 0

JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
| |

CALL ZHEEVX (’V’, ’V’, ’U’, 3, A, LDA, 2.0, 4.0, IL, IU, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

Chapter 11. Eigensystem Analysis 941

SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD,
and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer
Algorithm)

Purpose

These subroutines compute eigenvalues and, optionally, the eigenvectors of a real
symmetric matrix or a complex Hermitian matrix.

If eigenvalues only are computed, these subroutines compute the eigenvalues using
the Pal-Walker-Kahan variant of the QL or QR algorithm.

If eigenvectors are computed, the subroutine uses a divide-and-conquer method to
compute them:
v SSPEVD and DSPEVD compute eigenvalues and, optionally, the eigenvectors of

real symmetric matrix A, stored in lower- or upper-packed storage mode.
v CHPEVD and ZHPEVD compute eigenvalues and, optionally, the eigenvectors

of complex Hermitian matrix A, stored in lower- or upper-packed storage mode.
v SSYEVD and DSYEVD compute eigenvalues and, optionally, the eigenvectors of

real symmetric matrix A, stored in lower or upper storage mode.
v CHEEVD and ZHEEVD compute eigenvalues and, optionally, the eigenvectors

of complex Hermitian matrix A, stored in lower or upper storage mode.

Eigenvalues are returned in vector w and eigenvectors are returned in matrix Z
(for subroutines SSPEVD, DSPEVD, CHPEVD, ZHPEVD) or in matrix A (for
subroutines SSYEVD, DSYEVD, CHEEVD, ZHEEVD):

Az = wz

where A = AT or A = AH.

Table 186. Data Types

w, rwork A, Z, work Subroutine

Short-precision real Short-precision real SSPEVD∆

SSYEVD∆

Long-precision real Long-precision real DSPEVD∆

DSYEVD∆

Short-precision real Short-precision complex CHPEVD∆

CHEEVD∆

Long-precision real Long-precision complex ZHPEVD∆

ZHEEVD∆

⌂LAPACK

942 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Syntax

Fortran

CALL SSPEVD | DSPEVD (jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

CALL CHPEVD | ZHPEVD (jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)

CALL SSYEVD | DSYEVD (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

CALL CHEEVD | ZHEEVD (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork,
info)

C and C++ sspevd | dspevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info):

chpevd | zhpevd (jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info):

ssyevd | dsyevd (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info):

cheevd | zheevd (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info):

On Entry

jobz
indicates the type of computation to be performed, where:

If jobz = 'N', eigenvalues only are computed.

If jobz = 'V', eigenvalues and eigenvectors are computed.

Specified as: a single character; jobz = 'N' or 'V'.

uplo
indicates whether the upper or lower triangular part of the matrix A is
referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrix A used in the computation.

Specified as: an integer; n ≥ 0.

ap is the real symmetric or complex Hermitian matrix A of order n. It is stored in
an array, referred to as AP, where:

If uplo = 'U', it is stored in upper-packed storage.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 186 on page 942.

a is the real symmetric or complex Hermitian matrix A of order n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 186 on page 942.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

Chapter 11. Eigensystem Analysis 943

w See On Return.

z See On Return.

ldz
is the leading dimension of the array specified for Z.

Specified as: an integer; ldz > 0 and, if jobz = 'V', ldz ≥ n.

work
is a work area used by these subroutines.

if lwork = 0 and liwork ≠ -1 and lrwork ≠ -1, work is ignored.

If lwork ≠ -1, and liwork ≠ -1 and lrwork ≠ -1, work is (at least) of length lwork.

If lwork = -1, or liwork = -1, or lrwork = -1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of the data type indicated
in Table 186 on page 942.

lwork
is used to determine the size of the WORK array.

Specified as: an integer, where:

If lwork = 0 and liwork ≠ -1 and lrwork ≠ -1, the subroutine dynamically
allocates the workspace needed for use during this computation. The
dynamically allocated workspace will be freed prior to returning control to the
calling program.

If lwork = -1 or liwork = -1 or lrwork = -1, these subroutines perform a work
area query for all work areas and return the optimal size of work in work1 and
iwork in iwork1 and rwork in rwork1.

Otherwise:
v If n ≤ 1, lwork must be (at least) 1.
v If jobz = 'N' and n > 1, lwork is as follows:

For SSPEVD, DSPEVD
lwork must be (at least) 2n

For SSYEVD, and DSYEVD
lwork must be (at least) 2n + 1

For CHPEVD and ZHPEVD
lwork must be (at least) n

For CHEEVD and ZHEEVD
lwork must be (at least) n + 1

v If jobz = 'V' and n > 1, lwork is as follows:

For SSPEVD and DSPEVD
lwork must be (at least) 1 + 6n + n2

For SSYEVD and DSYEVD
lwork must be (at least) 1 + 6n + 2n2

For CHPEVD and ZHPEVD
lwork must be (at least) 2n

For CHEEVD and ZHEEVD
lwork must be (at least) 2n + n2

944 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: These formulas represent the minimum workspace required. For best
performance, specify either lwork = -1 (to obtain the optimal size to use) or
lwork = 0 (to direct the subroutine to dynamically allocate the workspace).

rwork
has the following meaning:

if lrwork = 0 and liwork ≠ -1 and lwork ≠ -1, rwork is ignored.

If lrwork ≠ -1, and liwork ≠ -1 and lwork ≠ -1, rwork is (at least) of length lrwork.

If lrwork = -1, or liwork = -1, or lwork = -1, rwork is (at least) of length 1.

Specified as: an area of storage containing real numbers of the data type
indicated in Table 186 on page 942.

lrwork
is the number of elements in array rwork.

Specified as: a fullword integer; where:

If lrwork = 0 and liwork ≠ -1 and lwork ≠ -1 , the subroutine dynamically
allocates the workspace needed for use during this computation. The
dynamically allocated workspace will be freed prior to returning control to the
calling program.

If lrwork = -1 or liwork = -1 or lwork = -1, these subroutines perform a work
area query for all work areas and return the optimal size of work in work1 and
iwork in iwork1 and rwork in rwork1.

Otherwise:
v If n ≤ 1, lrwork must be (at least) 1
v If jobz = 'N' and n > 1, lrwork must be (at least) n
v If jobz = 'V' and n > 1, lrwork must be (at least) 1 + 5n + 2n2

iwork
has the following meaning:

if liwork = 0 and lrwork ≠ -1 and lwork ≠ -1, iwork is ignored.

If liwork ≠ -1, and lrwork ≠ -1 and lwork ≠ -1, iwork is (at least) of length liwork.

If liwork = -1, or lrwork = -1, or lwork = -1, iwork is (at least) of length 1.

Specified as: an area of storage containing fullword integers.

liwork
is the number of elements in array IWORK.

Specified as: a fullword integer; where:

If liwork = 0 and lrwork ≠ -1 and lwork ≠ -1 , the subroutine dynamically
allocates the workspace needed for use during this computation. The
dynamically allocated workspace will be freed prior to returning control to the
calling program.

If liwork = -1 or lrwork = -1 or lwork = -1, these subroutines perform a work
area query for all work areas and return the optimal size of work in work1 and
iwork in iwork1 and rwork in rwork1.

Otherwise:
v If n ≤ 1, liwork must be (at least) 1
v If jobz = 'N' and n > 1, liwork must be (at least) 1
v If jobz = 'V' and n > 1, lwork must be (at least) 3+ 5n

On Return

Chapter 11. Eigensystem Analysis 945

ap the matrix A is overwritten by values generated during the reduction to
tridiagonal form.

If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T
overwrite the corresponding elements of A.

If uplo = 'L', the diagonal and first subdiagonal of T overwrite the
corresponding elements of A.

Returned as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 186 on page 942.

a If jobz = 'V' and info = 0, a contains the orthonormal eigenvectors
corresponding to the computed eigenvalues, with the i-th column of A holding
the eigenvector associated with wi

If jobz = 'V' and info ≠ 0, no eigenvectors are valid.

If jobz = 'N':
v If uplo = 'U', the upper triangle of matrix A is overwritten.
v If uplo = 'L', the lower triangle of matrix A is overwritten.

Returned as: an array of dimension lda by (at least) n, containing numbers of
the data type indicated in Table 186 on page 942.

w If info = 0, w is the vector w, containing the computed eigenvalues in
ascending order.

If info ≠ 0, no eigenvalues are valid.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 186 on page 942.

z has the following meaning, where:

If jobz = 'N', then z is ignored.

If jobz = 'V' and info = 0, z contains the orthonormal eigenvectors
corresponding to the computed eigenvalues, with the i-th column of z holding
the eigenvector associated with wi.

If jobz = 'V' and info ≠ 0, no eigenvectors are valid.

Returned as: an ldz by n array, containing numbers of the data type indicated
in Table 186 on page 942.

work
is a work area used by these subroutines.

Returned as: an area of storage where:

If lwork ≥ 1 or lwork = -1 or liwork = -1 or lrwork = -1, then work1 is set to the
optimal lwork value and contains numbers of the data type indicated in
Table 186 on page 942.

Except for work1, the contents of work are overwritten on return.

rwork
is a work area used by these subroutines.

Returned as: an area of storage where:

If lrwork ≥ 1 or lrwork = -1 or liwork = -1 or lwork = -1, then rwork1 is set to the
optimal lrwork value and contains numbers of the data type indicated in
Table 186 on page 942.

Except for rwork1, the contents of rwork are overwritten on return.

946 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

iwork
is a work area used by these subroutines.

Returned as: an area of storage where:

If liwork ≥ 1 or liwork = -1 or lrwork = -1 or lwork = -1, then iwork1 is set to the
optimal liwork value and contains numbers of the data type indicated in
Table 186 on page 942.

Except for iwork1, the contents of iwork are overwritten on return.

info
has the following meaning:

If info = 0, then all eigenvalues converged. This indicates a normal exit.

If info = i and jobz = 'N', then the algorithm failed to converge. i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.

If info = i and jobz = 'V', then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info / (n + 1)
through mod(info, n + 1). No eigenvalues are valid.

Returned as: an integer; info ≥ 0.

Notes
1. This subroutine accepts lowercase letters for the jobz and uplo arguments.
2. In your C program, the argument info must be passed by reference.
3. On input, the imaginary parts of the diagonal elements of the complex

Hermitian matrix A are assumed to be zero, so you do not have to set these
values.

4. A, Z, w, work, rwork, iwork must have no common elements; otherwise, results
are unpredictable.

5. For a description of how real symmetric matrices are stored in lower- or
upper-packed storage mode, see “Lower-Packed Storage Mode” on page 83 or
“Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

6. For a description of how real symmetric matrices are stored in lower or upper
storage mode, see “Lower Storage Mode” on page 86 or “Upper Storage Mode”
on page 87, respectively.
For a description of how complex Hermitian matrices are stored in lower or
upper storage mode, see “Complex Hermitian Matrix” on page 88.

7. For best performance specify lwork = 0, liwork = 0, and lrwork = 0.

Function

These subroutines compute eigenvalues and, optionally, the eigenvectors of a real
symmetric matrix or a complex Hermitian matrix.

If eigenvalues only are computed, these subroutines compute the eigenvalues using
the Pal-Walker-Kahan variant of the QL or QR algorithm.

If eigenvectors are computed, the subroutine uses a divide-and-conquer method to
compute them:

Chapter 11. Eigensystem Analysis 947

v SSPEVD and DSPEVD compute eigenvalues and, optionally, the eigenvectors of
real symmetric matrix A, stored in lower- or upper-packed storage mode.

v CHPEVD and ZHPEVD compute eigenvalues and, optionally, the eigenvectors
of complex Hermitian matrix A, stored in lower- or upper-packed storage mode.

v SSYEVD and DSYEVD compute eigenvalues and, optionally, the eigenvectors of
real symmetric matrix A, stored in lower or upper storage mode.

v CHEEVD and ZHEEVD compute eigenvalues and, optionally, the eigenvectors
of complex Hermitian matrix A, stored in lower or upper storage mode.

Eigenvalues are returned in vector w and eigenvectors are returned in matrix Z
(for subroutines SSPEVD, DSPEVD, CHPEVD, ZHPEVD) or in matrix A (for
subroutines SSYEVD, DSYEVD, CHEEVD, ZHEEVD):

Az = wz

where A = AT or A = AH.

The computation involves the following steps:
1. If necessary, scale the matrix A.
2. Reduce matrix A to tridiagonal form.
3. Compute the eigenvalues and, optionally, the eigenvectors of the symmetric

tridiagonal matrix. The algorithm used depends on the value specified for jobz:
v If jobz = 'N', compute all the eigenvalues using the Pal-Walker-Kahan variant

of the QL or QR algorithms.
v Otherwise, compute both the eigenvalues and eigenvectors using a

divide-and-conquer algorithm, then apply Householder transformations to
the eigenvector matrix.

4. Rescale eigenvalues appropriately if the matrix was scaled.

If n = 0, the subroutine returns after completing parameter checking.

For more information on these methods, see references [8 on page 1313], [74 on
page 1317], and [34 on page 1315].

Error conditions

Resource Errors

1. lwork = 0, and unable to allocate work area.
2. lrwork = 0, and unable to allocate work area.
3. liwork = 0, and unable to allocate work area.

Computational Errors

1. If info = i and jobz = 'N', then the algorithm failed to converge. i indicates
the number of elements of an intermediate tridiagonal form which did not
converge to zero.

2. If info = i and jobz = 'V', then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info / (n + 1)
through mod(info, n + 1). No eigenvalues are valid.

Input-Argument Errors
1. jobz ≠ 'N' or 'V'
2. uplo ≠ 'U' or 'L'
3. n < 0
4. lda ≤ 0

948 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

5. n > lda
6. ldz ≤ 0
7. n > ldz and jobz = 'V'
8. lwork ≠ 0 and lwork ≠ -1 and liwork ≠ -1 and lrwork ≠ -1, and lwork < the

minimum required value
9. liwork ≠ 0 and liwork ≠ -1 and lwork ≠ -1 and lrwork ≠ -1, and liwork < the

minimum required value
10. lrwork ≠ 0 and lrwork ≠ -1 and liwork ≠ -1 and lwork ≠ -1 and lrwork < the

minimum required value

Examples

Example 1

This example shows how to find the eigenvalues only of a real symmetric
matrix of order 4, stored in lower-packed storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because liwork = 0, the subroutine dynamically allocates IW0RK.
3. Z is not used when jobz = 'N'.
4. On output, array AP is overwritten.
5. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
| 5.0 4.0 1.0 1.0 |
| 4.0 5.0 1.0 1.0 |
| 1.0 1.0 4.0 2.0 |
| 1.0 1.0 2.0 4.0 |
└ ┘

Call Statement and Input:

Output:
┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

INFO = 0

Example 2

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix of order 4, stored in upper-packed storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because liwork = 0, the subroutine dynamically allocates IW0RK.
3. On output, array AP is overwritten.
4. This matrix is Example 4.1 in referenced text [74 on page 1317].

JOBZ UPLO N AP W Z LDZ WORK LWORK IWORK LIWORK INFO
| | | | | | | | | | | |

CALL DSPEVD (’N’, ’L’, 4, AP, W, Z, 4, WORK, 0, IWORK, 0, INFO)

AP = (5.0, 4.0, 1.0, 1.0, 5.0, 1.0, 1.0, 4.0, 2.0, 4.0)

Chapter 11. Eigensystem Analysis 949

Matrix A is the same as in Example 1.

Call Statement and Input:

Output:
┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

┌ ┐
|-0.707107 0.000000 0.316228 -0.632456|

Z = | 0.707107 0.000000 0.316228 -0.632456|
| 0.000000 -0.707107 -0.632456 -0.316228|
| 0.000000 0.707107 -0.632456 -0.316228|
└ ┘

INFO = 0

Example 3

This example shows how to find the eigenvalues only of a complex Hermitian
matrix of order 3, stored in lower-packed storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because lrwork = 0, the subroutine dynamically allocates RWORK.
3. Because liwork = 0, the subroutine dynamically allocates IW0RK.
4. Z is not used when jobz = 'N'.
5. On output, array AP is overwritten.
6. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
|(2.0, 0.0) (0.0, 1.0) (0.0, 0.0)|
|(0.0,-1.0) (2.0, 0.0) (0.0, 0.0)|
|(0.0, 0.0) (0.0, 0.0) (3.0, 0.0)|
└ ┘

Call Statement and Input:
JOBZ UPLO N AP W Z LDZ WORK LWORK

| | | | | | | | |
CALL ZHPEVD (’N’, ’L’, 3, AP, W, Z, 3, WORK, 0,

RWORK LRWORK IWORK LIWORK INFO
| | | | |

RWORK, 0, IWORK, 0, INFO)

AP = ((2.0, .),(0.0,-1.0),(0.0,0.0),
(2.0, .),(0.0,0.0),(3.0, .))

Output:
┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

INFO = 0

JOBZ UPLO N AP W Z LDZ WORK LWORK IWORK LIWORK INFO
| | | | | | | | | | | |

CALL DSPEVD (’V’, ’U’, 4, AP, W, Z, 4, WORK, 0, IWORK, 0, INFO)

AP = (5.0,4.0,5.0,1.0,1.0,4.0,1.0,1.0,2.0,4.0)

950 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 4

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix of order 3, stored in upper-packed storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because lrwork = 0, the subroutine dynamically allocates RWORK.
3. Because liwork = 0, the subroutine dynamically allocates IW0RK.
4. On output, array AP is overwritten.
5. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is the same as in Example 3.

Call Statement and Input:

Output:
┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

┌ ┐
|(-0.7071, 0.0) (-0.7071, 0.0) (0.0, 0.0)|

Z = |(0.0,-0.7071) (0.0, 0.7071) (0.0, 0.0)|
|(0.0, 0.0) (0.0, 0.0) (1.0, 0.0)|
└ ┘

INFO = 0

Example 5

This example shows how to find the eigenvalues only of a real symmetric
matrix of order 4, stored in lower storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because liwork = 0, the subroutine dynamically allocates IW0RK.
3. On output, array A is overwritten.
4. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
| 5.0 4.0 1.0 1.0 |
| 4.0 5.0 1.0 1.0 |
| 1.0 1.0 4.0 2.0 |
| 1.0 1.0 2.0 4.0 |
└ ┘

Call Statement and Input:

JOBZ UPLO N AP W Z LDZ WORK LWORK RWORK LRWORK IWORK LIWORK INFO
| | | | | | | | | | | | | |

CALL ZHPEVD (’V’, ’U’, 3, AP, W, Z, 3, WORK, 0, RWORK, 0, IWORK, 0, INFO)

AP = ((2.0, .),(0.0,-1.0),(0.0,0.0),(2.0, .),(0.0,0.0),(3.0, .))

Chapter 11. Eigensystem Analysis 951

Output:
┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

INFO = 0

Example 6

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric matrix of order 4, stored in upper storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because liwork = 0, the subroutine dynamically allocates IW0RK.
3. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is the same as in Example 5.

Call Statement and Input:

Output:
┌ ┐
|-0.707107 0.000000 0.316228 -0.632456|

A = | 0.707107 0.000000 0.316228 -0.632456|
| 0.000000 -0.707107 -0.632456 -0.316228|
| 0.000000 0.707107 -0.632456 -0.316228|
└ ┘

┌ ┐
| 1.000000 |

W = | 2.000000 |
| 5.000000 |
| 10.000000 |
└ ┘

INFO = 0

Example 7

This example shows how to find the eigenvalues only of a complex Hermitian
matrix of order 3, stored in lower storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.

JOBZ UPLO N A LDA W WORK LWORK IWORK LIWORK INFO
| | | | | | | | | | |

CALL DSYEVD (’N’, ’L’, 4, A, 4, W, WORK, 0, IWORK, 0, INFO)

┌ ┐
| 5.0 . . . |

A = | 4.0 5.0 . . |
| 1.0 1.0 4.0 . |
| 1.0 1.0 2.0 4.0 |
└ ┘

JOBZ UPLO N A LDA W WORK LWORK IWORK LIWORK INFO
| | | | | | | | | | |

CALL DSYEVD (’V’, ’U’, 4, A, 4, W, WORK, 0, IWORK, 0, INFO)

┌ ┐
| 5.0 4.0 1.0 1.0 |

A = | . 5.0 1.0 1.0 |
| . . 4.0 2.0 |
| . . . 4.0 |
└ ┘

952 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. Because lrwork = 0, the subroutine dynamically allocates RWORK.
3. Because liwork = 0, the subroutine dynamically allocates IW0RK.
4. On output, arrayA is overwritten.
5. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is:
┌ ┐
|(2.0, 0.0) (0.0, 1.0) (0.0, 0.0)|
|(0.0,-1.0) (2.0, 0.0) (0.0, 0.0)|
|(0.0, 0.0) (0.0, 0.0) (3.0, 0.0)|
└ ┘

Call Statement and Input:

Output:
┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

INFO = 0

Example 8

This example shows how to find the eigenvalues and eigenvectors of a
complex Hermitian matrix A of order 3, stored in upper storage mode.

Notes:

1. Because lwork = 0, the subroutine dynamically allocates WORK.
2. Because lrwork = 0, the subroutine dynamically allocates RWORK.
3. Because liwork = 0, the subroutine dynamically allocates IW0RK.
4. This matrix is Example 4.1 in referenced text [74 on page 1317].

Matrix A is the same as in Example 7.

Call Statement and Input:

Output:
┌ ┐
|(-0.7071, 0.0) (-0.7071, 0.0) (0.0, 0.0)|

A = |(0.0,-0.7071) (0.0, 0.7071) (0.0, 0.0)|
|(0.0, 0.0) (0.0, 0.0) (1.0, 0.0)|
└ ┘

JOBZ UPLO N A LDA W WORK LWORK RWORK LRWORK IWORK LIWORK INFO
| | | | | | | | | | | | |

CALL ZHEEVD (’N’, ’L’, 3, A, 3, W, WORK, 0, RWORK, 0, IWORK, 0, INFO)

┌ ┐
|(2.0, .) . . |

A = |(0.0,-1.0) (2.0, .) . |
|(0.0, 0.0) (0.0, 0.0) (3.0, .)|
└ ┘

JOBZ UPLO N A LDA W WORK LWORK RWORK LRWORK IWORK LIWORK INFO
| | | | | | | | | | | | |

CALL ZHEEVD (’V’, ’U’, 3, A, 3, W, WORK, 0, RWORK, 0, IWORK, 0, INFO)

┌ ┐
|(2.0, .) (0.0, 1.0) (0.0, 0.0)|

A = | . (2.0, .) (0.0, 0.0)|
| . . (3.0, .)|
└ ┘

Chapter 11. Eigensystem Analysis 953

┌ ┐
| 1.000000 |

W = | 3.000000 |
| 3.000000 |
└ ┘

INFO = 0

954 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGGEV, DGGEV, CGGEV, and ZGGEV (Eigenvalues and, Optionally,
Left and/or Right Eigenvectors of a General Matrix Generalized
Eigenproblem)

Purpose

These subroutines compute the eigenvalues and, optionally, the left and/or right
eigenvectors of a general matrix generalized eigenproblem.

For the left eigenvectors:

vlHA = λvlHB

For the right eigenvectors:

Avr = λBvr

The eigenvalues are returned in two parts, α and β, where:

For SGGEV and DGGEV, α and β are returned in vectors alphar, alphai, and beta,
where alphar contains the real part of α and alphai contains the imaginary part of α.
v If alphaij = 0, then the j-th eigenvalue is real.
v If alphaij > 0, then the j-th and (j+1)-th eigenvalues are a complex conjugate pair.

For CGGEV and ZGGEV, α and β are returned in vectors alpha and beta.

For SGGEV and DGGEV:
v If alphaij = 0, then the j-th eigenvalue is real:

– αj = alpharj

– βj = betaj

v If alphaij > 0, then the j-th and (j+1)-th eigenvalues αj+1 are a complex conjugate
pair:
– αj = (alpharj, alphaij)
– βj = betaj

– αj+1 = (alpharj, -alphaij)
– βj+1 = betaj

For CGGEV and ZGGEV:
v αj = alphaj

v βj = betaj

Left eigenvectors are returned in matrix VL and right eigenvectors are returned in
matrix VR.

Table 187. Data Types

A, B, VL, VR, α, β, work alphar, alphai, rwork Subroutine

Short-precision real Short-precision real SGGEV∆

Long-precision real Long-precision real DGGEV∆

Short-precision complex Short-precision real CGGEV∆

Long-precision complex Long-precision real ZGGEV∆

Chapter 11. Eigensystem Analysis 955

Table 187. Data Types (continued)

A, B, VL, VR, α, β, work alphar, alphai, rwork Subroutine

⌂LAPACK

Syntax

Fortran

CALL SGGEV | DGGEV (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)

CALL CGGEV | ZGGEV (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork,
rwork, info)

C and C++ sggev | dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork,
info);

cggev | zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork, rwork,
info);

On Entry

jobvl
indicates the type of computation to be performed, where:

If jobvl = 'N', the left eigenvectors are not computed.

If jobvl = 'V', the left eigenvectors are computed.

Specified as: a single character. It must be 'N' or 'V'.

jobvr
indicates the type of computation to be performed, where:

If jobvr = 'N', the right eigenvectors are not computed.

If jobvr = 'V', the right eigenvectors are computed.

Specified as: a single character. It must be 'N' or 'V'.

n is the order of the general matrices A and B.

Specified as: an integer; n ≥ 0.

a is the general matrix A of order n.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 187 on page 955.

lda
is the leading dimension of the array specified for matrix A.

Specified as: an integer; lda > 0 and lda ≥ n.

b is the general matrix B of order n.

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 187 on page 955.

ldb
is the leading dimension of the array specified for matrix B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

alphar
See On Return.

956 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

alphai
See On Return.

alpha
See On Return.

beta
See On Return.

vl See On Return.

ldvl
is the leading dimension of the array specified for vl.

Specified as: an integer; ldvl > 0; if jobvl = 'V', ldvl ≥ n.

vr See On Return.

ldvr
is the leading dimension of the array specified for vr.

Specified as: an integer; ldvr > 0; if jobvr = 'V', ldvr ≥ n.

work
is the storage work area used by this subroutine. Its size is specified by lwork.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 187 on page 955.

lwork
is the number of elements in array WORK.

Specified as an integer, where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The dynamically allocated workspace will be
freed prior to returning control to the calling program.

v If lwork = -1, a workspace query is assumed. The subroutine only calculates
the optimal size of the WORK array and returns this value as the first entry of
the WORK array.

Otherwise:
v For SGGEV and DGGEV:

– lwork ≥ max(1, 8n)
v For CGGEV and ZGGEV:

– lwork ≥ max(1, 2n)

Note: These formulas represent the minimum workspace required. For best
performance, specify either lwork = -1 (to obtain the optimal size to use) or
lwork = 0 (to direct the subroutine to dynamically allocate the workspace).

rwork
is a storage work area of size 8n.

Specified as: an area of storage containing numbers of the data type indicated
in Table 187 on page 955.

On Return

a The matrix A is overwritten; that is, the original input is not preserved.

Returned as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 187 on page 955.

b The matrix B is overwritten; that is, the original input is not preserved.

Chapter 11. Eigensystem Analysis 957

Returned as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 187 on page 955.

alphar
is the vector of length n, containing the real part of the numerators of the
eigenvalues. For details, see “Function” on page 960.

Returned as: an array of (at least) length n, containing numbers of the data
type indicated in Table 187 on page 955.

alphai
is the vector of length n, containing the imaginary part of the numerators of
the eigenvalues. For details, see “Function” on page 960

Returned as: an array of (at least) length n, containing numbers of the data
type indicated in Table 187 on page 955.

alpha
is the vector α of length n, containing the numerators of the eigenvalues. For
details, see “Function” on page 960

Returned as: an array of (at least) length n, containing numbers of the data
type indicated in Table 187 on page 955.

beta
is the vector β of length n, containing the denominators of the eigenvalues. For
details, see “Function” on page 960

Returned as: an array of (at least) length n, containing numbers of the data
type indicated in Table 187 on page 955.

vl contains the left eigenvectors.
v For SGGEV and DGGEV:

– If jobvl = 'V', the left eigenvectors are stored in the columns of vl, in the
same order as their eigenvalues.
- If the j-th eigenvalue is real, then the j-th column of vl contains its

eigenvector.
- If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, then

the j-th and (j+1)-th columns of vl contain the real and imaginary parts
of the eigenvector corresponding to the j-th eigenvalue. The conjugate
of this eigenvector is the eigenvector for the (j+1)-th eigenvalue.

– If jobvl = 'N', vl is not referenced.
v For CGGEV and ZGGEV:

– If jobvl = 'V', the left eigenvectors are stored in the columns of vl, in the
same order as their eigenvalues.

– If jobvl = 'N', vl is not referenced.

Returned as: an array of size (ldvl, n) containing numbers of the data type
indicated in Table 187 on page 955.

vr contains the right eigenvectors.
v For SGGEV and DGGEV:

– If jobvr = 'V', the right eigenvectors are stored in the columns of vr, in the
same order as their eigenvalues.
- If the j-th eigenvalue is real, then the j-th column of vr contains its

eigenvector.
- If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, then

the j-th and (j+1)-th columns of vr contain the real and imaginary parts

958 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

of the eigenvector corresponding to the j-th eigenvalue. The conjugate
of this eigenvector is the eigenvector for the (j+1)-th eigenvalue.

– If jobvr = 'N', vr is not referenced.
v For CGGEV and ZGGEV:

– If jobvr = 'V', the right eigenvectors are stored in the columns of vr, in the
same order as their eigenvalues.

– If jobvr = 'N', vr is not referenced.

Returned as: an array of size (ldvr, n) containing numbers of the data type
indicated in Table 187 on page 955.

work
is the work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and
contains numbers of the data type indicated in Table 187 on page 955.

Except for work1, the contents of work are overwritten on return.

rwork
is a storage work area of size 8n.

Returned as: an area of storage containing numbers of the data type indicated
in Table 187 on page 955.

info
if info = 0, the subroutine completed successfully.

If 1 ≤ info ≤ n, the QZ algorithm failed to compute all the eigenvalues, and no
eigenvectors were computed. However:
v For SGGEV and DGGEV alpharj, alphaij, betaj are valid for j = (info+1,...,n)
v For CGGEV and ZGGEV, alphaj and betaj are valid for j = (info+1,...,n)

If info = n + 1, the eigenvalues failed to converge in the computation of shifts.

If info = n + 2, the eigenvectors failed to converge because the 2-by-2 block did
not have a complex eigenvalue.

Returned as: an integer; info ≥ 0.

Notes
1. When you specify jobvl = 'N', you must specify a dummy argument for vl.
2. When you specify jobvr = 'N', you must specify a dummy argument for vr.
3. These subroutines accept lowercase letters for the jobvl and jobvr arguments.
4. The vectors and matrices used in the computation must have no common

elements; otherwise, results are unpredictable.
5. In your C program, the info arguments must be passed by reference.
6. For best performance, specify lwork = 0.
7. The eigenvalue quotients might easily over- or underflow, and β might be zero.

However, α is always less than and usually comparable with NORM(A) in
magnitude, and β is always less than and usually comparable with NORM(B)
in magnitude.

Chapter 11. Eigensystem Analysis 959

Function

These subroutines compute the eigenvalues and, optionally, the left and/or right
eigenvectors of a general matrix generalized eigenproblem.

For the left eigenvectors:

vlHA = λvlHB

For the right eigenvectors:

Avr = λBvr

The eigenvalues are returned in two parts, α and β, where:

For SGGEV and DGGEV, α and β are returned in vectors alphar, alphai, and beta,
where alphar contains the real part of α and alphai contains the imaginary part of α.
v If alphaij = 0, then the j-th eigenvalue is real.
v If alphaij > 0, then the j-th and (j+1)-th eigenvalues are a complex conjugate pair.

For CGGEV and ZGGEV, α and β are returned in vectors alpha and beta.

For SGGEV and DGGEV:
v If alphaij = 0, then the j-th eigenvalue is real:

– αj = alpharj

– βj = betaj

v If alphaij > 0, then the j-th and (j+1)-th eigenvalues αj+1 are a complex conjugate
pair:
– αj = (alpharj, alphaij)
– βj = betaj

– αj+1 = (alpharj, -alphaij)
– βj+1 = betaj

For CGGEV and ZGGEV:
v αj = alphaj

v βj = betaj

Left eigenvectors are returned in matrix VL and right eigenvectors are returned in
matrix VR.

The computation involves the following steps:
1. If necessary, scale the matrices A and B.
2. Balance the matrices A and B.
3. Reduce the balanced matrix A to an upper Hessenberg matrix and reduce the

balanced matrix B to an upper triangular form.
4. Compute the eigenvalues of the Hessenberg-triangular pair, using the QZ

algorithm.
5. If desired, compute the eigenvectors.
6. Undo balancing.
7. If necessary, undo scaling.

960 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking.

For more information, see references [47 on page 1316], [51 on page 1316], [55 on
page 1316], [69 on page 1317], [73 on page 1317], [74 on page 1317], [98 on page
1319], [104 on page 1319], [114 on page 1320], and [116 on page 1320].

Error conditions

Resource Errors
lwork = 0, and unable to allocate work area.

Computational Errors
1. If 1 ≤ info ≤ n, the QZ algorithm failed to compute all the eigenvalues, and

no eigenvectors were computed.
2. If info = n + 1, the eigenvalues failed to converge in the computation of

shifts.
3. If info = n + 2, the eigenvectors failed to converge because the 2-by-2 block

did not have a complex eigenvalue.

Input-Argument Errors
1. jobvl ≠ 'N', or 'V'
2. jobvr ≠ 'N', or 'V'
3. n < 0
4. lda ≤ 0
5. n > lda
6. ldb ≤ 0
7. n > ldb
8. ldvl ≤ 0
9. n > ldvl and jobvl = 'V'

10. ldvr ≤ 0
11. n > ldvr and jobvr = 'V'
12. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value.

Examples

Example 1

This example shows how to find the eigenvalues only of a long-precision real
generalized eigenproblem (A, B).

Note:

1. ldvl and ldvr are set to 1 to avoid an error condition.
2. On output, matrices A and B are overwritten.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK INFO
| | | | | | | | | | | | | | | | |

CALL DGGEV(’N’, ’N’, 3, A, 3, B, 3, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, INFO)

┌ ┐
| 10.0 1.0 2.0 |

A = | 1.0 2.0 -1.0 |
| 1.0 1.0 2.0 |
└ ┘

┌ ┐
| 1.0 2.0 3.0 |

B = | 4.0 5.0 6.0 |
| 7.0 8.0 9.0 |
└ ┘

Chapter 11. Eigensystem Analysis 961

Output:
┌ ┐
| 2.092346 |

ALPHAR = | -4.789188 |
| 4.490731 |
└ ┘

┌ ┐
| 0.000000 |

ALPHAI = | 0.000000 |
| 0.000000 |
└ ┘

┌ ┐
| 12.711351 |

BETA = | 0.998541 |
| 0.000000 |
└ ┘

INFO = 0

Example 2

This example shows how to find the eigenvalues and the left and right
eigenvectors of a long-precision real generalized eigenproblem (A, B).

Note:

1. On output, matrices A and B are overwritten.
2. Because lwork = 0, the subroutine dynamically allocates WORK.
3. This matrix is used on page 263 in referenced text [5 on page 1313].

Call Statement and Input:
JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK INFO
| | | | | | | | | | | | | | | | |

CALL DGGEV(’V’, ’V’, 5, A, 5, B, 5, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, INFO)

┌ ┐
| 2.0 3.0 4.0 5.0 6.0|

A = | 4.0 4.0 5.0 6.0 7.0|
| 0.0 3.0 6.0 7.0 8.0|
| 0.0 0.0 2.0 8.0 9.0|
| 0.0 0.0 0.0 1.0 10.0|
└ ┘

┌ ┐
| 1.0 -1.0 -1.0 -1.0 -1.0|

B = | 0.0 1.0 -1.0 -1.0 -1.0|
| 0.0 0.0 1.0 -1.0 -1.0|
| 0.0 0.0 0.0 1.0 -1.0|
| 0.0 0.0 0.0 0.0 1.0|
└ ┘

Output:
┌ ┐
| 7.950050 |
| -0.277338 |

ALPHAR = | 2.149669 |
| 6.720718 |
| 10.987556 |
└ ┘

┌ ┐
| 0.000000 |
| 0.000000 |

ALPHAI = | 0.000000 |
| 0.000000 |
| 0.000000 |
└ ┘

962 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 0.374183 |
| 1.480299 |

BETA = | 1.636872 |
| 1.213574 |
| 0.908837 |
└ ┘

┌ ┐
| -0.003801 1.000000 -0.778812 -0.032145 -0.005114 |
| -0.018291 -0.546838 0.133707 -0.028432 -0.012900 |

VL = | -0.074427 -0.174281 1.000000 0.076908 -0.009062 |
| -0.279354 -0.051285 -0.696402 0.285338 0.123783 |
| -1.000000 -0.026864 0.282389 -1.000000 1.000000 |
└ ┘

┌ ┐
| -1.000000 0.483408 -0.540696 -1.000000 -1.000000 |
| -0.565497 -1.000000 -0.684441 -0.722065 -0.610415 |

VR = | -0.180429 0.661372 1.000000 0.089003 -0.116987 |
| -0.034182 -0.180646 -0.363671 0.223599 0.038979 |
| -0.003039 0.017732 0.041865 -0.050111 0.018653 |
└ ┘

INFO = 0

Example 3

This example shows how to find the eigenvalues only of a long-precision
complex generalized eigenproblem (A, B).

Note:

1. ldvl and ldvr have been set to 1 to avoid an error condition.
2. On output, matrices A and B are overwritten.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:
JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK RWORK INFO
| | | | | | | | | | | | | | | | | |

CALL ZGGEV(’N’, ’N’, 4, A, 4, B, 4, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, RWORK, INFO)

┌ ┐
| (2, 4) (1, 6) (2, 8) (4, 4) |

A = | (3, 3) (6, 1) (5, 3) (0, 0) |
| (5, 1) (8, 5) (3, 2) (8, 5) |
| (7, 6) (3, 7) (2, 1) (5, 4) |
└ ┘

┌ ┐
| (0, 0) (1, 0) (0, 0) (0, 0) |

B = | (0, 0) (0, 0) (1, 0) (0, 0) |
| (0, 0) (0, 0) (0, 0) (1, 0) |
| (1, 0) (0, 0) (0, 0) (0, 0) |
└ ┘

Output:
┌ ┐
| (15.8864, 15.0474) |

ALPHA = | (7.0401, 2.0585) |
| (1.7083, 4.1133) |
| (-3.6348, -1.2193) |
└ ┘

┌ ┐
| (1.0, 0.0) |

BETA = | (1.0, 0.0) |
| (1.0, 0.0) |
| (1.0, 0.0) |
└ ┘

Chapter 11. Eigensystem Analysis 963

INFO = 0

Example 4

This example shows how to find the eigenvalues and the left and right
eigenvectors of a long-precision complex eigenproblem (A, B).

Note:

1. On output, matrices A and B are overwritten.
2. Because lwork = 0, the subroutine dynamically allocates WORK.
3. This matrix is used on page 263 in referenced text [5 on page 1313].

Call Statement and Input:
JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK RWORK INFO
| | | | | | | | | | | | | | | | | |

CALL ZGGEV(’V’, ’V’, 3, A, 3, B, 3, ALPHAR, ALPHAI, BETA, VL, 3, VR, 3, WORK, 0, RWORK, INFO)

┌ ┐
| (1.0, 2.0) (3.0, 4.0) (21.0,22.0) |

A = | (43.0,44.0) (13.0,14.0) (15.0,16.0) |
| (5.0, 6.0) (7.0, 8.0) (25.0,26.0) |
└ ┘

┌ ┐
| (2.0, 0.0) (0.0,-1.0) (0.0, 0.0) |

B = | (0.0, 1.0) (2.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
└ ┘

Output:
┌ ┐
| (15.863783, 41.115283) |

ALPHA = | (-12.917205, 19.973815) |
| (3.215518, -4.912439) |
└ ┘

┌ ┐
| (1.668461, 0.0) |

BETA = | (2.024212, 0.0) |
| (2.664836, 0.0) |
└ ┘

┌ ┐
| (0.0634, -0.8686) (0.8988, -0.1012) (-0.6456, -0.3544) |

VL = | (-0.3652, -0.3826) (0.0108, -0.3479) (0.0001, -0.0852) |
| (0.3605, -0.6395) (-0.2029, 0.6348) (0.4537, 0.4128) |
└ ┘

┌ ┐
| (0.3799, -0.1986) (0.2712, -0.0943) (-0.1470, 0.1422) |

VR = | (0.0132, -0.9868) (-0.5085, -0.4915) (0.3239, -0.6761) |
| (-0.0976, -0.2383) (-0.0633, 0.1388) (-0.0395, 0.1663) |
└ ┘

INFO = 0

964 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX,
and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a
Positive Definite Real Symmetric or Complex Hermitian Generalized
Eigenproblem)

Purpose

These subroutines compute eigenvalues and, optionally, the eigenvectors of a
positive definite real symmetric or complex Hermitian generalized eigenproblem:
v If itype = 1, the problem is Ax = λBx

v If itype = 2, the problem is ABx = λx

v If itype = 3, the problem is BAx = λx

In the formulas above:
v A represents the real symmetric or complex Hermitian matrix A
v B represents the positive definite real symmetric or complex Hermitian matrix B

Eigenvalues and eigenvectors can be selected by specifying a range of values or a
range of indices for the desired eigenvalues.

Table 188. Data Types

A, B, Z, work vl, vu, abstol, w, rwork Subroutine

Short-precision real Short-precision real SSPGVX∆

SSYGVX∆

Long-precision real Long-precision real DSPGVX∆

DSYGVX∆

Short-precision complex Short-precision real CHPGVX∆

CHEGVX∆

Long-precision complex Long-precision real ZHPGVX∆

ZHEGVX∆

∆LAPACK

Syntax

Fortran

CALL SSPGVX | DSPGVX (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)

CALL CHPGVX | ZHPGVX (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)

CALL SSYGVX | DSYGVX (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, iwork, ifail, info)

CALL CHEGVX | ZHEGVX (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w,
z, ldz, work, lwork, rwork, iwork, ifail, info)

Chapter 11. Eigensystem Analysis 965

C and C++

sspgvx | dspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info);

chpgvx | zhpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work,
rwork, iwork, ifail, info);

ssygvx | dsygvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info);

chegvx | zhegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info);

On Entry

itype
specifies the problem type, where:

If itype = 1, the problem is Ax = λBx.

If itype = 2, the problem is ABx = λx.

If itype = 3, the problem is BAx = λx.

Specified as: an integer; itype = 1, 2, or 3.

jobz
indicates the type of computation to be performed, where:

If jobz = 'N', eigenvalues only are computed.

If jobz = 'V', eigenvalues and eigenvectors are computed.

Specified as: a single character; jobz = 'N' or 'V'.

range
indicates which eigenvalues to compute, where:

If range = 'A', all eigenvalues are to be found.

If range = 'V', all eigenvalues in the interval [vl, vu] are to be found.

If range = 'I', the il-th through iu-th eigenvalues are to be found.

Specified as: a single character; range = 'A', 'V', or 'I'.

uplo
indicates whether the upper or lower triangular part of the matrices A and B
are referenced, where:

If uplo = 'U', the upper triangular part is referenced.

If uplo = 'L', the lower triangular part is referenced.

Specified as: a single character; uplo = 'U' or 'L'.

n is the order of matrices A and B used in the computation.

Specified as: an integer; n ≥ 0.

ap is the real symmetric or complex Hermitian matrix A of order n. It is stored in
an array, referred to as AP, where:

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 188 on page 965.

966 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

bp is the positive definite real symmetric or complex Hermitian matrix B of order
n. It is stored in an array, referred to as BP, where:

If uplo = 'U', it is stored in upper-packed storage mode.

If uplo = 'L', it is stored in lower-packed storage mode.

Specified as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 188 on page 965.

a is the real symmetric or complex Hermitian matrix A of order n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type
indicated in Table 188 on page 965.

lda
is the leading dimension of the array specified for A.

Specified as: an integer; lda > 0 and lda ≥ n.

b is the positive definite real symmetric or complex Hermitian matrix B of order
n.

If uplo = 'U', it is stored in upper storage mode.

If uplo = 'L', it is stored in lower storage mode.

Specified as: an ldb by (at least) n array, containing numbers of the data type
indicated in Table 188 on page 965.

ldb
is the leading dimension of the array specified for B.

Specified as: an integer; ldb > 0 and ldb ≥ n.

vl has the following meaning:

If range = 'V', it is the lower bound of the interval to be searched for
eigenvalues.

If range ≠ 'V', this argument is ignored.

Specified as: a number of the data type indicated in Table 188 on page 965. If
range = 'V', vl < vu.

vu has the following meaning:

If range = 'V', it is the upper bound of the interval to be searched for
eigenvalues.

If range ≠ type indicated in Table 188 on page 965. If range = 'V', vl < vu.

il has the following meaning:

If range = 'I', it is the index (from smallest to largest) of the smallest eigenvalue
to be returned.

If range ≠ 'I', this argument is ignored.

Specified as: an integer; il ≥ 1.

iu has the following meaning:

If range = 'I', it is the index (from smallest to largest) of the largest eigenvalue
to be returned.

Chapter 11. Eigensystem Analysis 967

If range ≠ 'I', this argument is ignored.

Specified as: an integer; min(il, n) ≤ iu ≤ n.

abstol
is the absolute tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a, b] of
width less than or equal to:
v abstol+ε(max(|a|, |b|))

where ε is the machine precision. If abstol ≤ zero, then ε(norm(T)) is used in its
place, where norm(T) is the 1-norm of the tridiagonal matrix obtained by
reducing the standard form of the generalized problem to tridiagonal form. For
most problems, this is the appropriate level of accuracy to request.

For certain strongly graded matrices, greater accuracy can be obtained in very
small eigenvalues by setting abstol to a very small positive number. However, if
abstol is less than:

where unfl is the underflow threshold, then:

is used in its place.

Eigenvalues are computed most accurately when abstol is set to twice the
underflow threshold—that is, (2)(unfl).

If jobz = 'V', then setting abstol to unfl, the underflow threshold, yields the most
orthogonal eigenvectors.

Note:

1. The approximate values of the constants used for abstol are listed below:

For SSPGVX, CHPGVX, SSYGVX, and CHEGVX

ε 0.119209289550781250E-06

unfl 0.1175494351E-37

0.1084202172E-18

For DSPGVX, ZHPGVX, DSYGVX, and ZHEGVX

ε 0.222044604925031308E-15

unfl 0.222507385850720138E-307

0.149166814624004135E-153
2. The value of abstol can affect which algorithm is used to compute the

eigenvalues and eigenvectors. See Function.

Specified as: a number of the data type indicated in Table 188 on page 965.

968 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

m See “On Return” on page 970.

w See “On Return” on page 970.

z See “On Return” on page 970.

ldz
is the leading dimension of the array specified for Z.

Specified as: an integer; ldz > 0 and ldz ≥ n.

work
is a work area used by these subroutines, where:

For SSPGVX and DSPGVX
Its size is 8n.

For CHPGVX and ZHPGVX
Its size is 2n.

For SSYGVX, DSYGVX, CHEGVX, and ZHEGVX

If lwork = 0, work is ignored.

If lwork ≠ 0, the size of work is determined as follows:
v If lwork ≠ -1, work is (at least) of length lwork.
v If lwork = -1, work is (at least) of length 1.

Specified as: an area of storage containing numbers of the data type indicated
in Table 188 on page 965.

lwork
is the number of elements in array WORK.

Specified as: an integer; where:
v If lwork = 0, the subroutine dynamically allocates the workspace needed for

use during this computation. The work area is deallocated before control is
returned to the calling program.

v If lwork = -1, subroutine performs a workspace query and returns the
optimal required size of work in work1. No computation is performed and the
subroutine returns after error checking is complete.

v Otherwise:

For SSYGVX and DSYGVX
lwork ≥ max(1, 8n).

For CHEGVX and ZHEGVX
lwork ≥ max(1, 2n).

rwork
is a work area of size 7n.

Specified as: an area of storage containing numbers of the data type indicated
in Table 188 on page 965.

iwork
is a work area of size 5n.

Specified as: an area of storage containing integers.

ifail
See “On Return” on page 970.

info
See “On Return” on page 970.

Chapter 11. Eigensystem Analysis 969

On Return

ap is overwritten.

Returned as: a one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 188 on page 965.

bp contains the results of the Cholesky factorization.

For SSPGVX and DSPGVX
If uplo = 'U', if info ≤ n, the triangular factor U from the Cholesky
factorization B = UTU stored in upper-packed storage format.

If uplo = 'L', if info ≤ n, the triangular factor L from the Cholesky
factorization = LLT stored in lower-packed storage mode.

For CHPGVX and ZHPGVX
If uplo = 'U', if info ≤ n, the triangular factor U from the Cholesky
factorization B = UHU stored in upper-packed storage format.

If uplo = 'L', if info ≤ n, the triangular factor L from the Cholesky
factorization B = LLH stored in lower-packed storage mode.

Returned as: one-dimensional array of (at least) length n(n + 1)/2, containing
numbers of the data type indicated in Table 188 on page 965.

a is overwritten as follows:
v If uplo = 'U', the leading n by n upper triangular part of A is overwritten.
v If uplo = 'L', the leading n by n lower triangular part of A is overwritten.

Returned as: an array of dimension lda by (at least) n, containing numbers of
the data type indicated in Table 188 on page 965.

b contains the results of the Cholesky factorization.

For SSYGVX and DSYGVX
If uplo = 'U', if info ≤ n, the leading n by n upper triangular part of B
contains the triangular factor U from the Cholesky factorization B =
UTU.

If uplo = 'L', if info ≤ n, the leading n by n lower triangular part of B
contains the triangular factor L from the Cholesky factorization B =
LLT.

For CHEGVX and ZHEGVX
If uplo = 'U', if info ≤ n, the leading n by n upper triangular part of B
contains the triangular factor U from the Cholesky factorization B =
UHU.

If uplo = 'L', if info ≤ n, the leading n by n lower triangular part of B
contains the triangular factor L from the Cholesky factorization B =
LLH.

Returned as: an array of dimension ldb by (at least) n, containing numbers of
the data type indicated in Table 188 on page 965.

m is the number of eigenvalues found.

Returned as: an integer; 0 ≤ m ≤ n .

w is the vector w, containing the computed eigenvalues in ascending order in the
first m elements of w.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 188 on page 965.

970 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

z has the following meaning, where:

If jobz = 'N', then z is ignored.

If jobz = 'V' and info = 0, the first m columns of Z contain the eigenvectors
corresponding to the selected eigenvalues, with the i-th column of Z holding
the eigenvector associated with w(i).

The eigenvectors are normalized as follows:

For SSYGVX, DSYGVX, SSPGVX, and DSPGVX
If itype = 1 or 2, ZTBZ = I.

If itype = 3, ZTB-1Z = I.

For CHPGVX, ZHPGVX, CHEGVX, and ZHEGVX
If itype = 1 or 2, ZHBZ = I.

If itype = 3, ZHB-1Z = I.

where I is the identity matrix.

If an eigenvector fails to converge, then that column of Z contains the latest
approximation to the eigenvector, and the index of the eigenvector is returned
in ifail.

Note: You must ensure that at least max(1, m) columns are supplied in the
array Z; if range = 'V', the exact value of m is not known in advance and an
upper bound must be used.

Returned as: an ldz by (at least) max(1, m) array, containing numbers of the
data type indicated in Table 188 on page 965.

work
is a work area used by this subroutine if lwork ≠ 0, where:

If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length lwork.

If lwork = -1, its size is (at least) of length 1.

Returned as: an area of storage, where:

If lwork ≥ 1 or lwork = -1, then work1 is set to the optimal lwork value and all
other elements of work are overwritten.

ifail
has the following meaning:

If jobz = 'N', ifail is ignored.

If jobz = 'V':
v If info = 0, the first m elements of ifail are zero.
v If info > 0, ifail contains the indices of the eigenvectors that failed to

converge.

Returned as: an array of length n, containing integers.

info
has the following meaning:

If info = 0, the subroutine completed successfully.

If info = i, then i eigenvectors failed to converge. Their indices are saved in
array ifail.

Chapter 11. Eigensystem Analysis 971

If info = n + i for 1 ≤ i ≤ n, then the leading minor of order i of B is not positive
definite. The factorization of B could not be completed, and no eigenvalues or
eigenvectors were computed.

Returned as: an integer; info ≥ 0.

Notes
1. These subroutines accept lowercase letters for the jobz, range, and uplo

arguments.
2. In your C program, arguments m and info must be passed by reference.
3. ap, bp, a, b, b, w, z, work, rwork, iwork and ifail must have no common elements;

otherwise, results are unpredictable.
4. For a description of how real symmetric matrices are stored in lower- or

upper-packed storage mode, see “Lower-Packed Storage Mode” on page 83 or
“Upper-Packed Storage Mode” on page 85, respectively.
For a description of how complex Hermitian matrices are stored in lower- or
upper-packed storage mode, see “Complex Hermitian Matrix” on page 88.

5. For a description of how real symmetric matrices are stored in lower or upper
storage mode, see “Lower Storage Mode” on page 86 or “Upper Storage Mode”
on page 87, respectively.
For a description of how complex Hermitian matrices are stored in lower or
upper storage mode, see “Complex Hermitian Matrix” on page 88.

6. On input, the imaginary parts of the diagonal elements of the complex
Hermitian matrices A and B are assumed to be zero, so you do not have to set
these values. On output, for matrix B they are set to zero.

7. For best performance, specify lwork = 0.

Function

These subroutines compute eigenvalues and, optionally, the eigenvectors of a
positive definite real symmetric or complex Hermitian generalized eigenproblem:
v If itype = 1, the problem is Ax = λBx

v If itype = 2, the problem is ABx = λx

v If itype = 3, the problem is BAx = λx

In the formulas above:
v A represents the real symmetric or complex Hermitian matrix A
v B represents the positive definite real symmetric or complex Hermitian matrix B

Eigenvalues and eigenvectors can be selected by specifying a range of values or a
range of indices for the desired eigenvalues.

The computation involves the following steps:
1. Compute the Cholesky factorization of B.
2. Reduce the positive definite real symmetric or complex Hermitian generalized

eigenproblem to standard form.
3. Compute the requested eigenvalues and, optionally, the eigenvectors of the

standard form.
4. Backtransform the eigenvectors to obtain the eigenvectors of the original

problem.

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking.

972 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

See reference [8 on page 1313].

Error conditions

Resource Errors
1. lwork = 0 and unable to allocate work area

Computational Errors

1. The matrix B is not positive definite. See output argument info for more
details.

2. Bisection failed to converge for some eigenvalues. The eigenvalues may
not be as accurate as the absolute and relative tolerances.

3. The number of eigenvalues computed does not match the number of
eigenvalues requested.

4. No eigenvalues were computed because the Gershgorin interval
initially used was incorrect.

5. Some eigenvectors failed to converge. The indices are stored in ifail.

Informational Errors

1. ESSL computed the eigenvalues using multiple algorithms. Performance
may be degraded.

Input-Argument Errors
1. itype < 1 or itype > 3
2. jobz ≠ 'N' or 'V'
3. range ≠ 'A', 'V', or 'I'
4. uplo ≠ 'U' or 'L'
5. n < 0
6. lda ≤ 0
7. lda < n
8. ldb ≤ 0
9. ldb < n

10. range = 'V', n > 0, and vu ≤ vl
11. range = 'I' and (il < 1 or il > max(1, n))
12. range = 'I' and (iu < min(n, il) or iu > n)
13. ldz ≤ 0
14. jobz = 'V' and ldz < n
15. lwork ≠ 0 and lwork ≠ -1 and lwork < the minimum required value

Examples

Example 1

This example shows how to find the eigenvalues of a real symmetric positive
generalized eigenproblem of the form: Ax = λBx. Matrices A and B are stored
in lower-packed storage mode.

Matrix A is:
┌ ┐
| 6.0 4.0 4.0 1.0 |
| 4.0 6.0 1.0 4.0 |
| 4.0 1.0 6.0 4.0 |
| 1.0 4.0 4.0 6.0 |
└ ┘

Matrix B is:
┌ ┐
| 1.0 0.0 0.0 0.0 |
| 0.0 1.0 0.0 0.0 |

Chapter 11. Eigensystem Analysis 973

| 0.0 0.0 1.0 0.0 |
| 0.0 0.0 0.0 1.0 |
└ ┘

Notes:

1. Because jobz = 'N', Z and ifail are not referenced.
2. Because range = 'A', arguments vl, vu, il, and iu are not referenced.

Call Statement and Input:

Output:

Matrix AP is overwritten.
BP = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0)

M = 4

W = (-1.0, 5.0, 5.0, 15.0)

INFO = 0

Example 2

This example shows how to find the eigenvalues and eigenvectors of a real
symmetric positive generalized eigenproblem of the form: ABx = λx. Matrices
A and B are stored in upper-packed storage mode.

This example illustrates the use of the il and iu parameters when range = 'I'.

Matrices A and B are the same as in Example 1.

Notes:

1. Because range = 'I', arguments vl and vu are not referenced.

Call Statement and Input:

Output:

Matrix AP is overwritten.
BP = (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

M = 2

W = (-1.0, 5.0, . , .)

┌ ┐
| 0.500000 0.544042 . . |

Z = |-0.500000 0.451683 . . |
|-0.500000 -0.451683 . . |
| 0.500000 -0.544042 . . |
└ ┘

ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | | |

CALL DSPGVX (1, ’N’, ’A’, ’L’, 4, AP, BP VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)

BP = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0)

ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
| | | | | | | | | | | | | | | | | | | |

CALL DSPGVX (2, ’V’, ’I’, ’U’, 4, AP, BP VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (6.0, 4.0, 6.0, 4.0, 1.0, 6.0, 1.0, 4.0, 4.0, 6.0)

BP = (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

974 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IFAIL = (0, 0, . , .)

INFO = 0

Example 3

This example shows how to find all eigenvalues only of a positive definite
complex Hermitian generalized eigenproblem of the form: Ax = λBx. Matrices
A and B are stored in lower-packed storage mode.

Matrix A is:
┌ ┐
| (6.0, 0.0) (4.0, 0.0) (4.0, 0.0) (1.0, 0.0) |
| (4.0, 0.0) (6.0, 0.0) (1.0, 0.0) (4.0, 0.0) |
| (4.0, 0.0) (1.0, 0.0) (6.0, 0.0) (4.0, 0.0) |
| (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, 0.0) |
└ ┘

Matrix B is:
┌ ┐
| (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) (0.0, 0.0) |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
└ ┘

Notes:

1. Because jobz= 'N', Z and ifail are not referenced.
2. Because range = 'A', arguments vl, vu, il, and iu are not referenced.
3. On input, the imaginary parts of the Hermitian matrix A are assumed to be

zero, values. On output, they are set to zero.

Call Statement and Input:

Output:

Matrix AP is overwritten.
M = 4

BP = ((1.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, 0.0), (0.0, 0.0), (0.0, 0.0),
(1.0, 0.0), (0.0, 0.0), (1.0, 0.0))

W = (-1.0, 5.0, 5.0, 15.0)

INFO = 0

Example 4

This example shows how to find all eigenvalues and eigenvectors of a positive
definite complex Hermitian generalized eigenproblem of the form: ABx = λx.
Matrices A and B are stored in upper-packed storage mode.

This example illustrates the use of the il and iu parameters when range = 'I'.

Matrices A and B are the same as in Example 3.

Notes:

1. Because range = 'I', arguments vl and vu are not referenced.

ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
| |

CALL ZHPGVX (1, ’N’, ’A’, ’L’, 4, AP, BP VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, RWORK IWORK, IFAIL, INFO)

AP = ((6.0, .), (4.0, 0.0), (4.0, 0.0), (1.0, 0.0),(6.0, .), (1.0, 0.0), (4.0, 0.0), (6.0, .),
(4.0, 0.0), (6.0, .))

BP = ((1.0, .), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, .), (0.0, 0.0), (0.0, 0.0), (1.0, .),
(0.0, 0.0), (1.0, .))

Chapter 11. Eigensystem Analysis 975

2. On input, the imaginary parts of the Hermitian matrix A are assumed to be
zero, values. On output, they are set to zero.

Call Statement and Input:

Output:

Matrix AP is overwritten.
BP = ((1.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, 0.0), (0.0, 0.0), (0.0, 0.0),

(1.0, 0.0), (0.0, 0.0), (1.0, 0.0))

M = 2

W = (-1.0, 5.0, . , .)

┌ ┐
|(0.500000, 0.0) (0.544042, 0.0) . . |

Z = |(-0.500000, 0.0) (0.451683, 0.0) . . |
|(-0.500000, 0.0) (-0.451683, 0.0) . . |
|(0.500000, 0.0) (-0.544042, 0.0) . . |
└ ┘

IFAIL = (0, 0, . , .)

INFO = 0

Example 5

This example shows how to find the eigenvalues only of a positive definite real
symmetric generalized eigenproblem of the form: Ax = λBx. Matrices A and B
are stored in lower storage mode.

Matrices A and B are the same as in Example 1

Notes:

1. Because jobz = 'N', Z and ifail are not referenced.
2. Because range = 'A', arguments vl, vu, il, and iu are not referenced.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:

┌ ┐
| 6.0 . . . |

A = | 4.0 6.0 . . |
| 4.0 1.0 6.0 . |
| 1.0 4.0 4.0 6.0 |
└ ┘

┌ ┐
| 1.0 . . . |

B = | 0.0 1.0 . . |
| 0.0 0.0 1.0 . |
| 0.0 0.0 0.0 1.0 |
└ ┘

Output:

Matrix A is overwritten.

ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
| |

CALL ZHPGVX (2, ’V’, ’I’, ’L’, 4, AP, BP VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((6.0, .), (4.0, 0.0), (4.0, 0.0), (1.0, 0.0),(6.0, .), (1.0, 0.0), (4.0, 0.0), (6.0, .),
(4.0, 0.0), (6.0, .))

BP = ((1.0, .), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, .), (0.0, 0.0), (0.0, 0.0), (1.0, .),
(0.0, 0.0), (1.0, .))

ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| |

CALL DSYGVX (1, ’N’, ’A’, ’L’, 4, A, 4, B, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

976 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

M = 4

┌ ┐
| 1.000000 . . . |

B = | 0.000000 1.000000 . . |
| 0.000000 0.000000 1.000000 . |
| 0.000000 0.000000 0.000000 1.000000 |
└ ┘

┌ ┐
| - 1.000000 |

W = | 5.000000 |
| 5.000000 |
| 15.000000 |
└ ┘

INFO = 0

Example 6

This example shows how to find the eigenvalues and eigenvectors of a positive
definite real symmetric generalized eigenproblem of the form: ABx = λx.
Matrices A and B are stored in upper storage mode.

This example illustrates the use of the il and iu parameters when range = 'I'.

Matrices A and B are the same as in Example 1

Notes:

1. Because range = 'I', arguments vl and vu are not referenced.
2. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:

Output:

Matrix A is overwritten.
M = 2

┌ ┐
| 1.000000 0.000000 0.000000 0.000000 |

B = | . 1.000000 0.000000 0.000000 |
| . . 1.000000 0.000000 |
| . . . 1.000000 |
└ ┘

┌ ┐
W = | -1.000000 |

| 5.000000 |
| . |
| . |
└ ┘

┌ ┐
| 0.500000 0.543058 . . |

Z = | -0.500000 0.452866 . . |
| -0.500000 -0.452866 . . |
| 0.500000 -0.543058 . . |
└ ┘

IFAIL = (0, 0, ., .)

INFO = 0

Example 7

ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| |

CALL DSYGVX (2, ’V’, ’I’, ’U’, 4, A, 4, B, 4, VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

Chapter 11. Eigensystem Analysis 977

This example shows how to find the eigenvalues and eigenvectors of a positive
definite real symmetric generalized eigenproblem of the form: BAx = λx.
Matrices A and B are stored in upper storage mode.

This example illustrates the use of the vl and vu paramenters when range = 'V'.

Matrices A and B are the same as in Example 1

Notes:

1. Because range = 'V', arguments il and iu are not referenced.
2. On output, array A is overwritten.
3. Because lwork = 0, the subroutine dynamically allocates WORK.

Call Statement and Input:

Output:

Matrix A is overwritten.
M = 2

┌ ┐
| 1.000000 0.000000 0.000000 0.000000 |

B = | . 1.000000 0.000000 0.000000 |
| . . 1.000000 0.000000 |
| . . . 1.000000 |
└ ┘

┌ ┐
W = | 5.000000 |

| 5.000000 |
| . |
| . |
└ ┘

┌ ┐
| -0.123202 -0.696291 . . |

Z = | 0.696291 -0.123202 . . |
| -0.696291 0.123202 . . |
| 0.123202 0.696291 . . |
└ ┘

IFAIL = (0, 0, ., .)

INFO = 0

Example 8

This example shows how to find the eigenvalues only of a positive definite
complex Hermitian generalized eigenproblem of the form: Ax = λBx. Matrices
A and B are stored in lower-packed storage mode.

Matrices A and B are the same as in Example 3.

Notes:

1. Because jobz = 'N', Z and ifail are not referenced.

ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
| |

CALL DSYGVX (3, ’V’, ’V’, ’U’, 4, A, 4, B, 4, 2.0, 6.0, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

┌ ┐
| 6.0 4.0 4.0 1.0 |

A = | . 6.0 1.0 4.0 |
| . . 6.0 4.0 |
| . . . 6.0 |
└ ┘

┌ ┐
| 1.0 0.0 0.0 0.0 |

B = | . 1.0 0.0 0.0 |
| . . 1.0 0.0 |
| . . . 1.0 |
└ ┘

978 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. Because range = 'A', arguments vl, vu, il, and iu are not referenced.
3. Because lwork = 0, the subroutine dynamically allocates WORK.
4. On input, the imaginary parts of the Hermitian matrix A are assumed to be

zero, values. On output, they are set to zero.

Call Statement and Input:

Output:

Matrix A is overwritten.
M = 4

┌ ┐
| (1.0, 0.0) . . . |

B = | (0.0, 0.0) (1.0, 0.0) . . |
| (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) . |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
└ ┘

┌ ┐
| -1.000000 |

W = | 5.000000 |
| 5.000000 |
| 15.000000 |
└ ┘

INFO = 0

Example 9

This example shows how to find the eigenvalues and eigenvectors of a positive
definite complex Hermitian generalized eigenproblem of the form: ABx = λx.
Matrices A and B are stored in upper-packed storage mode.

This example illustrates the use of the il and iu parameters when range = 'I'.

Matrices A and B are the same as in Example 3.

Notes:

1. Because range = 'I', arguments vl and vu are not referenced.
2. Because lwork = 0, the subroutine dynamically allocates WORK.
3. On input, the imaginary parts of the Hermitian matrix A are assumed to be

zero, values. On output, they are set to zero.

Call Statement and Input:

ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
| |

CALL ZHEGVX (1, ’N’, ’A’, ’L’, 4, A, 4, B, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, RWORK IWORK, IFAIL, INFO)

┌ ┐
| (6.0, .) . . . |

A = | (4.0, 0.0) (6.0, .) . . |
| (4.0, 0.0) (1.0, 0.0) (6.0, .) . |
| (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, .) |
└ ┘

┌ ┐
| (1.0, .) . . . |

B = | (0.0, 0.0) (1.0, .) . . |
| (0.0, 0.0) (0.0, 0.0) (1.0, .) . |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, .) |
└ ┘

Chapter 11. Eigensystem Analysis 979

Output:

Matrix A is overwritten.
M = 2

┌ ┐
| (1.0, 0.0) . . . |

B = | (0.0, 0.0) (1.0, 0.0) . . |
| (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) . |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
└ ┘

┌ ┐
W = | -1.000000 |

| 5.000000 |
└ ┘

┌ ┐
|(0.500000, 0.0) (-0.154815, 0.0) . . |

Z = |(-0.500000, 0.0) (-0.689950, 0.0) . . |
|(-0.500000, 0.0) (0.689950, 0.0) . . |
|(0.500000, 0.0) (0.154815, 0.0) . . |
└ ┘

IFAIL = (0, 0, ., .)

INFO = 0

ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
| |

CALL ZHEGVX (2, ’V’, ’I’, ’L’, 4, A, 4, B, 4, VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, 0, RWORK IWORK, IFAIL, INFO)

┌ ┐
| (6.0, .) . . . |

A = | (4.0, 0.0) (6.0, .) . . |
| (4.0, 0.0) (1.0, 0.0) (6.0, .) . |
| (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, .) |
└ ┘

┌ ┐
| (1.0, .) . . . |

B = | (0.0, 0.0) (1.0, .) . . |
| (0.0, 0.0) (0.0, 0.0) (1.0, .) . |
| (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, .) |
└ ┘

980 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 12. Fourier Transforms, Convolutions and
Correlations, and Related Computations

The signal processing subroutines, provided in three areas, are described here.

Overview of the Signal Processing Subroutines
This describes the subroutines in each of the three signal processing areas:
v Fourier transform subroutines
v Convolution and correlation subroutines
v Related-computation subroutines

Fourier Transforms Subroutines
The Fourier transform subroutines perform mixed-radix transforms in one, two,
and three dimensions.

Table 189. List of Fourier Transform Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCFTD DCFTD “SCFTD and DCFTD (Multidimensional Complex Fourier Transform)” on
page 992

SRCFTD DRCFTD “SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier
Transform)” on page 1000

SCRFTD DCRFTD “SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier
Transform)” on page 1008

SCFT
§

SCFTP§, ND

DCFT§ “SCFT and DCFT (Complex Fourier Transform)” on page 1016

SRCFT§ DRCFT§ “SRCFT and DRCFT (Real-to-Complex Fourier Transform)” on page 1025

SCRFT§ DCRFT§ “SCRFT and DCRFT (Complex-to-Real Fourier Transform)” on page 1033

SCOSF
SCOSFT§, ND

DCOSF “SCOSF and DCOSF (Cosine Transform)” on page 1041

SSINF DSINF “SSINF and DSINF (Sine Transform)” on page 1049

SCFT2§

SCFT2P§, ND

DCFT2§ “SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)” on
page 1057

SRCFT2§ DRCFT2§ “SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two
Dimensions)” on page 1064

SCRFT2§ DCRFT2§ “SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two
Dimensions)” on page 1071

SCFT3§

SCFT3P§, ND

DCFT3§ “SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)” on
page 1079

SRCFT3§ DRCFT3§ “SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three
Dimensions)” on page 1086

© Copyright IBM Corp. 1986, 2015 981

Table 189. List of Fourier Transform Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCRFT3§ DCRFT3§ “SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three
Dimensions)” on page 1093

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs.

ND Documentation for this subroutine is no longer provided.

Convolution and Correlation Subroutines
The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 190. List of Convolution and Correlation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SCON§

SCOR§
“SCON and SCOR (Convolution or Correlation of One Sequence with One or
More Sequences)” on page 1101

SCOND
SCORD

“SCOND and SCORD (Convolution or Correlation of One Sequence with
Another Sequence Using a Direct Method)” on page 1107

SCONF
SCORF

“SCONF and SCORF (Convolution or Correlation of One Sequence with One
or More Sequences Using the Mixed-Radix Fourier Method)” on page 1113

SDCON
SDCOR

DDCON
DDCOR

“SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with
Decimated Output Using a Direct Method)” on page 1123

SACOR§ “SACOR (Autocorrelation of One or More Sequences)” on page 1128

SACORF “SACORF (Autocorrelation of One or More Sequences Using the
Mixed-Radix Fourier Method)” on page 1132

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in
new programs.

Related-Computation Subroutines
The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

Table 191. List of Related-Computation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPOLY DPOLY “SPOLY and DPOLY (Polynomial Evaluation)” on page 1139

SIZC DIZC “SIZC and DIZC (I-th Zero Crossing)” on page 1142

STREC DTREC “STREC and DTREC (Time-Varying Recursive Filter)” on page 1145

SQINT DQINT “SQINT and DQINT (Quadratic Interpolation)” on page 1148

982 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 191. List of Related-Computation Subroutines (continued)

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SWLEV
CWLEV

DWLEV
ZWLEV

“SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter
Coefficients)” on page 1152

Fourier Transforms, Convolutions, and Correlations Considerations
This describes some global information applying to the Fourier transform,
convolution, and correlation subroutines.

Use Considerations
This provides some key points about using the Fourier transform, convolution, and
correlation subroutines.

Understanding the Terminology and Conventions Used for Your
Array Data
These subroutines use the term “sequences,” rather than vectors and matrices, to
describe the data that is stored in the arrays.

Some of the sequences used in these computations use a zero origin rather than a
one-origin. For example, xj can be expressed with j = 0, 1, ..., n-1 rather than j = 1,
2, ..., n. When using the formulas provided to calculate array sizes or offsets into
arrays, you need to be careful that you substitute the correct values. For example,
the number of xj elements in the sequence is n, not n-1.

Concerns about Lengths of Transforms
The length of the transform you can use in your program depends on the limits of
the addressability of your processor.

Determining an Acceptable Length of a Transform
To determine acceptable lengths of the transforms in the Fourier transform
subroutines, you have different choices depending on which subroutine you are
using:
v For subroutines in Table 192, all transform lengths between 0 and 1073479680 are

acceptable.
v For subroutines in Table 193 on page 984, you have two choices:

– You can use the formula or table of values in “Acceptable Lengths for the
Transforms” on page 984 to choose a value.

– Alternatively, ESSL's input-argument error recovery provides a means of
determining an acceptable length of the transform. It uses the
optionally-recoverable error 2030. For details, see “Providing a Correct
Transform Length to ESSL” on page 56.

Table 192. Fourier Transform subroutines allowing all lengths between 0 and 1073479680

Subroutine Name

SCFTD, DCFTD
SRCFTD, DRCFTD
SCRFTD, DCRFTD

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 983

Table 193. Fourier Transform subroutines whose lengths are limited to those in Figure 13 on
page 985

Subroutine Name

SCFT, DCFT
SCFTP
SRCFT, DRCFT
SCRFT, DCRFT
SCOSF, DCOSF
SCOSFT
SSINF, DSINF
SCFT2, DCFT2
SCFT2P
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SCFT3P
SRCFT3, DRCFT3
SCRFT3, DCRFT3

Acceptable Lengths for the Transforms
Use the following formula to determine acceptable transform lengths:

n = (2h) (3i) (5j) (7k) (11m) for n ≤ 37748736

where:

h = 1, 2, ..., 25
i = 0, 1, 2
j, k, m = 0, 1

Figure 13 on page 985 lists all the acceptable values for transform lengths in the
Fourier transform subroutines.

984 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Understanding Auxiliary Working Storage Requirements
Auxiliary working storage is required by the Fourier transform subroutines and by
the SCONF, SCORF, and SACORF subroutines. This storage is provided through
the calling sequence arguments aux, aux1, and aux2. The sizes of these storage
areas are specified by the calling sequence arguments naux, naux1, and naux2,
respectively.

AUX1:

2 4 6 8 10 12 14 16 18
20 22 24 28 30 32 36 40 42
44 48 56 60 64 66 70 72 80
84 88 90 96 110 112 120 126 128

132 140 144 154 160 168 176 180 192
198 210 220 224 240 252 256 264 280
288 308 320 330 336 352 360 384 396
420 440 448 462 480 504 512 528 560
576 616 630 640 660 672 704 720 768
770 792 840 880 896 924 960 990 1008
1024 1056 1120 1152 1232 1260 1280 1320 1344
1386 1408 1440 1536 1540 1584 1680 1760 1792
1848 1920 1980 2016 2048 2112 2240 2304 2310
2464 2520 2560 2640 2688 2772 2816 2880 3072
3080 3168 3360 3520 3584 3696 3840 3960 4032
4096 4224 4480 4608 4620 4928 5040 5120 5280
5376 5544 5632 5760 6144 6160 6336 6720 6930
7040 7168 7392 7680 7920 8064 8192 8448 8960
9216 9240 9856 10080 10240 10560 10752 11088 11264

11520 12288 12320 12672 13440 13860 14080 14336 14784
15360 15840 16128 16384 16896 17920 18432 18480 19712
20160 20480 21120 21504 22176 22528 23040 24576 24640
25344 26880 27720 28160 28672 29568 30720 31680 32256
32768 33792 35840 36864 36960 39424 40320 40960 42240
43008 44352 45056 46080 49152 49280 50688 53760 55440
56320 57344 59136 61440 63360 64512 65536 67584 71680
73728 73920 78848 80640 81920 84480 86016 88704 90112
92160 98304 98560 101376 107520 110880 112640 114688 118272

122880 126720 129024 131072 135168 143360 147456 147840 157696
161280 163840 168960 172032 177408 180224 184320 196608 197120
202752 215040 221760 225280 229376 236544 245760 253440 258048
262144 270336 286720 294912 295680 315392 322560 327680 337920
344064 354816 360448 368640 393216 394240 405504 430080 443520
450560 458752 473088 491520 506880 516096 524288 540672 573440
589824 591360 630784 645120 655360 675840 688128 709632 720896
737280 786432 788480 811008 860160 887040 901120 917504 946176
983040 1013760 1032192 1048576 1081344 1146880 1179648 1182720 1261568

1290240 1310720 1351680 1376256 1419264 1441792 1474560 1572864 1576960
1622016 1720320 1774080 1802240 1835008 1892352 1966080 2027520 2064384
2097152 2162688 2293760 2359296 2365440 2523136 2580480 2621440 2703360
2752512 2838528 2883584 2949120 3145728 3153920 3244032 3440640 3548160
3604480 3670016 3784704 3932160 4055040 4128768 4194304 4325376 4587520
4718592 4730880 5046272 5160960 5242880 5406720 5505024 5677056 5767168
5898240 6291456 6307840 6488064 6881280 7096320 7208960 7340032 7569408
7864320 8110080 8257536 8388608 8650752 9175040 9437184 9461760 10092544

10321920 10485760 10813440 11010048 11354112 11534336 11796480 12582912 12615680
12976128 13762560 14192640 14417920 14680064 15138816 15728640 16220160 16515072
16777216 17301504 18350080 18874368 18923520 20185088 20643840 20971520 21626880
22020096 22708224 23068672 23592960 25165824 25231360 25952256 27525120 28385280
28835840 29360128 30277632 31457280 32440320 33030144 33554432 34603008 36700160
37748736

Figure 13. Table of Acceptable Lengths for the Transforms

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 985

The aux1 array is used for storing tables and other parameters when you call a
Fourier transform, convolution, or correlation subroutine for initialization with init
= 1. The initialized aux1 array is then used on succeeding calls with init = 0, when
the computation is actually done. You should not use this array between the
initialization and the computation.

AUX and AUX2:
The aux and aux2 arrays are used for temporary storage during the running of the
subroutine and are available for use by your program between calls to the
subroutine.

AUX3:
The aux3 argument is provided for migration purposes only and is ignored.

Initializing Auxiliary Working Storage
In many of those subroutines requiring aux1 auxiliary working storage, two
invocations of the subroutines are necessary. The first invocation initializes the
working storage in aux1 for the subroutine, and the second performs the
computations. (For an explanation of auxiliary working storage, see
“Understanding Auxiliary Working Storage Requirements” on page 985.) As a
result, the working storage in aux1 should not be used by the calling program
between the two calls to the subroutine. However, it can be reused after
intervening calls to the subroutine with different arguments.

If you plan to repeat a computation many times using the same set of arguments,
you only need to do one initialization of the aux1 array; that is, the initialized aux1
array can be saved and reused as many times as needed for the computation.

If you plan to perform different computations, with different sets of arguments
(except for input argument x), you need to do an initialization for each different
computation; that is, you initialize the various aux1 arrays for use with the
different computations, saving and reusing them until they are not needed any
more.

Determining the Amount of Auxiliary Working Storage That
You Need

To determine the size of auxiliary storage, you have several choices. First, you can
use the formulas provided in each subroutine description. Second, ESSL's
input-argument error recovery provides a means of determining the minimum size
you need for auxiliary storage. It uses the optionally-recoverable error 2015. For
details, see “Using Auxiliary Storage in ESSL” on page 49. Third, you can have
ESSL dynamically allocate aux and aux2. For details, see “Dynamic Allocation of
Auxiliary Storage” on page 50.

Performance and Accuracy Considerations
The following explain the performance and accuracy considerations for the Fourier
transforms, convolution, and correlation subroutines. For further details about
performance and accuracy, see Chapter 2, “Planning Your Program,” on page 29.

986 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

When Running on the Workstation Processors
There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know
About?” on page 62.

Defining Arrays
The stride arguments, inc1h, inc1x, inc1y, inc2x, inc2y, incx, incy, incmx, incmy, inc3x,
and inc3y, provide great flexibility in defining the input and output data arrays.
The arrangement of data in storage, however, can have an effect upon cache
performance. By using strides, you can have data scattered in storage. Best
performance is obtained with data closely spaced in storage and with elements of
the sequence in contiguous locations. The optimum values for inc1h, inc1x, and
inc1y are 1.

In writing the calling program, you may find it convenient to declare X or Y as a
two-dimensional array. For example, you can declare X in a DIMENSION statement
as X(INC2X,M).

Fourier Transform Considerations
This describes some ways to optimize performance in the Fourier transform
subroutines.

Setting Up Your Data
Many of the Fourier transform, convolution, and correlation subroutines provide
the facility for processing many sequences in one call. For short sequences, for
example 1024 elements or less, this facility should be used as much as possible.
This provides improved performance compared to processing only one sequence at
a time.

If possible, you should use the same array for input and output.

For improved performance, small values of inc1x and inc1y should be used, where
applicable, preferably inc1x = 1 and inc1y = 1. A stride of 1 means the sequence
elements are stored contiguously. Also, if possible, the sequences should be stored
close to each other. For all the Fourier transform subroutines except _RCFT and
_CRFT, you should use the STRIDE subroutine to determine the optimal stride(s)
for your input or output data. Complete instructions on how to use STRIDE for
each of these subroutines is included in “STRIDE (Determine the Stride Value for
Optimal Performance in Specified Fourier Transform Subroutines)” on page 1263.

To obtain the best performance in the three-dimensional Fourier transform
subroutines, you should use strides, inc2 and inc3, provided by the STRIDE
subroutine and declare your three-dimensional data structure as a one-dimensional
array. The three-dimensional Fourier transform subroutines assume that inc1 for
the array is 1. Therefore, each element xijk for i = 0, 1, ..., n1-1, j = 0, 1, ..., n2-1, and
k = 0, 1, ..., n3-1 of the three-dimensional data structure of dimensions n1 by n2 by
n3 is stored in a one-dimensional array X(0:L) at location X(l), where l =
i+inc2(j)+inc3(k). The minimum required value of L is calculated by inserting the
maximum values for i, j, and k in the above equation, giving L =
(n1-1)+inc2(n2-1)+inc3(n3-1). The minimum total size of array X is L+1. To ensure
that this mapping is unique so no two elements xijk occupy the same array element,
X(l), the subroutines have the following restriction: inc2 ≥ n1 and inc3 ≥ (inc2)(n2).
This arrangement of array data in storage leaves some blank space between

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 987

successive planes of the array X. By determining the best size for this space,
specifying an optimum inc3 stride, the third dimension of the array does not create
conflicts in the 3090 storage hierarchy.

If the inc3 stride value returned by the STRIDE subroutine turns out to be a
multiple of inc2, the array X can be declared as a three-dimensional array as
X(inc2,inc3/inc2,n3); otherwise, it can be declared as either a one-dimensional array,
X(0:L), as described above, or a two-dimensional array X(0:inc3-1,0:n3-1), where
xijk is stored in X(l,k) where l = i+(inc2)(j).

Using the Scale Argument
If you must multiply either the input or the output sequences by a common factor,
you can avoid the multiplication by letting the scale argument contain the factor.
The subroutines multiply the sine and cosine values by the scale factor during the
initialization. Thus, scaling takes no time after the initialization of the Fourier
transform calculations.

How the Fourier Transform Subroutines Achieve High
Performance

There are two levels of optimization for the fast Fourier transforms (FFTs) in the
ESSL library:
v For sequences with a large power of 2 length, we provide efficient

implementations by factoring the transform length as follows:
N=N1N2N3...Np

where each Ni is a power of 2; the power of 2 used depends on the machine
model.
The cache optimization includes ordering of operations to maximize stride-1
data access and prefetching cache lines.
Similar optimization techniques are used for sequence lengths which are not a
power of 2 and mixed-radix FFT's are performed. Many short sequence FFT's
have sequence size specific optimizations. Some of these optimizations were
originally developed for a vector machine and have been adapted for cache
based RISC machines (see references [1 on page 1313], [5 on page 1313], and [7
on page 1313])

v The other optimization in the FFT routine is to treat multiple sequences as
efficiently as possible. Techniques here include blocking sequences to fit into
available CPU cache and transposing sequences to ensure stride-1 access.
Whenever possible, the highest performance can be obtained when multiple
sequences are transformed in a single call.

Convolution and Correlation Considerations
This describes some ways to optimize performance in the convolution and
correlation subroutines.

Performance Tradeoffs between Subroutines
The subroutines SCON, SCOR, SACOR, SCOND, SCORD, SDCON, SDCOR,
DDCON, and DDCOR compute convolutions, correlations, and autocorrelations
using essentially the same methods. They make a decision, based on estimated
timings, to use one of two methods:
v A direct method that is most efficient when one or both of the input sequences

are short
v A direct method that is most efficient when the output sequence is short

988 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Using this approach has the following advantages:
v In most cases, improved performance can be achieved for direct methods

because:
– No initialization is required.
– No working storage or padding of sequences is necessary.

v In some cases, greater accuracy may be available.
v Negative strides can be used.

In general, using SCONF, SCORF, and SACORF provides the best performance,
because the mixed-radix Fourier transform subroutines are used. However, if you
can determine from your arguments that a direct method is preferred, you should
use SCOND and SCORD instead. These give you better performance for the direct
methods, and also give you additional capabilities.

In cases where there is doubt as to the best choice of a subroutine, perform timing
experiments.

Special Uses of SCORD
The subroutine SCORD can perform the functions of SCON and SACOR; that is, it
can compute convolutions and autocorrelations. To compute a convolution, you
must specify a negative stride for h (see Example 4 in SCORD). To compute the
autocorrelation, you must specify the two input sequences to be the same (see
Example 5 in SCORD).

Special Uses of _DCON and _DCOR
The _DCON and _DCOR subroutines compute convolutions and correlations,
respectively, by the direct method with decimated output. Setting the decimation
interval id = 1 in SDCON and SDCOR provides the same function as SCOND and
SCORD, respectively. Doing the same in DDCON and DDCOR provides
long-precision versions of SCOND and SCORD, respectively, which are not
otherwise available.

Accuracy When Direct Methods Are Used
The direct methods used by the convolution and correlation subroutines use vector
operations to accumulate sums of products. The products are computed and
accumulated in long precision. As a result, higher accuracy can be obtained in the
final results for some types of data. For example, if input data consists only of
integers, and if no intermediate and final numbers become too large (larger than
224-1 for short-precision computations and larger than 256-1 for long-precision
computations), the results are exact.

However, when short-precision subroutines use the AltiVec or VSX unit to improve
performance, they do not accumulate intermediate results in long precision.

Accuracy When Fourier Methods Are Used
The Fourier methods used by the convolution and correlation subroutines compute
Fourier transforms of input data that is multiplied element-by-element in
short-precision arithmetic. The inverse Fourier transform is then computed. There
are internally generated rounding errors in the Fourier transforms. It has been
shown in references [113 on page 1320] and [101 on page 1319] that, in the case of
white noise data, the relative root mean square (RMS) error of the Fourier
transform is proportional to log2n with a very small proportionality factor. In
general, with random, evenly distributed data, this is better than the RMS error of
the direct method. However, one must keep in mind the fact that, while the
Fourier method may yield a smaller root mean square error, there can be points

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 989

with large relative errors. Thus, it can happen that some points, usually at the ends
of the output sequence, can be obtained with greater relative accuracy with direct
methods.

Convolutions and Correlations by Fourier Methods
The convolution and correlation subroutines that use the Fourier methods
determine a sequence length n, whose Fourier transform is computed using ESSL
subroutines. In the simple case where iy0 = 0 for convolution or iy0 = -nh+1 for
correlation, n is chosen as a value greater than or equal to the following, which is
also acceptable to the Fourier tranform subroutines:

nt = min(nh+nx-1, ny) for convolution and correlation
nt = min(nx+nx-1, ny) for autocorrelation

which is also acceptable to the Fourier subroutines.

Related Computation Considerations
This describes some key points about using the related-computation subroutines.

Accuracy Considerations
v Many of the subroutines performing short-precision computations provide

increased accuracy by accumulating results in long precision. This is noted in the
functional description for each subroutine.

v There are ESSL-specific rules that apply to the results of computations on the
workstation processors using the ANSI/IEEE standards. For details, see “What
Data Type Standards Are Used by ESSL, and What Exceptions Should You Know
About?” on page 62.

990 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Fourier Transform Subroutines

This contains the Fourier transform subroutine descriptions.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 991

SCFTD and DCFTD (Multidimensional Complex Fourier Transform)
Purpose

These subroutines compute a set of m d-dimensional discrete Fourier transforms of
complex data.

Table 194. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFTD

Long-precision complex Long-precision real DCFTD

Notes:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCFTD | DCFTD (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1,
aux2, naux2)

C and C++ scftd | dcftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init = 1, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 2, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1, and no SIMD
algorithms are used (see “What ESSL Library Do You Want to Use?” on page
29). The contents of x and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given array is computed. The
only arguments that may change after initialization are x, y, and aux2. The
arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1, and naux2
must be the same as when the subroutine was called for initialization with init
= 1 or init = 2.

Specified as: an integer; 0 ≤ init ≤ 2.

d is the dimension of the transform.

Specified as: an integer; 1 ≤ d ≤ 3.

x is the array X, consisting of m sequences of d-dimensional complex arrays to be
transformed. Using zero-based indexing, xj1,j2,...,jd,mm is stored in location j1(incx1)
+ j2(incx2) + ... + jd(incxd) + mm(incmx) of the array X.

Specified as: an array of (at least) length 1 + incx1(n1-1) + ... + incxd(nd-1) +
incmx(m-1), containing numbers of the data type indicated in Table 194.

992 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

incx
is an array containing the strides between the elements in array X for each of
the d dimensions.

Specified as: an array of length d containing integers; incx1:d > 0.

incmx
is the stride between the first elements of the d-dimensional sequences in array
X. (If m = 1, this argument is ignored.)

Specified as: an integer; incmx > 0.

y See On Return.

incy
is an array containing the strides between the elements in array Y for each of
the d dimensions.

Specified as: an array of length d containing integers; incy1:d > 0.

incmy
is the stride between the first elements of the d-dimensional sequences in array
Y. (If m = 1, this argument is ignored.)

Specified as: an integer; incmy > 0.

n is an array containing the lengths of the dimensions of the array to be
transformed.

Specified as: an array of length d containing integers; 0 ≤ n1:d ≤ 1073479680.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
is an array that controls the direction of the transform (from time to frequency
or from frequency to time). The sign of Isigni determines the signs in the
exponents of Wn1, Wn2, ..., Wnd, where:

If isigni > 0, Isigni = + (transforming time to frequency).

If isigni < 0, Isigni = - (transforming frequency to time).

Specified as: an array of length d containing integers; isign1:d ≠0.

scale
is the scaling constant by which the transforms are multiplied. See “Function”
on page 996 for its usage.

Specified as: a number of the data type indicated in Table 194 on page 992,
where scale ≠ 0.0.

aux1
is the working storage for this subroutine, where:

If init > 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 7(d+1)+1 and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 993

processor-independent formulas (see Processor-Independent Formulas for
SCFTD for NAUX1 and NAUX2 and Processor-Independent Formulas for
DCFTD for NAUX1 and NAUX2. For values between 7(d+1)+1 and the
minimum value, you have the option of having the minimum value returned
in this argument; for details, see On Return and “Using Auxiliary Storage in
ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, the subroutine dynamically
allocates the work area. The work area is deallocated before control is returned
to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument; for details, see On
Return and “Using Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init > 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m d-dimensional
discrete Fourier transforms. Using zero-based indexing, yk1,k2,...,kd,mm is stored in
location k1(incy1) + k2(incy2) + ... + kd(incyd) + mm(incmy) of the array Y.

Returned as: an array of (at least) length 1 + incy1(n1-1) + ... + incyd(nd-1) +
incmy(m-1), containing numbers of the data type indicated in Table 194 on page
992.

aux1
is the working storage for this subroutine, where:

If init > 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

naux1
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:
v You specified that error 2015 is recoverable.
v You specified an input value for naux1 that is at least 7(d+1)+1 (but

insufficient for the problem).
v There were no other errors.

994 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Otherwise, it remains unchanged.

Returned as: an integer.

naux2
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:
v You specified that error 2015 is recoverable.
v You specified an input value for naux2 that is greater than or equal to zero

(but insufficient for the problem).
v There were no other errors.

Otherwise, it remains unchanged.

Returned as: an integer.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init > 0 and init > 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init > 0 and init = 0.

3. For optimal performance, the preferred value for incx1 and incy1 is 1.
If you specify the same array for X and Y, then incxi and incyi for i = 1,...,d must
be equal, and incmx and incmy must be equal. In this case, output overwrites
input. If you specify different arrays for X and Y, they must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

4. You have the option of having the minimum required value for naux1 and
naux2 dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Formulas

Processor-Independent Formulas for SCFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 2048, naux1 = 30000d.
If max(n1,n2,...,nd) > 2048, naux1 = 60000d+14.12(n1+...+nd).

NAUX2 Formulas

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(r+256)(s+8.56).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Processor-Independent Formulas for DCFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 1024, naux1 = 30000d.
If max(n1,n2,...,nd) > 1024, naux1 = 60000d+28.24(n1+...+nd).

NAUX2 Formulas

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 995

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(2r+256)(s+17.12).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Function

The set of m d-dimensional discrete Fourier transforms of complex data in array X,
with results going into array Y, is expressed as follows:

for:

k1 = 0,...,n1-1
k2 = 0,...,n2-1
.
.
.
kd = 0,...,nd-1
i = 0,...,m-1

where:

for:

l = 1,...,d

and where:

xj1,j2...jd,mm are elements of the d-dimensional sequences in array X.
yk1,k2...kd,mm are elements of the d-dimensional sequences in array Y.

For scale = 1.0 and isign1 = isign2 = ... = isignd = 1, you obtain the discrete Fourier
transform (DFT), a function of frequency. The inverse Fourier transform is obtained
with scale = 1.0/n1 n2...nd and isign1 = isign2 = ... = isignd = -1. See references[5 on
page 1313], [7 on page 1313], [12 on page 1314], and [31 on page 1315].

Two invocations of this subroutine are necessary:
1. With init > 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

996 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If ni = 0 for any i from 1 to d or if m = 0; no initialization or computation is
performed.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. init < 0 or init > 2
2. d < 1 or d > 3
3. incxi ≤ 0 (i = 1,...,d)
4. incmx ≤ 0
5. incyi ≤ 0 (i = 1,...,d)
6. incmy ≤ 0
7. ni < 0 or ni > 1073479680 (i = 1,...,d)
8. m < 0
9. isigni = 0 (i = 1,...,d)

10. scale = 0.0
11. naux1 ≤ 7(d+1)+1.
12. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
13. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

14. The subroutine has not been initialized with the present arguments.

Examples

Example 1

This example shows an input array X with a set of four long-precision complex
sequences:

for j = 0, 1, ..., n-1 with n = 8, and the single frequencies k = 0, 1, 2, and 3.

Note: X is the same input array used in Example 1.

The arrays are declared as follows:
COMPLEX*16 X(0:31),Y(0:31)
REAL*8 AUX1(10000),AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2 = 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 997

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCY is an array of length d.
INCY(1) = 1
N is an array of length d.
N(1) = 8
ISIGN is an array of length d.
ISIGN(1) = 1
SCALE = 1.0

X contains the following four sequences:
(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

Output:

Y contains the following four sequences:
(8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2

This example shows how to compute a three-dimensional transform. In this
example, INCX ≥ INCY, so the same array can be used for both input and
output.

Note: X is the same input array used in Example 1.

The STRIDE subroutine is called to select good values for the INCY strides. (As
explained below, STRIDE is not called for INCX.) Using the transform lengths
(N(1) = 32, N(2) = 64, and N(3) = 40) along with the output data type
(short-precision complex: ’C’), STRIDE is called once for each stride needed.
First, it is called for INCY(2):

CALL STRIDE (N(2),N(1),INCY(2),’C’,0)

The output value returned for INCY(2) is 32. Then STRIDE is called again for
INCY(3):

CALL STRIDE (N(3),N(2)*INCY(2),INCY(3),’C’,0)

The output value returned for INCY(3) is 2056. Because INCY(3) is not a
multiple of INCY(2), Y is not declared as a three-dimensional array; it is
declared as a two-dimensional array, Y(INCY(3),N(3)).

INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL DCFTD(INIT, 1, X, INCX, 8, Y, INCY, 8, N, 4, ISIGN, 1.0, AUX1, 10000, AUX2, 0)

998 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

For equivalence, it is required that INCX(2) ≥ INCY(2) and INCX(3) ≥ INCY(3).
Therefore, INCX(2) and INCY(2) are set as follows: INCX(2) = INCY(2) = 32.

To enable the X array to be declared as a three-dimensional array, INCX(3) must
be a multiple of INCX(2). Therefore, its value is set as INCX(3) = 65(INCX(2)) =
2080.

The arrays are declared as follows:
COMPLEX*8 X(32,65,40),Y(2056,40)
REAL*8 AUX1(90000),AUX2(1),SCALE

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Note: Because NAUX2 = 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:
INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL SCFTD(INIT, 3, X, INCX, 0, Y, INCY, 0, N, 1, ISIGN, 1.0, AUX1, 90000, AUX2, 0)

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCX(2) = 32
INCX(3) = 2080
INCY is an array of length d.
INCY(1) = 1
INCY(2) = 32
INCY(3) = 2056 N is an array of length d.
N(1) = 32
N(2) = 64
N(3) = 40 ISIGN is an array of length d.
ISIGN(1) = 1
ISIGN(2) = 1
ISIGN(3) = 1
SCALE = 1.0
X has (1.0,2.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output:

Y has (1.0,2.0) in all locations.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 999

SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier
Transform)

Purpose

These subroutines compute a set of m d-dimensional complex discrete Fourier
transforms of real data.

Table 195. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFTD

Long-precision real Long-precision complex DRCFTD

Notes:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SRCFTD | DRCFTD (init, d,x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1,
aux2, naux2)

C and C++ srcftd | drcftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2,
naux2);

On Entry

init
is a flag, where:

If init = 1, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 2, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1, and no SIMD
algorithms are used (see “What ESSL Library Do You Want to Use?” on page
29). The contents of x and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given array are computed. The
only arguments that may change after initialization are x, y, and aux2. The
arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1, and naux2
must be the same as when the subroutine was called for initialization with init
= 1 or init = 2.

Specified as: an integer; 0 ≤ init ≤ 2.

d is the dimension of the transform.

Specified as: an integer; 1 ≤ d ≤ 3.

x is the array X, consisting of m sequences of d-dimensional complex arrays to be
transformed. Using zero-based indexing, xj1,j2,...,jd,mm is stored in location j1(incx1)
+ j2(incx2) + ... + jd(incxd) + mm(incmx) of the array X.

1000 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an array of (at least) length 1 + incx1(n1-1) + ... + incxd(nd-1) +
incmx(m-1), containing numbers of the data type indicated in Table 195 on page
1000.

incx
is an array containing the strides between the elements in array X for each of
the d dimensions.

Specified as: an array of length d containing integers; incx1:d > 0.

incmx
is the stride between the first elements of the d-dimensional sequences in array
X. (If m = 1, this argument is ignored.)

Specified as: an integer; incmx > 0.

y See On Return.

incy
is an array containing the strides between the elements in array Y for each of
the d dimensions.

Specified as: an array of length d containing integers; incy1:d > 0.

incmy
is the stride between the first elements of the d-dimensional sequences in array
Y. (If m = 1, this argument is ignored.)

Specified as: an integer; incmy > 0.

n is an array containing the lengths of the dimensions of the array to be
transformed.

Specified as: an array of length d containing integers; 0 ≤ n1:d ≤ 1073479680.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
is an array that controls the direction of the transform (from time to frequency
or from frequency to time). The sign of Isigni determines the signs in the
exponents of Wn1, Wn2, ..., Wnd, where:

If isigni > 0, Isigni = + (transforming time to frequency).

If isigni < 0, Isigni = - (transforming frequency to time).

Specified as: an array of length d containing integers; isign1:d≠0.

scale
is the scaling constant by which the transforms are multiplied. See “Function”
on page 1004 for its usage.

Specified as: a number of the data type indicated in Table 195 on page 1000,
where scale ≠ 0.0.

aux1
is the working storage for this subroutine, where:

If init > 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1001

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > (4d+11) and naux1 ≥ (minimum value required
for successful processing). To determine a sufficient value, use the
processor-independent formulas (see “Formulas” on page 1003). For values
between (4d+ 11) and the minimum value, you have the option of having the
minimum value returned in this argument; for details, see On Return and
“Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, the subroutine dynamically
allocates the work area. The work area is deallocated before control is returned
to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see On
Return and “Using Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init > 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m d-dimensional
complex discrete Fourier transforms. Using zero-based indexing, yk1,k2,...,kd,mm is
stored in location k1(incy1) + k2(incy2) + ... + kd(incyd) + mm(incmy) of the array
Y. Due to complex conjugate symmetry, the output consists of only the first
n1/2+ 1 values along the first dimension of the array, for k1 = 0, 1, ..., n1/2.

Returned as: an array of (at least) length 1 + incy1(n1-1) + ... + incyd(nd-1) +
incmy(m-1), containing numbers of the data type indicated in Table 195 on page
1000.

aux1
is the working storage for this subroutine, where:

If init > 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

naux1
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:

1002 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v You specified that error 2015 is recoverable.
v You specified an input value for naux1 that is at least (4d+11) (but

insufficient for the problem).
v There were no other errors.

Otherwise, it remains unchanged.

Returned as: an integer.

naux2
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:
v You specified that error 2015 is recoverable.
v You specified an input value for naux2 that is greater than or equal to zero

(but insufficient for the problem).
v There were no other errors.

Otherwise, it remains unchanged.

Returned as: an integer.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init > 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init > 0 and init = 0.

3. For optimal performance, the preferred value for incx1 and incy1 is 1.
If you specify the same array for X and Y, then:
v incxi must equal 2(incyi), for i = 2,...,d
v incmx must be equal to 2(incmy) if m > 1

In this case, output overwrites input. If you specify different arrays for X and Y,
they must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 73.

4. You have the option of having the minimum required value for naux1 and
naux2 dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Formulas

Processor-Independent Formulas for SRCFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 2048, naux1 = 60000d.
If max(n1,n2,...,nd) > 2048, naux1 = 60000d+14.12(n1+...+nd).

NAUX2 Formulas

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(r+256)(s+8.56).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1003

Processor-Independent Formulas for DRCFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 1024, naux1 = 60000d.
If max(n1,n2,...,nd) > 1024, naux1 = 60000d+28.24(n1+...+nd).

NAUX2 Formulas

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(2r+256)(s+17.12).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Function

The set of m d-dimensional complex conjugate even discrete Fourier transforms of
real data in array x with results going into array y is expressed as follows:

for:

k1 = 0,...,n1-1
k2 = 0,...,n2-1
.
.
.
kd = 0,...,nd-1
i = 0,...,m-1

where:

for:

l = 1,...,d

and where:

xj1,j2...jd,mm are elements of the d-dimensional sequences in array X.
yk1,k2...kd,mm are elements of the d-dimensional sequences in array Y.

For scale = 1.0 and isign1 = isign2 = ... = isignd = 1, you obtain the discrete Fourier
transform (DFT), a function of frequency. The inverse Fourier transform is obtained
with scale = 1.0/n1 n2...nd and isign1 = isign2 = ... = isignd = -1. See references[5 on
page 1313], [7 on page 1313], [12 on page 1314], and [31 on page 1315]

1004 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Two invocations of this subroutine are necessary:
1. With init > 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

If ni = 0 for any i from 1 to d or if m = 0; no initialization or computation is
performed.

Error conditions

Resource Errors
Error 2015 is unrecoverable, unable to allocate work area, and internal
deallocation error.

Computational Errors
None

Input-Argument Errors

1. init < 0 or init > 2
2. d < 1 or d > 3
3. incxi ≤ 0 (i = 1,...,d)
4. incmx ≤ 0
5. incyi ≤ 0 (i = 1,...,d)
6. incmy ≤ 0
7. ni < 0 or ni >1073479680 (i = 1,...,d)
8. m < 0
9. isigni = 0 (i = 1,...,d)

10. scale = 0.0
11. naux1 ≤ 4d+11.
12. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
13. Error 2015 is recoverable or naux2 ≠ 0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

14. The subroutine has not been initialized with the present arguments.

Examples

Example 1

This example shows an input array X with a set of m cosine sequences
cos(2πjk/n), j = 0, 1, ..., 15 with the single frequencies k = 0, 1, 2, 3. The Fourier
transform of the cosine sequence with frequency k = 0 or n/2 has 1.0 in the 0
or n/2 position, respectively, and zeros elsewhere. For all other k, the Fourier
transform has 0.5 in the k position and zeros elsewhere. The arrays are
declared as follows:

REAL*4 X(0:100)
COMPLEX*8 Y(0:50)
REAL*8 AUX1(1000), AUX2

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1005

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCY is an array of length d.
INCY(1) = 1
N is an array of length d.
N(1) = 16
ISIGN is an array of length d.
ISIGN(1) = 1
SCALE = 1.0 / 16

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000
1.0000 0.9239 0.7071 0.3827
1.0000 0.7071 0.0000 -0.7071
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.9239 0.7071 -0.3827
1.0000 -1.0000 1.0000 -1.0000
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.3827 -0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.7071 0.0000 -0.7071
1.0000 0.9239 0.7071 0.3827

Output:

Y contains the following four sequences:
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2

This example shows how to compute a three-dimensional transform.

The STRIDE subroutine is called to select good values for the INCY strides (as
the following explains, STRIDE is not called for INCX.) Using the transform
lengths (N(1) = 33, N(2) = 64, and N(3) = 40) along with the output data type
(short-precision complex: 'C'), STRIDE is called once for each stride needed.
First, it is called for INCY(2):
CALL STRIDE (N(2),N(1)/2+1,INCY(2),’C’,0)

INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL SRCFTD(INIT, 1 X, INCX, 16, Y, INCY, 9, N, 4, ISIGN, SCALE, AUX1, 1000, AUX2, 0)

1006 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The output value returned forINCY(2) is 18. Then STRIDE is called again for
INCY(3):
CALL STRIDE (N(3),N(2)*INCY(2),INCY(3),’C’,0)

The output value returned for INCY(3) is 1160. Because INCY(3) is not a
multiple of INCY(2), Y is not declared as a three-dimensional array; it is
declared as a two-dimensional array, Y(INCY(3),N(3)).

For equivalence, it is required that INCX(2) = 2(INCY(2)) and INCX(3) =
2(INCY(3)). Therefore, INCX(2), INCY(2), INCX(3) and INCY(3) are set as
follows:
INCY(2) = 18
INCX(2) = 36
INCY(3) = 1160
INCX(3) = 2320

The arrays are declared as follows:
REAL*4 X(2320,40), SCALE
COMPLEX*8 Y(1160,40)
REAL*8 AUX1(5000),AUX2

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:
EQUIVALENCE (X,Y)

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCX(2) = 36
INCX(3) = 2320
INCY is an array of length d.
INCY(1) = 1
INCY(2) = 18
INCY(3) = 1160
N is an array of length d.
N(1) = 33
N(2) = 64
N(3) = 40
ISIGN is an array of length d.
ISIGN(1) = 1
ISIGN(2) = 1
ISIGN(3) = 1
SCALE = 1.0
X has 1.0 in location X(1,1) and 0.0 in all other locations.

Output:

Y has (1.0,0.0) in all locations.

INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL SRCFTD(INIT, 3 X, INCX, 0, Y, INCY, 0 N, 1, ISIGN, 1.0, AUX1, 5000, AUX2, 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1007

SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier
Transform)

Purpose

These subroutines compute a set of m d-dimensional real discrete Fourier
transforms of complex conjugate even data.

Table 196. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SCRFTD

Long-precision real Long-precision complex DCRFTD

Notes:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCRFTD | DCRFTD (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1,
naux1, aux2, naux2)

C and C++ scrftd | dcrftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2,
naux2);

On Entry

init
is a flag, where:

If init = 1, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 2, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1, and no SIMD
algorithms are used (see “What ESSL Library Do You Want to Use?” on page
29). The contents of x and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given array are computed. The
only arguments that may change after initialization are x, y, and aux2. The
arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1, and naux2
must be the same as when the subroutine was called for initialization with init
= 1 or init = 2.

Specified as: an integer; 0 ≤ init ≤ 2.

d is the dimension of the transform.

Specified as: an integer; 1 ≤ d ≤ 3.

x is the array X, consisting of m sequences of d-dimensional complex arrays to be
transformed. Using zero-based indexing, xj1,j2,...,jd,mm is stored in location j1(incx1)
+ j2(incx2) + ... + jd(incxd) + mm(incmx) of the array X. Due to complex

1008 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

conjugate symmetry, the output consists of only the first n1/2+1 values along
the first dimension of the array, for j1 = 0, 1, ..., n1/2.

Specified as: an array of (at least) length 1 + incx1(n1-1) + ... + incxd(nd-1) +
incmx(m-1), containing numbers of the data type indicated in Table 196 on page
1008.

incx
is an array containing the strides between the elements in array X for each of
the d dimensions.

Specified as: an array of length d containing integers; incx1:d > 0.

incmx
is the stride between the first elements of the d-dimensional sequences in array
X. (If m = 1, this argument is ignored.)

Specified as: an integer; incmx > 0.

y See On Return.

incy
is an array containing the strides between the elements in array Y for each of
the d dimensions.

Specified as: an array of length d containing integers; incy1:d > 0.

incmy
is the stride between the first elements of the d-dimensional sequences in array
Y. (If m = 1, this argument is ignored.)

Specified as: an integer; incmy > 0.

n is an array containing the lengths of the dimensions of the array to be
transformed.

Specified as: an array of length d containing integers; 0 ≤ n1:d ≤ 1073479680.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
is an array that controls the direction of the transform (from time to frequency
or from frequency to time). The sign of Isigni determines the signs in the
exponents of Wn1, Wn2, ..., Wnd, where:

If isigni > 0, Isigni = + (transforming time to frequency).

If isigni < 0, Isigni = - (transforming frequency to time).

Specified as: an array of length d containing integers; isign1:d ≠ 0.

scale
is the scaling constant by which the transforms are multiplied. See “Function”
on page 1012 for its usage.

Specified as: a number of the data type indicated in Table 196 on page 1008,
where scale ≠ 0.0.

aux1
is the working storage for this subroutine, where:

If init > 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1009

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > (4d+ 11) and naux1 ≥ (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas (see “Formulas” on page 1012). For values
between (4d + 11) and the minimum value, you have the option of having the
minimum value returned in this argument; for details, see On Return and
“Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, the subroutine dynamically
allocates the work area. The work area is deallocated before control is returned
to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see On
Return and “Using Auxiliary Storage in ESSL” on page 49.

On Return

x has the following meaning, where:

If init > 0, this argument is not used, and its contents remain unchanged.

If init = 0, this argument is not used, and its contents remain unchanged if one
of the following is true:
v d = 1
v incx1 = 1 and incy1 = 1

Otherwise, x is overwritten; that is, the original input is not preserved.

y has the following meaning, where:

If init > 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m d-dimensional
discrete Fourier transforms of complex conjugate even data. Using zero-based
indexing, yk1,k2,...,kd,mm is stored in location k1(incy1) +k2(incy2) + ... + kd(incyd) +
mm(incmy) of the array Y.

Returned as: an array of (at least) length 1 + incy1(n1-1) + ... + incyd(nd-1) +
incmy(m-1), containing numbers of the data type indicated in Table 196 on page
1008.

1010 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

aux1
is the working storage for this subroutine, where:

If init > 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

naux1
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:
v You specified that error 2015 is recoverable.
v You specified an input value for naux1 that is at least (4d+11) (but

insufficient for the problem).
v There were no other errors.

Otherwise, it remains unchanged.

Returned as: an integer.

naux2
contains the minimum value required for successful processing (as returned by
the subroutine), provided that the following are true:
v You specified that error 2015 is recoverable.
v You specified an input value for naux2 that is greater than or equal to zero

(but insufficient for the problem).
v There were no other errors.

Otherwise, it remains unchanged.

Returned as: an integer.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init > 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init > 0 and init = 0.

3. If incx1 = 1 and incy1 = 1, then:
v incyi must be even for i = 2,...,d
v min(incmy, incy2,...,incyd) ≥ 2(n1/2+1)

4. For optimal performance, the preferred value for incx1 and incy1 is 1.
If you specify the same array for X and Y, then:
v incyi must equal 2(incxi), for i = 2,...,d
v incmy must be equal to 2(incmx) if m > 1

In this case, output overwrites input. If you specify different arrays for X and Y,
they must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 73.

5. You have the option of having the minimum required value for naux1 and
naux2 dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1011

Formulas

Processor-Independent Formulas for SCRFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 2048, naux1 = 60000d.
If max(n1,n2,...,nd) > 2048, naux1 = 60000d+14.12(n1+...+nd).

NAUX2 Formulas

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(r+256)(s+8.56).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Processor-Independent Formulas for DCRFTD for NAUX1 and NAUX2:

NAUX1 Formulas

If max(n1,n2,...,nd) ≤ 1024, naux1 = 60000d.
If max(n1,n2,...,nd) > 1024, naux1 = 60000d+28.24(n1+...+nd).

NAUX2 Formulas

If max(n1,n2,...,nd) < 252, naux2 = 20000.
If max(n1,n2,...,nd) ≥ 252, naux2 = 20000+(2r+256)(s+17.12).

where:

r = max(n1,n2,...,nd) and
s = min(64,r)

Function

The set of m d-dimensional real discrete Fourier transforms of complex conjugate
even data in array x with results going into array y is expressed as follows:

for:

k1 = 0,...,n1-1
k2 = 0,...,n2-1
.
.
.
kd = 0,...,nd-1
i = 0,...,m-1

where:

1012 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

for:

l = 1,...,d

and where:

xj1,j2...jd,mm are elements of the d-dimensional sequences in array X.
yk1,k2...kd,mm are elements of the d-dimensional sequences in array Y.

For scale = 1.0 and isign1 = isign2 = ... = isignd = 1, you obtain the discrete Fourier
transform (DFT), a function of frequency. The inverse Fourier transform is obtained
with scale = 1.0/n1 n2...nd and isign1 = isign2 = ... = isignd = -1. See references[5 on
page 1313], [7 on page 1313], [12 on page 1314], and [31 on page 1315].

Two invocations of this subroutine are necessary:
1. With init > 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

If ni = 0 for any i from 1 to d or if m = 0; no initialization or computation is
performed.

Error conditions

Resource Errors
Error 2015 is unrecoverable, unable to allocate work area, and internal
deallocation error.

Computational Errors
None

Input-Argument Errors

1. init < 0 or init > 2
2. d < 1 or d >3
3. incxi ≤ 0 (i = 1,...,d)
4. incmx ≤ 0
5. incyi ≤ 0 (i = 1,...,d)
6. incmy ≤ 0
7. ni < 0 or ni > 1073479680 (i = 1,...,d)
8. m ≤ 0
9. isigni = 0 (i = 1,...,d)

10. scale = 0.0
11. naux1 ≤ 4d+11.
12. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1013

13. Error 2015 is recoverable or naux2 ≠ 0, and naux2 is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

14. The subroutine has not been initialized with the present arguments.

Examples

Example 1

This example shows how to compute a single one-dimensional transform.

The arrays are declared as follows:
COMPLEX*8 X(0:6)
REAL*8 AUX1(100),AUX2
REAL*4 Y(0:11)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCY is an array of length d.
INCY(1) = 1
N is an array of length d.
N(1) = 12
ISIGN is an array of length d
ISIGN(1) = 1

X contains the following sequence:
(1.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

Output:

Y contains the following sequence:
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL SCRFTD(INIT, 1 X, INCX, 7, Y, INCY, 12, N, 1, ISIGN, 1.0, AUX1, 100, AUX2, 0)

1014 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 2

This example shows how to compute a 3-dimensional Fourier transform. This
example requires additional storage for array Y.

The arrays are declared as follows:
COMPLEX*8 X(4,3,2)
REAL*4 Y(9,3,2)
REAL*8 AUX1(5000, AUX2)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCX(2) = 4
INCX(3) = 12
INCY is an array of length d
INCX(1) = 1
INCX(2) = 9
INCX(3) = 27
N is an array of length d
N(1) = 7
N(2) = 3
N(3) = 2
ISIGN is an array of length d
ISIGN(1) = 1
ISIGN(2) = 1
ISIGN(3) = 1

X has (1.0,0.0)in location X(1,1,1) and (0.0,0.0) in all other locations.

Output:

Y(i,j,k) = 1.0 for i = 1,...,7; j = 1,...,3; k = 1,2

Y(i,j,k) is unchanged for i = 8,9; j = 1,...,3; k = 1,2

INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | |

CALL SCRFTD(INIT, 3 X, 0, INCMX, Y, INCY, 0, N, 1, ISIGN, 1.0, AUX1, 5000, AUX2, 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1015

SCFT and DCFT (Complex Fourier Transform)
Purpose

These subroutines compute a set of m complex discrete n-point Fourier transforms
of complex data.

Table 197. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT

Long-precision complex Long-precision real DCFT

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCFT | DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2,
naux2)

C and C++ scft | dcft (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m sequences of length n.

Specified as: an array of (at least) length 1+(n-1)inc1x+(m-1)inc2x, containing
numbers of the data type indicated in Table 197.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2x > 0.

y See On Return.

inc1y
is the stride between the elements within each sequence in array Y.

1016 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of each sequence in array Y. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2y > 0.

n is the length of each sequence to be transformed.

Specified as: an integer; n ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument, as well as in the
optionally-recoverable error 2030. For details, see “Providing a Correct
Transform Length to ESSL” on page 56.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1019 for its usage.

Specified as: a number of the data type indicated in Table 197 on page 1016,
where scale > 0.0 or scale < 0.0

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 7 (32-bit integer arguments) or 13 (64-bit
integer arguments) and naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For values between 7 (32-bit integer arguments) or 13 (64-bit integer
arguments) and the minimum value, you have the option of having the
minimum value returned in this argument. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCFT and DCFT dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1017

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, each of length n.

Returned as: an array of (at least) length 1+(n-1)inc1y+(m-1)inc2y, containing
numbers of the data type indicated in Table 197 on page 1016.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. The preferred value for
inc2x and inc2y is n. This implies that sequences are stored one after another
without any gap.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _CFT, you
should use “STRIDE (Determine the Stride Value for Optimal Performance in
Specified Fourier Transform Subroutines)” on page 1263. Example 1 in the
STRIDE subroutine description explains how it is used for _CFT.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If m =
1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 73.

Formulas

Processor-Independent Formulas for SCFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

1018 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If n ≤ 8192, use naux1 = 20000.
If n > 8192, use naux1 = 20000+1.14n.

For 64-bit integer arguments:

If n ≤ 8192, use naux1 = 30000.
If n > 8192, use naux1 = 30000+1.14n.

NAUX2 Formulas

If n ≤ 8192, use naux2 = 20000.
If n > 8192, use naux2 = 20000+1.14n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n+256)(min(64, m))

Processor-Independent Formulas for DCFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 2048, use naux1 = 20000.
If n > 2048, use naux1 = 20000+2.28n.

For 64-bit integer arguments:

If n ≤ 2048, use naux1 = 30000.
If n > 2048, use naux1 = 30000+2.28n.

NAUX2 Formulas

If n ≤ 2048, use naux2 = 20000.
If n > 2048, use naux2 = 20000+2.28n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252,
add the following to the above storage requirements:

(2n+256)(min(64, m))

Function

The set of m complex discrete n-point Fourier transforms of complex data in array
X, with results going into array Y, is expressed as follows:

for:

k = 0, 1, ..., n-1
i = 1, 2, ..., m

where:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1019

and where:

xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform, a
function of frequency. The inverse Fourier transform is obtained with scale = 1.0/n
and isign being negative. See references [1 on page 1313], [3 on page 1313], [4 on
page 1313], [26 on page 1314], and [27 on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n > 37748736
2. inc1x, inc2x, inc1y, or inc2y ≤ 0
3. m ≤ 0
4. isign = 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1

is returned if error 2030 is recoverable.
8. naux1 ≤ 7
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows an input array X with a set of four short-precision
complex sequences:

1020 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

for j = 0, 1, ..., n-1 with n = 8, and the single frequencies k = 0, 1, 2, and 3. The
arrays are declared as follows:

COMPLEX*8 X(0:1023),Y(0:1023)
REAL*8 AUX1(1693),AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following four sequences:
(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

Output:

Y contains the following four sequences:
(8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2

This example shows an input array X with a set of four input spike sequences
equal to the output of Example 1. This shows how you can compute the
inverse of the transform in Example 1 by using a negative isign, giving as
output the four sequences listed in the input for Example 1. First, initialize
AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same
calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , 1 , SCALE, AUX1 , 1693 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1021

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 0.125
X = (same as output Y in Example 1)

Output:

Y =(same as input X in Example 1)

Example 3

This example shows an input array X with a set of four short-precision
complex sequences

for j = 0, 1, ..., n-1 with n = 12, and the single frequencies k = 0, 1, 2, and 3.
Also, inc1x = inc1y = m and inc2x = inc2y = 1 to show how the input and
output arrays can be stored in the transposed form. The arrays are declared as
follows:

COMPLEX*8 X (4,0:11),Y(4,0:11)
REAL*8 AUX1(10000),AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following four sequences:
(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, 0.5000) (0.5000, 0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, 0.8660) (-0.5000, 0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.5000, 0.8660) (-0.5000, -0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, 0.5000) (0.5000, -0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, -0.5000) (0.5000, 0.8660) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.5000, -0.8660) (-0.5000, 0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, -0.8660) (-0.5000, -0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, -0.5000) (0.5000, -0.8660) (0.0000, -1.0000)

Output:

Y contains the following four sequences:

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , -1 , SCALE , AUX1 , 1693 , AUX2 , 0)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , 1 , SCALE, AUX1 , 10000 , AUX2 , 0)

1022 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

(12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 4

This example shows an input array X with a set of four input spike sequences
exactly equal to the output of Example 3. This shows how you can compute
the inverse of the transform in Example 3 by using a negative isign, giving as
output the four sequences listed in the input for Example 3. First, initialize
AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same
calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/12.0
X = (same as output Y in Example 3)

Output:

Y =(same as input X in Example 3)

Example 5

This example shows how to compute a transform of a single long-precision
complex sequence. It uses isign = 1 and scale = 1.0. The arrays are declared as
follows:

COMPLEX*16 X(0:7),Y(0:7)
REAL*8 AUX1(26),AUX2(1)

The input in X is an impulse at zero, and the output in Y is constant for all
frequencies. First, initialize AUX1 using the calling sequence shown below with
INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the
calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , -1 , SCALE , AUX1, 10000, AUX2, 0)

INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL DCFT(INIT, X , 1 , 0 , Y , 1 , 0 , 8 , 1 , 1 , SCALE , AUX1 , 26 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1023

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following sequence:
(1.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)

Output:
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)

1024 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SRCFT and DRCFT (Real-to-Complex Fourier Transform)
Purpose

These subroutines compute a set of m complex discrete n-point Fourier transforms
of real data.

Table 198. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT

Long-precision real Long-precision complex DRCFT

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

C and C++ srcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

drcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m sequences of length n, which are to be
transformed. The sequences are assumed to be stored with stride 1.

Specified as: an array of (at least) length n+(m-1)inc2x, containing numbers of
the data type indicated in Table 198. See “Notes ” on page 1027 for more
details. (It can be declared as X(inc2x,m).)

inc2x
is the stride between the first elements of the sequences in array X. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2x ≥ n.

y See On Return.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1025

inc2y
is the stride between the first elements of the sequences in array Y. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2y ≥ (n/2)+1.

n is the length of each sequence to be transformed.

Specified as: an integer; n ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1028 for its usage.

Specified as: a number of the data type indicated in Table 198 on page 1025,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 14 (32-bit integer arguments) or 27 (64-bit
integer arguments) and naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For values between 14 (32-bit integer arguments) or 27 (64-bit integer
arguments) and the minimum value, you have the option of having the
minimum value returned in this argument. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

1026 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SRCFT and DRCFT dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

aux3
this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing naux3 long-precision real numbers.

naux3
this argument is provided for migration purposes only and is ignored.

Specified as: an integer.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m complex discrete
Fourier transforms, each of length n. The sequences are stored with the stride
1. Due to complex conjugate symmetry, only the first (n/2) + 1 elements of
each sequence are given in the output—that is, yki, k = 0, 1, ..., n/2, i = 1, 2, ...,
m.

Returned as: an array of (at least) length n/2+1+(m-1)inc2y, containing
numbers of the data type indicated in Table 198 on page 1025. This array can
be declared as Y(inc2y,m).

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. In these subroutines, the elements in each sequence in x and y are assumed to
be stored in contiguous storage locations, using a stride of 1; therefore, inc1x
and inc1y values are not a part of the argument list. For optimal performance,
the inc2x and inc2y values should be close to their respective minimum values,
which are given below:

min(inc2x) = n
min(inc2y) = n/2+1

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1027

If you specify the same array for X and Y, then inc2x must equal 2(inc2y). In this
case, output overwrites input. If m = 1, the inc2x and inc2y values are not used
by the subroutine. If you specify different arrays for X and Y, they must have
no common elements; otherwise, results are unpredictable. See “Concepts” on
page 73.

Formulas

Processor-Independent Formulas for SRCFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 25000.
If n > 16384, use naux1 = 20000+0.82n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 35000.
If n > 16384, use naux1 = 30000+0.82n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+0.57n.

Processor-Independent Formulas for DRCFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 4096, use naux1 = 22000.
If n > 4096, use naux1 = 20000+1.64n.

For 64-bit integer arguments:

If n ≤ 4096, use naux1 = 32000.
If n > 4096, use naux1 = 30000+1.64n.

NAUX2 Formulas

If n ≤ 4096, use naux2 = 20000.
If n > 4096, use naux2 = 20000+1.14n.

Function

The set of m complex conjugate even discrete n-point Fourier transforms of real
data in array X, with results going into array Y, is expressed as follows:

for:

k = 0, 1, ..., n-1
i = 1, 2, ..., m

1028 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

and where:

xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/n and isign being negative. See references [1
on page 1313], [4 on page 1313], [26 on page 1314], and [27 on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n > 37748736
2. m ≤ 0
3. inc2x < n
4. inc2y < n/2+1
5. isign = 0
6. scale = 0.0
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in n is not an allowable value. Return code 1

is returned if error 2030 is recoverable.
9. naux1 ≤ 14

10. naux1 is too small—that is, less than the minimum required value. Return
code 1 is returned if error 2015 is recoverable.

11. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1029

This example shows an input array X with a set of m cosine sequences
cos(2πjk/n), j = 0, 1, ..., 15 with the single frequencies k = 0, 1, 2, 3. The Fourier
transform of the cosine sequence with frequency k = 0 or n/2 has 1.0 in the 0
or n/2 position, respectively, and zeros elsewhere. For all other k, the Fourier
transform has 0.5 in the k position and zeros elsewhere. The arrays are
declared as follows:

REAL*4 X(0:65535)
COMPLEX*8 Y(0:32768)
REAL*8 AUX1(41928), AUX2(1), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/16

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000
1.0000 0.9239 0.7071 0.3827
1.0000 0.7071 0.0000 -0.7071
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.9239 0.7071 -0.3827
1.0000 -1.0000 1.0000 -1.0000
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.3827 -0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.7071 0.0000 -0.7071
1.0000 0.9239 0.7071 0.3827

Output:

Y contains the following four sequences:
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2

This example shows another transform computation with different data using
the same initialized array AUX1 as in Example 1. The input is also a set of four
cosine sequences cos(2πjk/n), j = 0, 1, ..., 15 with the single frequencies k = 8, 9,
10, 11, thus including the middle frequency k = 8. The middle frequency has

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT(INIT, X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 0 , AUX3 , 0)

1030 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the value 1.0. For other frequencies, the transform has zeros, except for
frequencies k and n-k. Only the values for j = n-k are given in the output.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0/16

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000

-1.0000 -0.9239 -0.7071 -0.3827
1.0000 0.7071 0.0000 -0.7071

-1.0000 -0.3827 0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000

-1.0000 0.3827 0.7071 -0.9239
1.0000 -0.7071 0.0000 0.7071

-1.0000 0.9239 -0.7071 0.3827
1.0000 -1.0000 1.0000 -1.0000

-1.0000 0.9239 -0.7071 0.3827
1.0000 -0.7071 0.0000 0.7071

-1.0000 0.3827 0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000

-1.0000 -0.3827 0.7071 0.9239
1.0000 0.7071 0.0000 -0.7071

-1.0000 -0.9239 -0.7071 -0.3827

Output:

Y contains the following four sequences:
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 3

This example uses the mixed-radix capability. The arrays are declared as
follows:

REAL*8 X(0:11)
COMPLEX*16 Y(0:6)
REAL*8 AUX1(50),AUX2(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | |

CALL SRCFT(0 , X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 0 , AUX3 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1031

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0
X = (1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 ,

1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000)

Output:

Y contains the following sequence:
(12.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DRCFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE , AUX1 , 50 , AUX2 , 0)

1032 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCRFT and DCRFT (Complex-to-Real Fourier Transform)
Purpose

These subroutines compute a set of m real discrete n-point Fourier transforms of
complex conjugate even data.

Table 199. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT

Long-precision complex Long-precision real DCRFT

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

C and C++ scrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

dcrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m sequences. Due to complex conjugate symmetry,
the input consists of only the first (n/2)+1 elements of each sequence; that is,
xji, j = 0, 1, ..., n/2, i = 1, 2, ..., m. The sequences are assumed to be stored with
stride 1.

Specified as: an array of (at least) length n/2+1+(m-1)inc2x, containing numbers
of the data type indicated in Table 199. This array can be declared as
X(inc2x,m).

inc2x
is the stride between the first elements of the sequences in array X. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2x ≥ (n/2)+1.

y See On Return.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1033

inc2y
is the stride between the first elements of the sequences in array Y. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2y ≥ n.

n is the length of each sequence to be transformed.

Specified as: an integer; n ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

isign
controls the direction of the transform, determining the sign Isign of the
exponent of Wn, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1036 for its usage.

Specified as: a number of the data type indicated in Table 199 on page 1033,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 13 (32-bit integer arguments) or 25 (64-bit
integer arguments) and naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For values between 13 (32-bit integer arguments) or 25 (64-bit integer
arguments) and the minimum value, you have the option of having the
minimum value returned in this argument. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine that is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

1034 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCRFT and DCRFT dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

aux3
this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing naux3 long-precision real numbers.

naux3
this argument is provided for migration purposes only and is ignored.

Specified as: an integer.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms of the complex conjugate even data, each of length n. The
sequences are stored with stride 1.

Returned as: an array of (at least) length n+(m-1)inc2y, containing numbers of
the data type indicated in Table 199 on page 1033. See “Notes ” for more
details. (It can be declared as Y(inc2y,m).)

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. The elements in each sequence in x and y are assumed to be stored in
contiguous storage locations—that is, with a stride of 1. Therefore, inc1x and
inc1y values are not a part of the argument list. For optimal performance, the
inc2x and inc2y values should be close to their respective minimum values,
which are given below:

min(inc2y) = n
min(inc2x) = n/2+1
If you specify the same array for X and Y, then inc2y must equal 2(inc2x). In this
case, output overwrites input. If m = 1, the inc2x and inc2y values are not used

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1035

by the subroutine. If you specify different arrays for X and Y, they must have
no common elements; otherwise, results are unpredictable. See “Concepts” on
page 73.

Formulas

Processor-Independent Formulas for SCRFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 25000.
If n > 16384, use naux1 = 20000+0.82n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 35000.
If n > 16384, use naux1 = 30000+0.82n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+0.57n.

Processor-Independent Formulas for DCRFT for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 4096, use naux1 = 22000.
If n > 4096, use naux1 = 20000+1.64n.

For 64-bit integer arguments:

If n ≤ 4096, use naux1 = 32000.
If n > 4096, use naux1 = 30000+1.64n.

NAUX2 Formulas

If n ≤ 4096, use naux2 = 20000.
If n > 4096, use naux2 = 20000+1.14n.

Function

The set of m real discrete n-point Fourier transforms of complex conjugate even
data in array X, with results going into array Y, is expressed as follows:

for:

k = 0, 1, ..., n-1
i = 1, 2, ..., m

1036 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where:

and where:

xji are elements of the sequences in array X.
yki are elements of the sequences in array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

Because of the symmetry, Y has real data. For scale = 1.0 and isign being positive,
you obtain the discrete Fourier transform, a function of frequency. The inverse
Fourier transform is obtained with scale = 1.0/n and isign being negative. See
references [1 on page 1313], [4 on page 1313], [26 on page 1314], and [27 on page
1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n > 37748736
2. m ≤ 0
3. inc2x < n/2+1
4. inc2y < n
5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in n is not an allowable value. Return code 1

is returned if error 2030 is recoverable.
9. naux1 ≤ 13

10. naux1 is too small—that is, less than the minimum required value. Return
code 1 is returned if error 2015 is recoverable.

11. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1037

This example uses the mixed-radix capability and shows how to compute a
single transform. The arrays are declared as follows:

COMPLEX*8 X(0:6)
REAL*8 AUX1(50), AUX2(1), AUX3(1)
REAL*4 Y(0:11)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note:

1. X shows the n/2+1 = 7 elements used in the computation.
2. Because NAUX2= 0, this subroutine dynamically allocates the AUX2 working

storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

Output:
Y = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2

This example shows another transform computation with different data using
the same initialized array AUX1 as in Example 1.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)

Output:

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(0 , X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

1038 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y = (12.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ,
0.0 , 0.0 , 0.0 , 0.0)

Example 3

This example shows how to compute many transforms simultaneously. The
arrays are declared as follows:

COMPLEX*8 X(0:8,2)
REAL*8 AUX1(50), AUX2(1), AUX3(1)
REAL*4 Y(0:15,2)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following two sequences:
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (1.0, 0.0)

Output:

Y contains the following two sequences:
16.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0
0.0 1.0
0.0 -1.0

Example 4

This example shows the same array being used for input and output. The
arrays are declared as follows:

COMPLEX*16 X(0:8,2)
REAL*8 AUX1(50), AUX2(1)
REAL*8 Y(0:17,2)

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT(INIT, X , 9 , Y , 16 , 16 , 2 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1039

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

This requires INC2Y = 2(INC2X). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0
to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 0.0625

X contains the following two sequences:
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)

Output:

Y contains the following two sequences:
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |

CALL DCRFT(INIT, X , 9 , Y , 18 , 16 , 2 , -1 , SCALE, AUX1 , 50 , AUX2 , 0)

1040 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCOSF and DCOSF (Cosine Transform)
Purpose

These subroutines compute a set of m real even discrete n-point Fourier transforms
of cosine sequences of real even data.

Table 200. Data Types

X, Y, scale Subroutine

Short-precision real SCOSF

Long-precision real DCOSF

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2,
naux2)

C and C++ scosf | dcosf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m sequences of length n/2+1.

Specified as: an array of (at least) length 1+(n/2)inc1x+(m-1)inc2x, containing
numbers of the data type indicated in Table 200.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2x > 0.

y See On Return.

inc1y
is the stride between the elements within each sequence in array Y.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1041

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of the sequences in array Y. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2y > 0.

n is the transform length. However, due to symmetry, only the first n/2+1 values
are given in the input and output.

Specified as: an integer; n ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

scale
is the scaling constant scale. See “Function” on page 1044 for its usage.

Specified as: a number of the data type indicated in Table 200 on page 1041,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For all other values specified less than the minimum value, you have
the option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCOSF and DCOSF dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all

1042 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, where each Fourier transform is real and of length n. However,
due to symmetry, only the first n/2+1 values are given in the output—that is,
yki, k = 0, 1, ..., n/2 for each i = 1, 2, ..., m.

Returned as: an array of (at least) length 1+(n/2)inc1y+(m-1)inc2y, containing
numbers of the data type indicated in Table 200 on page 1041.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. In addition, inc2x and inc2y
should be close to n/2+1.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _COSF,
you should use “STRIDE (Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines)” on page 1263. Example 2 in the
STRIDE subroutine description explains how it is used for _COSF.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If m =
1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 73.

Formulas

Processor-Independent Formulas for SCOSF for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1043

If n ≤ 16384, use naux1 = 40000.
If n > 16384, use naux1 = 20000+.30n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 50000.
If n > 16384, use naux1 = 30000+.30n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 25000.
If n > 16384, use naux2 = 20000+.32n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/4+257)(min(128, m))

Processor-Independent Formulas for DCOSF for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 35000.
If n > 16384, use naux1 = 20000+.60n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 45000.
If n > 16384, use naux1 = 30000+.60n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+.64n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/2+257)(min(128, m))

Function

The set of m real even discrete n-point Fourier transforms of the cosine sequences
of real data in array X, with results going into array Y, is expressed as follows:

for:

k = 0, 1, ..., n/2
i = 1, 2, ..., m

where:

1044 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

xji are elements of the sequences in array X, where each sequence contains the
n/2+1 real nonredundant data xji, j = 0, 1, ..., n/2.

yki are elements of the sequences in array Y, where each sequence contains the
n/2+1 real nonredundant data yki, k = 0, 1, ..., n/2.

scale is a scalar value.

You can obtain the inverse cosine transform by specifying scale = 4.0/n. Thus, if an
X input is used with scale = 1.0, and its output is used as input on a subsequent
call with scale = 4.0/n, the original X is obtained. See references [1 on page 1313], [4
on page 1313], [26 on page 1314], and [27 on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n > 37748736
2. inc1x or inc1y ≤ 0
3. inc2x or inc2y ≤ 0
4. m ≤ 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.
8. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows an input array X with a set of m cosine sequences of
length n/2+1, cos(jk(2π/n)), j = 0, 1, ..., n/2, with the single frequencies k = 0, 1,
2, 3. The Fourier transform of the cosine sequence with frequency k = 0 or n/2
has n/2 in the 0-th or n/2-th position, respectively, and zeros elsewhere. For all
other k, the Fourier transform has n/4 in position k and zeros elsewhere. The
arrays are declared as follows:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1045

REAL*4 X(0:71),Y(0:71)
REAL*8 AUX1(414),AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000
1.0000 0.9808 0.9239 0.8315
1.0000 0.9239 0.7071 0.3827
1.0000 0.8315 0.3827 -0.1951
1.0000 0.7071 0.0000 -0.7071
1.0000 0.5556 -0.3827 -0.9808
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.1951 -0.9239 -0.5556
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.1951 -0.9239 0.5556
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.5556 -0.3827 0.9808
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.8315 0.3827 0.1951
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.9808 0.9239 -0.8315
1.0000 -1.0000 1.0000 -1.0000
. . . .

Output:

Y contains the following four sequences:
16.0000 0.0000 0.0000 0.0000
0.0000 8.0000 0.0000 0.0000
0.0000 0.0000 8.0000 0.0000
0.0000 0.0000 0.0000 8.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
. . . .

Example 2

This example shows an input array X with a set of four input spike sequences
equal to the output of Example 1. This shows how you can compute the
inverse of the transform in Example 1 by using scale = 4.0/n, giving as output

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

1046 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the four sequences listed in the input for Example 1. First, initialize AUX1 using
the calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 4.0/32
X = (same sequences as in output Y in Example 1)

Output:

Y =(same sequences as in output X in Example 1)

Example 3

This example shows another computation using the same arguments initialized
in Example 1 and using different input sequence data. The data for this
example has frequencies k = 14, 15, 16, 17. Because only the sequence data has
changed, initialization does not have to be done again.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0

X contains the following four sequences:
1.0000 1.0000 1.0000 1.0000

-0.9239 -0.9808 -1.0000 -0.9808
0.7071 0.9239 1.0000 0.9239

-0.3827 -0.8315 -1.0000 -0.8315
0.0000 0.7071 1.0000 0.7071
0.3827 -0.5556 -1.0000 -0.5556

-0.7071 0.3827 1.0000 0.3827
0.9239 -0.1951 -1.0000 -0.1951

-1.0000 0.0000 1.0000 0.0000
0.9239 0.1951 -1.0000 0.1951

-0.7071 -0.3827 1.0000 -0.3827
0.3827 0.5556 -1.0000 0.5556
0.0000 -0.7071 1.0000 -0.7071

-0.3827 0.8315 -1.0000 0.8315
0.7071 -0.9239 1.0000 -0.9239

-0.9239 0.9808 -1.0000 0.9808
1.0000 -1.0000 1.0000 -1.0000
. . . .

Output:

Y contains the following four sequences:

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SCOSF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1047

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
8.0000 0.0000 0.0000 0.0000
0.0000 8.0000 0.0000 8.0000
0.0000 0.0000 16.0000 0.0000
. . . .

1048 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SSINF and DSINF (Sine Transform)
Purpose

These subroutines compute a set of m real even discrete n-point Fourier transforms
of sine sequences of real even data.

Table 201. Data Types

X, Y, scale Subroutine

Short-precision real SSINF

Long-precision real DSINF

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SSINF | DSINF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2,
naux2)

C and C++ ssinf | dsinf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m sequences of length n/2.

Specified as: an array of (at least) length 1+(n / 2-1)inc1x+(m-1)inc2x,
containing numbers of the data type indicated in Table 201. The first element in
X must have a value of 0.0 (otherwise, incorrect results may occur).

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2x > 0.

y See On Return.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1049

inc1y
is the stride between the elements within each sequence in array Y.

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of the sequences in array Y. (If m = 1,
this argument is ignored.) Specified as: an integer; inc2y > 0.

n is the transform length. However, due to symmetry, only the first n/2 values
are given in the input and output.

Specified as: an integer; n ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

m is the number of sequences to be transformed.

Specified as: an integer; m > 0.

scale
is the scaling constant scale. See “Function” on page 1052 for its usage.

Specified as: a number of the data type indicated in Table 201 on page 1049,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For all other values specified less than the minimum value, you have
the option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SSINF and DSINF dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

1050 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of the results of the m discrete Fourier
transforms, where each Fourier transform is real and of length n. However,
due to symmetry, only the first n/2 values are given in the output—that is, yki,
k = 0, 1, ..., n/2-1 for each i = 1, 2, ..., m.

Returned as: an array of (at least) length 1+(n / 2-1)inc1y+(m-1)inc2y,
containing numbers of the data type indicated in Table 201 on page 1049.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. For optimal performance, the preferred value for inc1x and inc1y is 1. This
implies that the sequences are stored with stride 1. In addition, inc2x and inc2y
should be close to n/2.
It is possible to specify sequences in the transposed form—that is, as rows of a
two-dimensional array. In this case, inc2x (or inc2y) = 1 and inc1x (or inc1y) is
equal to the leading dimension of the array. One can specify either input,
output, or both in the transposed form by specifying appropriate values for the
stride parameters. For selecting optimal values of inc1x and inc1y for _SINF,
you should use “STRIDE (Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines)” on page 1263. Example 3 in the
STRIDE subroutine description explains how it is used for _SINF.
If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input. If m =
1, the inc2x and inc2y values are not used by the subroutine. If you specify
different arrays for X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 73.

Formulas

Processor-Independent Formulas for SSINF for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1051

If n ≤ 16384, use naux1 = 60000.
If n > 16384, use naux1 = 20000+.30n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 70000.
If n > 16384, use naux1 = 30000+.30n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 25000.
If n > 16384, use naux2 = 20000+.32n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/4+257)(min(128, m)).

Processor-Independent Formulas for DSINF for NAUX1 and NAUX2:

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 50000.
If n > 16384, use naux1 = 20000+.60n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 60000.
If n > 16384, use naux1 = 30000+.60n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 20000.
If n > 16384, use naux2 = 20000+.64n.

For the transposed case, where inc2x = 1 or inc2y = 1, and where n ≥ 252, add
the following to the above storage requirements:

(n/2+257)(min(128, m))

Function

The set of m real even discrete n-point Fourier transforms of the sine sequences of
real data in array X, with results going into array Y, is expressed as follows:

for:

k = 0, 1, ..., n/2-1
i = 1, 2, ..., m

where:

1052 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

x0i = 0.0

xji are elements of the sequences in array X, where each sequence contains the n/2
real nonredundant data xji, j = 0, 1, ..., n/2-1.

yki are elements of the sequences in array Y, where each sequence contains the n/2
real nonredundant data yki, k = 0, 1, ..., n/2-1.

scale is a scalar value.

You can obtain the inverse sine transform by specifying scale = 4.0/n. Thus, if an X
input is used with scale = 1.0, and its output is used as input on a subsequent call
with scale = 4.0/n, the original X is obtained. See references [1 on page 1313], [4 on
page 1313], [26 on page 1314], and [27 on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transforms.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n > 37748736
2. inc1x or inc1y ≤ 0
3. inc2x or inc2y ≤ 0
4. m ≤ 0
5. scale = 0.0
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in n is not an allowable value. Return code 1 is

returned if error 2030 is recoverable.
8. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows an input array X with a set of m sine sequences of length
n/2, sin(jk(2π/n)), j = 0, 1, ..., n/2-1, with the single frequencies k = 1, 2, 3. The
Fourier transform of the sine sequence has n/4 in position k and zeros
elsewhere. The arrays are declared as follows:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1053

REAL*4 X(0:53),Y(0:53)
REAL*8 AUX1(414),AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following three sequences:
0.0000 0.0000 0.0000
0.1951 0.3827 0.5556
0.3827 0.7071 0.9239
0.5556 0.9239 0.9808
0.7071 1.0000 0.7071
0.8315 0.9239 0.1951
0.9239 0.7071 -0.3827
0.9808 0.3827 -0.8315
1.0000 0.0000 -1.0000
0.9808 -0.3827 -0.8315
0.9239 -0.7071 -0.3827
0.8315 -0.9239 0.1951
0.7071 -1.0000 0.7071
0.5556 -0.9239 0.9808
0.3827 -0.7071 0.9239
0.1951 -0.3827 0.5556
. . .
. . .

Output:

Y contains the following three sequences:
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 0.0000
0.0000 0.0000 8.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
. . .
. . .

Example 2

This example shows an input array X with a set of three input spike sequences
equal to the output of Example 1. This shows how you can compute the
inverse of the transform in Example 1 by using scale = 4.0/n, giving as output

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

1054 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

the three sequences listed in the input for Example 1. First, initialize AUX1 using
the calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 4.0/32
X = (same sequences as in output Y in Example 1)

Output:

Y =(same sequences as in output X in Example 1)

Example 3

This example shows another computation using the same arguments initialized
in Example 1 and using different input sequence data. The data for this
example has frequencies k = 14, 15, 17. Because only the sequence data has
changed, initialization does not have to be done again.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0

X contains the following three sequences:
0.0000 0.0000 0.0000
0.3827 0.1951 -0.1951

-0.7071 -0.3827 0.3827
0.9239 0.5556 -0.5556

-1.0000 -0.7071 0.7071
0.9239 0.8315 -0.8315

-0.7071 -0.9239 0.9239
0.3827 0.9808 -0.9808
0.8573 -1.0000 1.0000

-0.3827 0.9808 -0.9808
0.7071 -0.9239 0.9239

-0.9239 0.8315 -0.8315
1.0000 -0.7071 0.7071

-0.9239 0.5556 -0.5556
0.7071 -0.3827 0.3827

-0.3827 0.1951 -0.1951
. . .
. . .

Output:

Y contains the following three sequences:

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SSINF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1055

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 -8.0000
0.0000 0.0000 0.0000
. . .
. . .

1056 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)
Purpose

These subroutines compute the two-dimensional discrete Fourier transform of
complex data.

Table 202. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT2

Long-precision complex Long-precision real DCFT2

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCFT2 | DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1,
aux2, naux2)

C and C++ scft2 | dcft2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed. The
only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, containing the two-dimensional data to be transformed, where
each element xj1,j2, using zero-based indexing, is stored in X(j1(inc1x)+j2(inc2x))
for j1 = 0, 1, ..., n1-1 and j2 = 0, 1, ..., n2-1.

Specified as: an array of (at least) length 1+(n1-1)inc1x+(n2-1)inc2x, containing
numbers of the data type indicated in Table 202.

If inc1x = 1, the input array is stored in normal form, and inc2x ≥ n1.

If inc2x = 1, the input array is stored in transposed form, and inc1x ≥ n2.

See “Notes ” on page 1060 for more details.

inc1x
is the stride between the elements in array X for the first dimension.

If the array is stored in the normal form, inc1x = 1.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1057

If the array is stored in the transposed form, inc1x is the leading dimension of
the array and inc1x ≥ n2.

Specified as: an integer; inc1x > 0. If inc2x = 1, then inc1x ≥ n2.

inc2x
is the stride between the elements in array X for the second dimension.

If the array is stored in the transposed form, inc2x = 1.

If the array is stored in the normal form, inc2x is the leading dimension of the
array and inc2x ≥ n1.

Specified as: an integer; inc2x > 0. If inc1x = 1, then inc2x ≥ n1.

y See On Return.

inc1y
is the stride between the elements in array Y for the first dimension.

If the array is stored in the normal form, inc1y = 1.

If the array is stored in the transposed form, inc1y is the leading dimension of
the array and inc1y ≥ n2.

Specified as: an integer; inc1y > 0. If inc2y = 1, then inc1y ≥ n2.

inc2y
is the stride between the elements in array Y for the second dimension.

If the array is stored in the transposed form, inc2y = 1.

If the array is stored in the normal form, inc2y is the leading dimension of the
array and inc2y ≥ n1.

Specified as: an integer; inc2y > 0. If inc1y = 1, then inc2y ≥ n1.

n1 is the length of the first dimension of the two-dimensional data in the array to
be transformed.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the length of the second dimension of the two-dimensional data in the array
to be transformed.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1061 for its usage.

1058 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a number of the data type indicated in Table 202 on page 1057,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For all other values specified less than the minimum value, you have
the option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCFT2 and DCFT2 dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, containing the elements resulting from the
two-dimensional discrete Fourier transform of the data in X. Each element yk1,k2,
using zero-based indexing, is stored in Y(k1(inc1y)+k2(inc2y)) for k1 = 0, 1, ...,
n1-1 and k2 = 0, 1, ..., n2-1.

Returned as: an array of (at least) length 1+(n1-1)inc1y+(n2-1)inc2y, containing
numbers of the data type indicated in Table 202 on page 1057.

If inc1y = 1, the output array is stored in normal form, and inc2y ≥ n1.

If inc2y = 1, the output array is stored in transposed form, and inc1y ≥ n2.

See “Notes ” on page 1060 for more details.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1059

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between program calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc1x must equal inc1y, and
inc2x must equal inc2y. In this case, output overwrites input. If you specify
different arrays X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 73.

4. By appropriately specifying the inc arguments, this subroutine allows you to
specify that it should use one of two forms of its arrays, the normal
untransposed form or the transposed form. As a result, you do not have to
move any data. Instead, the subroutine performs the adjustments for you. Also,
either the input array or the output array can be in transposed form. The FFT
computation is symmetrical with respect to n1 and n2. They can be
interchanged without the loss of generality. If they are interchanged, an array
that is stored in the normal form appears as an array stored in the transposed
form and vise versa. If, for performance reasons, the forms of the input and
output arrays are different, then the input array should be specified in the
normal form, and the output array should be specified in the transposed form.
This can always be done by interchanging n1 and n2.

5. Although the inc arguments for each array can be arbitrary, in most cases, one
of the inc arguments is 1 for each array. If inc1 = 1, the array is stored in
normal form; that is, the first dimension of the array is along the columns. In
this case, inc2 is the leading dimension of the array and must be at least n1.
Conversely, if inc2 = 1, the array is stored in the transposed form; that is, the
first dimension of the array is along the rows. In this case, inc1 is the leading
dimension of the array and must be at least n2. The rows of the arrays are
accessed with a stride that equals the leading dimension of the array. To
minimize cache interference in accessing a row, an optimal value should be
used for the leading dimension of the array. You should use “STRIDE
(Determine the Stride Value for Optimal Performance in Specified Fourier
Transform Subroutines)” on page 1263 to determine this optimal value.
Example 4 in the STRIDE subroutine description explains how it is used to find
either inc1 or inc2.

Formulas

Processor-Independent Formulas for SCFT2 for NAUX1 and NAUX2:

The required values of naux1 and naux2 depend on n1 and n2.

AUX1 Formulas
For 32-bit integer arguments:

If max(n1, n2) ≤ 8192, use naux1 = 40000.

1060 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If max(n1, n2) > 8192, use naux1 = 40000+1.14(n1+n2).

For 64-bit integer arguments:

If max(n1, n2) ≤ 8192, use naux1 = 60000.

If max(n1, n2) > 8192, use naux1 = 60000+1.14(n1+n2).

NAUX2 Formulas
If max(n1, n2) < 252, use naux2 = 20000.

If max(n1, n2) ≥ 252, use naux2 = 20000+(r+256)(s+1.14), where r = max(n1, n2)
and s = min(64, n1, n2).

Processor-Independent Formulas for DCFT2 for NAUX1 and NAUX2:

The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

For 32-bit integer arguments:
If max(n1, n2) ≤ 2048, use naux1 = 40000.

If max(n1, n2) > 2048, use naux1 = 40000+2.28(n1+n2).

For 64-bit integer arguments:
If max(n1, n2) ≤ 2048, use naux1 = 60000.

If max(n1, n2) > 2048, use naux1 = 60000+2.28(n1+n2).

NAUX2 Formulas
If max(n1, n2) < 252, use naux2 = 20000.

If max(n1, n2) ≥ 252, use naux2 = 20000+(2r+256)(s+2.28), where r = max(n1, n2)
and s = min(64, n1, n2).

Function

The two-dimensional discrete Fourier transform of complex data in array X, with
results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1

where:

and where:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1061

xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform, a
function of frequency. The inverse Fourier transform is obtained with scale =
1.0/((n1)(n2)) and isign being negative. See references [1 on page 1313], [4 on page
1313], and [27 on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transform.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. inc1x|inc2x|inc1y|inc2y ≤ 0
4. scale = 0.0
5. isign = 0
6. The subroutine has not been initialized with the present arguments.
7. The length of one of the transforms in n1 or n2 is not an allowable value.

Return code 1 is returned if error 2030 is recoverable.
8. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows how to compute a two-dimensional transform where both
input and output are stored in normal form (inc1x = inc1y = 1). Also, inc2x =
inc2y so the same array can be used for both input and output. The arrays are
declared as follows:

COMPLEX*8 X(6,8),Y(6,8)
REAL*8 AUX1(20000), AUX2(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage: EQUIVALENCE (X,Y). First, initialize AUX1 using the
calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

1062 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0
X is an array with 6 rows and 8 columns with (1.0, 0.0) in all locations.

Output:

Y is an array with 6 rows and 8 columns having (48.0, 0.0) in location Y(1,1)
and (0.0, 0.0) in all others.

Example 2

This example shows how to compute a two-dimensional inverse Fourier
transform. For this example, X is stored in normal untransposed form (inc1x =
1), and Y is stored in transposed form (inc2y = 1). The arrays are declared as
follows:

COMPLEX*16 X(6,8),Y(8,6)
REAL*8 AUX1(20000), AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/48.0
X = (same as output Y in Example 1)

Output:

Y is an array with 8 rows and 6 columns with (1.0, 0.0) in all locations.

INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL SCFT2(INIT, X , 1 , 6 , Y , 1 , 6 , 6 , 8 , 1 , SCALE, AUX1, 20000 , AUX2, 0)

INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |

CALL DCFT2(INIT, X , 1 , 6 , Y , 8 , 1 , 6 , 8 , -1 , SCALE, AUX1 , 20000 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1063

SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two
Dimensions)

Purpose

These subroutines compute the two-dimensional discrete Fourier transform of real
data in a two-dimensional array.

Table 203. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT2

Long-precision real Long-precision complex DRCFT2

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran

CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3,
naux3)

CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

C and C++ srcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

drcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed. The
only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, containing n1 rows and n2 columns of data to be transformed.
The data in each column is stored with stride 1. Specified as: an inc2x by (at
least) n2 array, containing numbers of the data type indicated in Table 203. See
“Notes ” on page 1066 for more details.

inc2x
is the leading dimension (stride between columns) of array X. Specified as: an
integer; inc2x ≥ n1.

y See On Return.

1064 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

inc2y
is the leading dimension (stride between columns) of array Y. Specified as: an
integer; inc2y ≥ ((n1)/2)+1.

n1 is the number of rows of data—that is, the length of the columns in array X
involved in the computation. The length of the columns in array Y are
(n1)/2+1.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the number of columns of data—that is, the length of the rows in arrays X
and Y involved in the computation.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1068 for its usage.

Specified as: a number of the data type indicated in Table 203 on page 1064,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For all other values specified less than the minimum value, you have
the option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1065

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SRCFT2 and DRCFT2
dynamically allocate the work area used by the subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

aux3
this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage containing naux3 long-precision real numbers.

naux3
this argument is provided for migration purposes only and is ignored.

Specified as: an integer.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, containing the results of the complex discrete Fourier
transform of X. The output consists of n2 columns of data. The data in each
column is stored with stride 1. Due to complex conjugate symmetry, the output
consists of only the first ((n1)/2)+1 rows of the array—that is, yk1,k2, where k1 =
0, 1, ..., (n1)/2 and k2 = 0, 1, ..., n2-1.

Returned as: an inc2y by (at least) n2 array, containing numbers of the data
type indicated in Table 203 on page 1064.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc2x must equal (2)(inc2y). In
this case, output overwrites input. If you specify different arrays X and Y, they
must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 73.

1066 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

4. For selecting optimal strides (or leading dimensions inc2x and inc2y) for your
input and output arrays, you should use “STRIDE (Determine the Stride Value
for Optimal Performance in Specified Fourier Transform Subroutines)” on page
1263. Example 5 in the STRIDE subroutine description explains how it is used
for these subroutines.

Formulas

Processor-Independent Formulas for SRCFT2 for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

For 32-bit integer arguments:

If max(n1/2, n2) ≤ 8192, use naux1 = 45000.
If max(n1/2, n2) > 8192, use naux1 = 40000+0.82n1+1.14n2.

For 64-bit integer arguments:

If max(n1/2, n2) ≤ 8192, use naux1 = 65000.
If max(n1/2, n2) > 8192, use naux1 = 60000+0.82n1+1.14n2.

NAUX2 Formulas

If n1 ≤ 16384 and n2 < 252, use naux2 = 20000.
If n1 > 16384 and n2 < 252, use naux2 = 20000+0.57n1.
If n2 ≥ 252, add the following to the above storage requirements:

(n2+256)(1.14+s)
where s = min(64, 1+n1/2).

Processor-Independent Formulas for DRCFT2 for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 2048, use naux1 = 42000.
If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
where n = max(n1/2, n2).

For 64-bit integer arguments:

If n ≤ 2048, use naux1 = 62000.
If n > 2048, use naux1 = 60000+1.64n1+2.28n2,
where n = max(n1/2, n2).

NAUX2 Formulas

If n1 ≤ 4096 and n2 < 252, use naux2 = 20000.
If n1 > 4096 and n2 < 252, use naux2 = 20000+1.14n1.
If n2 ≥ 252, add the following to the above storage requirements:

((2)n2+256) (2.28+s)
where s = min(64, 1+n1/2).

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1067

Function

The two-dimensional complex conjugate even discrete Fourier transform of real
data in array X, with results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1

where:

and where:

xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/((n1)(n2)) and isign being negative. See
references [1 on page 1313], [4 on page 1313], [26 on page 1314], and [27 on page
1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transform.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. inc2x < n1

4. inc2y < (n1)/2+1

1068 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in n1 or n2 is not an allowable value.

Return code 1 is returned if error 2030 is recoverable.
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows how to compute a two-dimensional transform. The arrays
are declared as follows:

COMPLEX*8 Y(0:6,0:7)
REAL*4 X(0:11,0:7)
REAL*8 AUX1(1000), AUX2(1), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X is an array with 12 rows and 8 columns having 1.0 in location X(0,0) and 0.0
in all others.

Output:

Y is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

Example 2

This example shows another transform computation with different data using
the same initialized array AUX1 in Example 1.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0
X is an array with 12 rows and 8 columns with 1.0 in all locations.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT2(INIT, X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SRCFT2(0 , X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1, 1000 , AUX2, 0 , AUX3 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1069

Output:

Y is an array with 7 rows and 8 columns having (96.0, 0.0) in location Y(0,0)
and (0.0, 0.0) in all others.

Example 3

This example shows the same array being used for input and output, where
isign = -1 and scale = 1/((N1)(N2)). The arrays are declared as follows:

COMPLEX*16 Y(0:8,0:7)
REAL*8 X(0:19,0:7)
REAL*8 AUX1(1000), AUX2(1), AUX3(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage.

EQUIVALENCE (X,Y)

This requires inc2x ≥ 2(inc2y). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0
to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/128.0

┌ ┐
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |

X = | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| |
| |
| |
| |
└ ┘

Output:

Y is an array with 9 rows and 8 columns having (1.0, 1.0) in location Y(4,2)
and (0.0, 0.0) in all others.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL DRCFT2(INIT, X , 20 , Y , 9 , 16 , 8 , -1 , SCALE, AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

1070 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two
Dimensions)

Purpose

These subroutines compute the two-dimensional discrete Fourier transform of
complex conjugate even data in a two-dimensional array.

Table 204. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT2

Long-precision complex Long-precision real DCRFT2

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran

CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3,
naux3)

CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

C and C++ scrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

dcrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed. The
only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, containing n2 columns of data to be transformed. Due to
complex conjugate symmetry, the input consists of only the first ((n1)/2)+1
rows of the array—that is, xj1,j2, j1 = 0, 1, ..., (n1)/2, j2 = 0, 1, ..., n2-1. The data
in each column is stored with stride 1.

Specified as: an inc2x by (at least) n2 array, containing numbers of the data
type indicated in Table 204.

inc2x
is the leading dimension (stride between columns) of array X. Specified as: an
integer; inc2x ≥ ((n1)/2)+1.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1071

y See On Return.

inc2y
is the leading dimension (stride between the columns) of array Y.

Specified as: an integer; inc2y ≥ n1+2.

n1 is the number of rows of data—that is, the length of the columns in array Y
involved in the computation. The length of the columns in array X are
(n1)/2+1.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the number of columns of data—that is, the length of the rows in arrays X
and Y involved in the computation.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1 and Wn2, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1075 for its usage.

Specified as: a number of the data type indicated in Table 204 on page 1071,
where scale > 0.0 or scale < 0.0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux.

Specified as: an integer; naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For all other values specified less than the minimum value, you have
the option of having the minimum value returned in this argument. For
details, see “Using Auxiliary Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

1072 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCRFT2 and DCRFT2
dynamically allocate the work area used by the subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

aux3
this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing naux3 long-precision real numbers.

naux3
this argument is provided for migration purposes only and is ignored.

Specified as: an integer.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is the array Y, containing n1 rows and n2 columns of results of
the real discrete Fourier transform of X. The data in each column of Y is stored
with stride 1.

Returned as: an inc2y by (at least) n2 array, containing numbers of the data
type indicated in Table 204 on page 1071. See “Notes ” for more details.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between program calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then (2)(inc2x) must equal inc2y. In
this case, output overwrites input. If you specify different arrays X and Y, they
must have no common elements; otherwise, results are unpredictable. See
“Concepts” on page 73.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1073

4. For selecting optimal strides (or leading dimensions inc2x and inc2y) for your
input and output arrays, you should use “STRIDE (Determine the Stride Value
for Optimal Performance in Specified Fourier Transform Subroutines)” on page
1263. Example 6 in the STRIDE subroutine description explains how it is used
for these subroutines.

Formulas

Processor-Independent Formulas for SCRFT2 for NAUX1 and NAUX2

The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas
For 32-bit integer arguments:

If max(n1/2, n2) ≤ 8192, use naux1 = 45000. If max(n1/2, n2) > 8192, use naux1
= 40000+0.82n1+1.14n2.

For 64-bit integer arguments:

If max(n1/2, n2) ≤ 8192, use naux1 = 65000. If max(n1/2, n2) > 8192, use naux1
= 60000+0.82n1+1.14n2.

NAUX2 Formulas
If n1 ≤ 16384 and n2 < 252, use naux2 = 20000.

If n1 > 16384 and n2 < 252, use naux2 = 20000+0.57n1.

If n2 ≥ 252, add the following to the above storage requirements:

(n2+256)(1.14+s)

where s = min(64, 1+n1/2).

Processor-Independent Formulas for DCRFT2 for NAUX1 and NAUX2:

The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 2048, use naux1 = 42000. If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
where n = max(n1/2, n2).

For 64-bit integer arguments:

If n ≤ 2048, use naux1 = 62000.

If n > 2048, use naux1 = 60000+1.64n1+2.28n2,

where n = max(n1/2, n2).

NAUX2 Formulas

If n1 ≤ 4096 and n2 < 252, use naux2 = 20000. If n1 > 4096 and n2 < 252, use
naux2 = 20000+1.14n1.

If n2 ≥ 252, add the following to the above storage requirements:

((2)n2+256) (2.28+s)

where s = min(64, 1+n1/2).

1074 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

The two-dimensional discrete Fourier transform of complex conjugate even data in
array X, with results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1

where:

and where:

xj1,j2 are elements of array X.
yk1,k2 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

Because of the complex conjugate symmetry, the output in array Y is real. For scale
= 1.0 and isign being positive, you obtain the discrete Fourier transform, a function
of frequency. The inverse Fourier transform is obtained with scale = 1.0/((n1)(n2))
and isign being negative. See references [1 on page 1313], [4 on page 1313], and [27
on page 1314].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the Fourier transform.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. inc2x < (n1)/2+1
4. inc2y < n1+2

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1075

5. scale = 0.0
6. isign = 0
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in n1 or n2 is not an allowable value.

Return code 1 is returned if error 2030 is recoverable.
9. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows how to compute a two-dimensional transform. The arrays
are declared as follows:

REAL*4 Y(0:13,0:7)
COMPLEX*8 X(0:6,0:7)
REAL*8 AUX1(1000), AUX2(1), AUX3(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/96.0
X is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

Output:
┌ ┐
| 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |

Y = | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| |
| |
└ ┘

Example 2

This example shows another transform computation with different data using
the same initialized array AUX1 in Example 1.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT2(INIT, X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

1076 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

SCALE = 1.0/96.0

X is an array with 7 rows and 8 columns having (96.0, 0.0) in location X(0,0)
and (0.0, 0.0) in all others.

Output:
┌ ┐
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |

Y = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
| |
| |
└ ┘

Example 3

This example shows the same array being used for input and output. The
arrays are declared as follows:

REAL*8 Y(0:17,0:7)
COMPLEX*16 X(0:8,0:7)
REAL*8 AUX1(1000), AUX2(1), AUX3(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage.

EQUIVALENCE (X,Y)

This requires inc2y = 2(inc2x). First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0
to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X is an array with 9 rows and 8 columns having (1.0, 1.0) in location X(4,2)
and (0.0, 0.0) in all others.

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL SCRFT2(0 , X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |

CALL DCRFT2(INIT, X , 9 , Y , 18 , 16 , 8 , 1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1077

Output:
┌ ┐
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |

Y = | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
| 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
| -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
| -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
| |
| |
└ ┘

1078 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)
Purpose

These subroutines compute the three-dimensional discrete Fourier transform of
complex data.

Table 205. Data Types

X, Y scale Subroutine

Short-precision complex Short-precision real SCFT3

Long-precision complex Long-precision real DCFT3

Note:

1. For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part of
the total computation, so it is performed on each invocation.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ scft3 | dcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry

x is the array X, containing the three-dimensional data to be transformed, where
each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1-1, j2 = 0, 1, ..., n2-1, and j3 = 0, 1, ...,
n3-1. The strides for the elements in the first, second, and third dimensions are
assumed to be 1, inc2x(≥ n1), and inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 205. If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
(LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on how to set up this
array, see “Setting Up Your Data” on page 987. For more details, see “Notes ”
on page 1081.

inc2x
is the stride between the elements in array X for the second dimension.

Specified as: an integer; inc2x ≥ n1.

inc3x
is the stride between the elements in array X for the third dimension.

Specified as: an integer; inc3x ≥ (n2)(inc2x).

y See On Return.

inc2y
is the stride between the elements in array Y for the second dimension.

Specified as: an integer; inc2y ≥ n1.

inc3y
is the stride between the elements in array Y for the third dimension.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1079

Specified as: an integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n3 is the length of the third dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n3 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1083 for its usage.

Specified as: a number of the data type indicated in Table 205 on page 1079,
where scale > 0.0 or scale < 0.0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real numbers.
On output, the contents are overwritten.

naux
is the number of doublewords in the working storage specified in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SCFT3 and DCFT3 dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all

1080 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ..., n1-1,
k2 = 0, 1, ..., n2-1, and k3 = 0, 1, ..., n3-1. The strides for the elements in the
first, second, and third dimensions are assumed to be 1, inc2y(≥ n1), and inc3y(
≥ (n2)(inc2y)), respectively.

Returned as: an array, containing numbers of the data type indicated in
Table 205 on page 1079. If the array is dimensioned Y(LDA1,LDA2,LDA3), then
LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on how to set
up this array, see “Setting Up Your Data” on page 987. For more details, see
“Notes .”

Notes
1. If you specify the same array for X and Y, then inc2x must be greater than or

equal to inc2y, and inc3x must be greater than or equal to inc3y. In this case,
output overwrites input. When using the ESSL SMP Libraries in a
multithreaded environment, if inc2x > inc2y or inc3x > inc3y, these subroutines
run on a single thread and issue an attention message.
If you specify different arrays X and Y, they must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 73.

2. You should use “STRIDE (Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines)” on page 1263 to determine the
optimal values for the strides inc2y and inc3y for your output array. The strides
for your input array do not affect performance. Example 7 in the STRIDE
subroutine description explains how it is used for these subroutines. For
additional information on how to set up your data, see “Setting Up Your Data”
on page 987.

Formulas

Processor-Independent Formulas for SCFT3 for NAUX:

Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 8192, use naux = 60000.
If n1 > 8192, use naux = 60000+2.28n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 8192, use naux = 60000+λ.
If n1 > 8192, use naux = 60000+2.28n1+λ,
where λ = (n2+256)(s+2.28)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 8192, use naux = 60000+ψ.
If n1 > 8192, use naux = 60000+2.28n1+ψ,

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1081

where ψ = (n3+256)(s+2.28)
and s = min(64, (n1)(n2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

For 64-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 8192, use naux = 90000.
If n1 > 8192, use naux = 90000+2.28n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 8192, use naux = 90000+λ.
If n1 > 8192, use naux = 90000+2.28n1+λ,

where λ = (n2+256)(s+2.28)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 8192, use naux = 90000+ψ.
If n1 > 8192, use naux = 90000+2.28n1+ψ,

where ψ = (n3+256)(s+2.28)
and s = min(64, (n1)(n2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Processor-Independent Formulas for DCFT3 for NAUX:

Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 2048, use naux = 60000.
If n1 > 2048, use naux = 60000+4.56n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 2048, use naux = 60000+λ.
If n1 > 2048, use naux = 60000+4.56n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 2048, use naux = 60000+ψ.
If n1 > 2048, use naux = 60000+4.56n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, (n1)(n2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

For 64-bit integer arguments:

1082 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

1. If max(n2, n3) < 252 and:

If n1 ≤ 2048, use naux = 90000.
If n1 > 2048, use naux = 90000+4.56n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 2048, use naux = 90000+λ.
If n1 > 2048, use naux = 90000+4.56n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 2048, use naux = 90000+ψ.
If n1 > 2048, use naux = 90000+4.56n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, (n1)(n2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for cases 2
and 3 above.

Function

The three-dimensional discrete Fourier transform of complex data in array X, with
results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1
k3 = 0, 1, ..., n3-1

where:

and where:

xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

For scale = 1.0 and isign being positive, you obtain the discrete Fourier transform, a
function of frequency. The inverse Fourier transform is obtained with scale =

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1083

1.0/((n1)(n2)(n3)) and isign being negative. See references [1 on page 1313], [4 on
page 1313], [5 on page 1313], [26 on page 1314], and [27 on page 1314].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1

5. inc3x < (n2)(inc2x)
6. inc2y < n1

7. inc3y < (n2)(inc2y)
8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable
value. Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example

This example shows how to compute a three-dimensional transform. In this
example, INC2X ≥ INC2Y and INC3X ≥ INC3Y, so that the same array can be used
for both input and output. The STRIDE subroutine is called to select good
values for the INC2Y and INC3Y strides. (As explained below, STRIDE is not
called for INC2X and INC3X.) Using the transform lengths (N1 = 32, N2 = 64, and
N3 = 40) along with the output data type (short-precision complex: ’C’),
STRIDE is called once for each stride needed. First, it is called for INC2Y:

CALL STRIDE (N2,N1,INC2Y,’C’,0)

The output value returned for INC2Y is 32. Then STRIDE is called again for
INC3Y:

CALL STRIDE (N3,N2*INC2Y,INC3Y,’C’,0)

The output value returned for INC3Y is 2056. Because INC3Y is not a multiple of
INC2Y, Y is not declared as a three-dimensional array. It is declared as a
two-dimensional array, Y(INC3Y,N3).

To equivalence the X and Y arrays requires INC2X ≥ INC2Y and INC3X ≥ INC3Y.
Therefore, INC2X is set equal to INC2Y(= 32). Also, to declare the X array as a
three-dimensional array, INC3X must be a multiple of INC2X. Therefore, its value
is set as INC3X = (65)(INC2X) = 2080.

The arrays are declared as follows:
COMPLEX*8 X(32,65,40),Y(2056,40)
REAL*8 AUX(1)

1084 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Note: Because NAUX = 0, this subroutine dynamically allocates the AUX working
storage.

Call Statement and Input:

SCALE = 1.0
X has (1.0,2.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output:

Y has (1.0,2.0) in locations Y(ij,k), where ij = 1, 2048 and j = 1, 40. It remains
unchanged elsewhere.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SCFT3(X , 32 , 2080 , Y , 32 , 2056 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1085

SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three
Dimensions)

Purpose

These subroutines compute the three-dimensional discrete Fourier transform of real
data in a three-dimensional array.

Table 206. Data Types

X, scale Y Subroutine

Short-precision real Short-precision complex SRCFT3

Long-precision real Long-precision complex DRCFT3

Note:

1. For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part of
the total computation, so it is performed on each invocation.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SRCFT3 | DRCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ srcft3 | drcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry

x is the array X, containing the three-dimensional data to be transformed, where
each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1-1, j2 = 0, 1, ..., n2-1, and j3 = 0, 1, ...,
n3-1. The strides for the elements in the first, second, and third dimensions are
assumed to be 1, inc2x(≥ n1), and inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 206. If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
(LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on how to set up this
array, see “Setting Up Your Data” on page 987. For more details, see “Notes ”
on page 1088.

inc2x
is the stride between the elements in array X for the second dimension.

Specified as: an integer; inc2x ≥ n1.

inc3x
is the stride between the elements in array X for the third dimension.

Specified as: an integer; inc3x ≥ (n2)(inc2x).

y See On Return.

inc2y
is the stride between the elements in array Y for the second dimension.

Specified as: an integer; inc2y ≥ n1/2+1.

1086 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

inc3y
is the stride between the elements in array Y for the third dimension.

Specified as: an integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n3 is the length of the third dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n3 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1090 for its usage.

Specified as: a number of the data type indicated in Table 206 on page 1086,
where scale > 0.0 or scale < 0.0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real numbers.
On output, the contents are overwritten.

naux
is the number of doublewords in the working storage specified in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SRCFT3 and DRCFT3 dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1087

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ...,
n1/2, k2 = 0, 1, ..., n2-1, and k3 = 0, 1, ..., n3-1. Due to complex conjugate
symmetry, the output consists of only the first n1/2+1 values along the first
dimension of the array, for k1 = 0, 1, ..., n1/2. The strides for the elements in
the first, second, and third dimensions are assumed to be 1, inc2y(≥ n1/2+1),
and inc3y(≥ (n2)(inc2y)), respectively.

Returned as: an array, containing numbers of the data type indicated in
Table 206 on page 1086. If the array is dimensioned Y(LDA1,LDA2,LDA3), then
LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on how to set
up this array, see “Setting Up Your Data” on page 987. For more details, see
“Notes .”

Notes
1. If you specify the same array for X and Y, then inc2x must be greater than or

equal to (2)(inc2y), and inc3x must be greater than or equal to (2)(inc3y). In this
case, output overwrites input. When using the ESSL SMP Libraries in a
multithreaded environment, if inc2x > (2)(inc2y) or inc3x > (2)(inc3y), these
subroutines run on a single thread and issue an attention message.
If you specify different arrays X and Y, they must have no common elements;
otherwise, results are unpredictable. See “Concepts” on page 73.

2. The strides for your input array do not affect performance as long as they are
even numbers. In addition, you should use “STRIDE (Determine the Stride
Value for Optimal Performance in Specified Fourier Transform Subroutines)” on
page 1263 to determine the optimal values for the strides inc2y and inc3y for
your output array. Example 8 in the STRIDE subroutine description explains
how it is used for these subroutines. For additional information on how to set
up your data, see “Setting Up Your Data” on page 987.

Formulas

Processor-Independent Formulas for SRCFT3 for NAUX
Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 65000.
If n1 > 16384, use naux = 60000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 16384, use naux = 65000+λ.
If n1 > 16384, use naux = 60000+1.39n1+λ,

where λ = (n2+256)(s+2.28) and s = min(64, 1+n1/2).
3. If n2 < 252, n3 ≥ 252, and:

1088 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If n1 ≤ 16384, use naux = 65000+ψ.
If n1 > 16384, use naux = 60000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28) and s = min(64, (n2)(1+n1/2)).
4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for

cases 2 and 3 above.

For 64-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 95000.
If n1 > 16384, use naux = 90000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 16384, use naux = 95000+λ.
If n1 > 16384, use naux = 90000+1.39n1+λ,

where λ = (n2+256)(s+2.28) and s = min(64, 1+n1/2).
3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 16384, use naux = 95000+ψ.
If n1 > 16384, use naux = 90000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28) and s = min(64, (n2)(1+n1/2)).
4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for

cases 2 and 3 above.

If inc2x or inc3x is an odd number, or if array X is not aligned on a
doubleword boundary, you should add the following amount to all the
formulas given above:

n2(1+n1/2)

Processor-Independent Formulas for DRCFT3 for NAUX
Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 62000.
If n1 > 4096, use naux = 60000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 4096, use naux = 62000+λ.
If n1 > 4096, use naux = 60000+2.78n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 4096, use naux = 62000+ψ.
If n1 > 4096, use naux = 60000+2.78n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1089

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

For 64-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 92000.
If n1 > 4096, use naux = 90000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 4096, use naux = 92000+λ.
If n1 > 4096, use naux = 90000+2.78n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 4096, use naux = 92000+ψ.
If n1 > 4096, use naux = 90000+2.78n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

Function

The three-dimensional complex conjugate even discrete Fourier transform of real
data in array X, with results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1
k3 = 0, 1, ..., n3-1

where:

and where:

1090 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

The output in array Y is complex. For scale = 1.0 and isign being positive, you
obtain the discrete Fourier transform, a function of frequency. The inverse Fourier
transform is obtained with scale = 1.0/((n1)(n2)(n3)) and isign being negative. See
references [1 on page 1313], [4 on page 1313], [5 on page 1313], [26 on page 1314],
and [27 on page 1314].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1

5. inc3x < (n2)(inc2x)
6. inc2y < n1/2+1
7. inc3y < (n2)(inc2y)
8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable
value. Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example

This example shows how to compute a three-dimensional transform. In this
example, INC2X ≥ (2)(INC2Y) and INC3X ≥ (2)(INC3Y), so that the same array can
be used for both input and output. The STRIDE subroutine is called to select
good values for the INC2Y and INC3Y strides. Using the transform lengths (N1 =
32, N2 = 64, and N2 = 40) along with the output data type (short-precision
complex: ’C’), STRIDE is called once for each stride needed. First, it is called
for INC2Y:

CALL STRIDE (N2,N1/2+1,INC2Y,’C’,0)

The output value returned for INC2Y is 17. (This value is equal to N1/2+1.)
Then STRIDE is called again for INC3Y:

CALL STRIDE (N3,N2*INC2Y,INC3Y,’C’,0)

The output value returned for INC3Y is 1088. Because INC3Y is a multiple of
INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is declared as a three-dimensional array,

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1091

Y(17,64,40). (In general, for larger arrays, these types of values for INC2Y and
INC3Y are not returned by STRIDE, and you are probably not able to declare Y
as a three-dimensional array.)

To equivalence the X and Y arrays requires INC2X ≥ (2)(INC2Y) and INC3X ≥
(2)(INC3Y). Therefore, the values INC2X = (2)(INC2Y) = 34 and INC3X = (2)(INC3Y)
= 2176 are set, and X is declared as a three-dimensional array, X(34,64,40).

The arrays are declared as follows:
REAL*4 X(34,64,40)
COMPLEX*8 Y(17,64,40)
REAL*8 AUX(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Note: Because NAUX= 0, this subroutine dynamically allocates the AX working
storage.

Call Statement and Input:

SCALE = 1.0
X has 1.0 in location X(1,1,1) and 0.0 in all other locations.

Output:

Y has (1.0,0.0) in all locations.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SRCFT3(X , 34 , 2176 , Y , 17 , 1088 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

1092 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three
Dimensions)

Purpose

These subroutines compute the three-dimensional discrete Fourier transform of
complex conjugate even data in a three-dimensional array.

Table 207. Data Types

X Y, scale Subroutine

Short-precision complex Short-precision real SCRFT2

Long-precision complex Long-precision real DCRFT2

Note:

1. For each use, only one invocation of this subroutine is necessary. The
initialization phase, preparing the working storage, is a relatively small part of
the total computation, so it is performed on each invocation.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++ scrft3 | dcrft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry

x is the array X, containing the three-dimensional data to be transformed, where
each element xj1,j2,j3, using zero-based indexing, is stored in
X(j1+j2(inc2x)+j3(inc3x)) for j1 = 0, 1, ..., n1/2, j2 = 0, 1, ..., n2-1, and j3 = 0, 1,
..., n3-1. Due to complex conjugate symmetry, the input consists of only the
first n1/2+1 values along the first dimension of the array, for j1 = 0, 1, ..., n1/2.
The strides for the elements in the first, second, and third dimensions are
assumed to be 1, inc2x(≥ n1/2+1), and inc3x(≥ (n2)(inc2x)), respectively.

Specified as: an array, containing numbers of the data type indicated in
Table 207. If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
(LDA1)(LDA2) = inc3x, and LDA3 ≥ n3. For information on how to set up this
array, see “Setting Up Your Data” on page 987. For more details, see “Notes ”
on page 1095.

inc2x
is the stride between the elements in array X for the second dimension.

Specified as: an integer; inc2x ≥ n1/2+1.

inc3x
is the stride between the elements in array X for the third dimension.

Specified as: an integer; inc3x ≥ (n2)(inc2x).

y See On Return.

inc2y
is the stride between the elements in array Y for the second dimension.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1093

Specified as: an integer; inc2y ≥ n1+2.

inc3y
is the stride between the elements in array Y for the third dimension.

Specified as: an integer; inc3y ≥ (n2)(inc2y).

n1 is the length of the first dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n1 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n2 is the length of the second dimension of the three-dimensional data in the
array to be transformed.

Specified as: an integer; n2 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

n3 is the length of the third dimension of the three-dimensional data in the array
to be transformed.

Specified as: an integer; n3 ≤ 37748736 and must be one of the values listed in
“Acceptable Lengths for the Transforms” on page 984. For all other values
specified less than 37748736, you have the option of having the next larger
acceptable value returned in this argument. For details, see “Providing a
Correct Transform Length to ESSL” on page 56.

isign
controls the direction of the transform, determining the sign Isign of the
exponents of Wn1, Wn2, and Wn3, where:

If isign = positive value, Isign = + (transforming time to frequency).

If isign = negative value, Isign = - (transforming frequency to time).

Specified as: an integer; isign > 0 or isign < 0.

scale
is the scaling constant scale. See “Function” on page 1097 for its usage.

Specified as: a number of the data type indicated in Table 207 on page 1093,
where scale > 0.0 or scale < 0.0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real numbers.
On output, the contents are overwritten.

naux
is the number of doublewords in the working storage specified in aux.

Specified as: an integer, where:

1094 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If naux = 0 and error 2015 is unrecoverable, SCRFT3 and DCRFT3 dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y is the array Y, containing the elements resulting from the three-dimensional
discrete Fourier transform of the data in X. Each element yk1,k2,k3, using
zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y)) for k1 = 0, 1, ..., n1-1,
k2 = 0, 1, ..., n2-1, and k3 = 0, 1, ..., n3-1. The strides for the elements in the
first, second, and third dimensions are assumed to be 1, inc2y(≥ n1+2), and
inc3y(≥ (n2)(inc2y)), respectively.

Returned as: an array, containing numbers of the data type indicated in
Table 207 on page 1093. If the array is dimensioned Y(LDA1,LDA2,LDA3), then
LDA1 = inc2y, (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3. For information on how to set
up this array, see “Setting Up Your Data” on page 987. For more details, see
“Notes .”

Notes
1. If you specify the same array for X and Y, then inc2y must equal (2)(inc2x) and

inc3y must equal (2)(inc3x). In this case, output overwrites input. If you specify
different arrays X and Y, they must have no common elements; otherwise,
results are unpredictable. See “Concepts” on page 73.

2. You should use “STRIDE (Determine the Stride Value for Optimal Performance
in Specified Fourier Transform Subroutines)” on page 1263 to determine the
optimal values for the strides inc2y and inc3y for your output array. To obtain
the best performance, you should use inc2x = inc2y/2 and inc3x = inc3y/2.
Example 9 in the STRIDE subroutine description explains how it is used for
these subroutines. For additional information on how to set up your data, see
“Setting Up Your Data” on page 987.

Formulas

Processor-Independent Formulas for SCRFT3 for Calculating NAUX
Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 65000.
If n1 > 16384, use naux = 60000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 16384, use naux = 65000+λ.
If n1 > 16384, use naux = 60000+1.39n1+λ,

where λ = (n2+256)(s+2.28)
and s = min(64, 1+n1/2).

3. If n2 < 252, n3 ≥ 252, and:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1095

If n1 ≤ 16384, use naux = 65000+ψ.
If n1 > 16384, use naux = 60000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28)
and s = min(64, (n2)(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

For 64-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 16384, use naux = 95000.
If n1 > 16384, use naux = 90000+1.39n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 16384, use naux = 95000+λ.
If n1 > 16384, use naux = 90000+1.39n1+λ,

where λ = (n2+256)(s+2.28)
and s = min(64, 1+n1/2).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 16384, use naux = 95000+ψ.
If n1 > 16384, use naux = 90000+1.39n1+ψ,

where ψ = (n3+256)(s+2.28)
and s = min(64, (n2)(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

If inc2y or inc3y is an odd number, or if array Y is not aligned on a doubleword
boundary, you should add the following amount to all the formulas given
above:

(1+n1/2)(max(n2, n3))

Processor-Independent Formulas for DCRFT3 for NAUX
Use the following formulas for calculating naux:

For 32-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 62000.
If n1 > 4096, use naux = 60000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 4096, use naux = 62000+λ.
If n1 > 4096, use naux = 60000+2.78n1+λ,
where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 4096, use naux = 62000+ψ.
If n1 > 4096, use naux = 60000+2.78n1+ψ,

1096 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

For 64-bit integer arguments:

1. If max(n2, n3) < 252 and:

If n1 ≤ 4096, use naux = 92000.
If n1 > 4096, use naux = 90000+2.78n1.

2. If n2 ≥ 252, n3 < 252, and:

If n1 ≤ 4096, use naux = 92000+λ.
If n1 > 4096, use naux = 90000+2.78n1+λ,

where λ = ((2)n2+256)(s+4.56)
and s = min(64, n1/2).

3. If n2 < 252, n3 ≥ 252, and:

If n1 ≤ 4096, use naux = 92000+ψ.
If n1 > 4096, use naux = 90000+2.78n1+ψ,

where ψ = ((2)n3+256)(s+4.56)
and s = min(64, n2(1+n1/2)).

4. If n2 ≥ 252 and n3 ≥ 252, use the larger of the values calculated for
cases 2 and 3 above.

Function

The three-dimensional discrete Fourier transform of complex conjugate even data
in array X, with results going into array Y, is expressed as follows:

for:

k1 = 0, 1, ..., n1-1
k2 = 0, 1, ..., n2-1
k3 = 0, 1, ..., n3-1

where:

and where:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1097

xj1,j2,j3 are elements of array X.
yk1,k2,k3 are elements of array Y.
Isign is + or - (determined by argument isign).
scale is a scalar value.

Because of the complex conjugate symmetry, the output in array Y is real. For scale
= 1.0 and isign being positive, you obtain the discrete Fourier transform, a function
of frequency. The inverse Fourier transform is obtained with scale =
1.0/((n1)(n2)(n3)) and isign being negative. See references [1 on page 1313], [4 on
page 1313], [5 on page 1313], [26 on page 1314], and [27 on page 1314].

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. n3 > 37748736
4. inc2x < n1/2+1
5. inc3x < (n2)(inc2x)
6. inc2y < n1+2
7. inc3y < (n2)(inc2y)
8. scale = 0.0
9. isign = 0

10. The length of one of the transforms in n1, n2, or n3 is not an allowable
value. Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example

This example shows how to compute a three-dimensional transform. In this
example, INC2Y = (2)(INC2X) and INC3Y = (2)(INC3X), so that the same array can
be used for both input and output. The STRIDE subroutine is called to select
good values for the INC2Y and INC3Y strides. (As explained below, STRIDE is
not called for INC2X and INC3X.) Using the transform lengths (N1 = 32, N2 = 64,
and N3 = 40) along with the output data type (short-precision real: ’S’),
STRIDE is called once for each stride needed. First, it is called for INC2Y:

CALL STRIDE (N2,N1+2,INC2Y,’S’,0)

The output value returned for INC2Y is 34. (This value is equal to N1+2.) Then
STRIDE is called again for INC3Y:

CALL STRIDE (N3,N2*INC2Y,INC3Y,’S’,0)

The output value returned for INC3Y is 2176. Because INC3Y is a multiple of
INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is declared as a three-dimensional array,

1098 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y(34,64,40). (In general, for larger arrays, these types of values for INC2Y and
INC3Y are not returned by STRIDE, and you are probably not able to declare Y
as a three-dimensional array.)

A good stride value for INC2X is INC2Y/2, and a good stride value for INC3X is
INC3Y/2. Also, to equivalence the X and Y arrays requires INC2Y = (2)(INC2X)
and INC3Y = (2)(INC3X). Therefore, the values INC2X = INC2Y/2 = 17 and INC3X =
INC3Y/2 = 1088 are set, and X is declared as a three-dimensional array,
X(17,64,40).

The arrays are declared as follows:
COMPLEX*8 X(17,64,40)
REAL*4 Y(34,64,40)
REAL*8 AUX(1)

Arrays X and Y are made equivalent by the following statement, making them
occupy the same storage:

EQUIVALENCE (X,Y)

Note: Because NAUX= 0, this subroutine dynamically allocates the AX working
storage.

Call Statement and Input:

SCALE = 1.0
X has (1.0,0.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output:

Y has 1.0 in all locations.

X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
| | | | | | | | | | | | |

CALL SCRFT3(X , 17 , 1088 , Y , 34 , 2176 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1099

Convolution and Correlation Subroutines

This contains the convolution and correlation subroutine descriptions.

1100 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCON and SCOR (Convolution or Correlation of One Sequence with
One or More Sequences)

Purpose

These subroutines compute the convolutions and correlations of a sequence with
one or more sequences using a direct method. The input and output sequences
contain short-precision real numbers.

Note: These subroutines are considered obsolete. They are provided in ESSL only
for compatibility with earlier releases. You should use SCOND, SCORD, SDCON,
SDCOR, SCONF, and SCORF instead, because they provide better performance.
For further details, see “Convolution and Correlation Considerations” on page 988.

Syntax

Fortran
CALL SCON | SCOR (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1,
naux1, aux2, naux2)

C and C++ scon | scor (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2,
naux2);

On Entry

init
is a flag, where:

If init ≠ 0, no computation is performed, error checking is performed, and the
subroutine exits back to the calling program.

If init = 0, the convolutions or correlations of the sequence in h with the
sequences in x are computed.

Specified as: an integer. It can have any value.

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequences in array X.

Specified as: an array of (at least) length 1+(Nh-1)|inc1h|, containing
short-precision real numbers.

inc1h
is the stride between the elements within the sequence in array H.

Specified as: an integer; inc1h > 0.

x is the array X, consisting of m input sequences of length Nx, each to be
convolved or correlated with the sequence in array H.

Specified as: an array of (at least) length 1 + (m-1)inc2x + (Nx-1)inc1x,
containing short-precision real numbers.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X.

Specified as: an integer; inc2x > 0.

y See On Return.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1101

inc1y
is the stride between the elements within each sequence in output array Y.

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of each sequence in output array Y.

Specified as: an integer; inc2y > 0.

nh is the number of elements, Nh, in the sequence in array H.

Specified as: an integer; Nh > 0.

nx is the number of elements, Nx, in each sequence in array X.

Specified as: an integer; Nx > 0.

m is the number of sequences in array X to be convolved or correlated.

Specified as: an integer; m > 0.

iy0
is the convolution or correlation index of the element to be stored in the first
position of each sequence in array Y.

Specified as: an integer. It can have any value.

ny is the number of elements, Ny, in each sequence in array Y.

Specified as: an integer; Ny > 0 for SCON and Ny ≥ -Nh+1 for SCOR.

aux1
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

naux1
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

aux2
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

naux2
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

On Return

y is array Y, consisting of m output sequences of length Ny that are the result of
the convolutions or correlations of the sequence in array H with the sequences
in array X. Returned as: an array of (at least) length 1 + (m-1)inc2y +
(Ny-1)inc1y, containing short-precision real numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 73.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

1102 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

3. Auxiliary storage is not needed, but the arguments aux1, naux1, aux2, and
naux2 must still be specified. You can assign any values to these arguments.

Function

The convolutions and correlations of a sequence in array H with one or more
sequences in array X are expressed as follows:

Convolutions for SCON:

Correlations for SCOR:

for:

k = iy0, iy0+1, ..., iy0+Ny-1
i = 1, 2, ..., m

where:

yki are elements of the m sequences of length Ny in array Y.

xki are elements of the m sequences of length Nx in array X.

hj are elements of the sequence of length Nh in array H.

iy0 is the convolution or correlation index of the element to be stored in the first
position of each sequence in array Y.

min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See references
[24 on page 1314] and [100 on page 1319].

Only one invocation of this subroutine is needed:
1. You do not need to invoke the subroutine with init ≠ 0. If you do, however, the

subroutine performs error checking, exits back to the calling program, and no
computation is performed.

2. With init = 0, the subroutine performs the calculation of the convolutions or
correlations.

Error conditions

Computational Errors
None

Input-Argument Errors

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1103

1. nh, nx, ny, or m ≤ 0
2. inc1h, inc1x, inc2x, inc1y, or inc2y ≤ 0

Examples

Example 1

This example shows how to compute a convolution of a sequence in H, which
is a ramp function, and three sequences in X, a triangular function and its
cyclic translates. It computes the full range of nonzero values of the
convolution plus two extra points, which are set to 0. The arrays are declared
as follows:

REAL*4 H(0:4999), X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

Output:

Y contains the following three sequences:
1.0 2.0 3.0
4.0 5.0 8.0

10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
8.0 12.0 16.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 2

This example shows how the output from Example 1 differs when the values
for NY and inc2y are 10 rather than 15. The output is the same except that it
consists of only the first 10 values produced in Example 1.

Output:

Y contains the following three sequences:

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCON(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, 0, 15, AUX1 , 0 , AUX2 , 0)

1104 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

1.0 2.0 3.0
4.0 5.0 8.0

10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0

Example 3

This example shows how the output from Example 2 differs if the value for
IY0 is 3 rather than 0. The output is the same except it starts at element 3 of
the convolution sequences rather than element 0.

Output:

Y contains the following three sequences:
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
8.0 12.0 16.0

Example 4

This example shows how to compute a correlation of a sequence in H, which is
a ramp function, and three sequences in X, a triangular function and its cyclic
translates. It computes the full range of nonzero values of the correlation plus
two extra points, which are set to 0. The arrays are declared as follows:

REAL*4 H(0:4999), X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

Output:

Y contains the following three sequences:

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCOR(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, -3, 15, AUX1 , 0 , AUX2 , 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1105

4.0 8.0 12.0
11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
7.0 10.0 13.0
2.0 3.0 4.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 5

This example shows how the output from Example 4 differs when the values
for NY and INC2Y are 10 rather than 15. The output is the same except that it
consists of only the first 10 values produced in Example 4.

Output:

Y contains the following three sequences:
4.0 8.0 12.0

11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0

Example 6
This example shows how the output from Example 5 differs if the value for
IY0 is 0 rather than -3. The output is the same except it starts at element 0 of
the correlation sequences rather than element -3.

Output:

Y contains the following three sequences:
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
7.0 10.0 13.0
2.0 3.0 4.0

1106 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCOND and SCORD (Convolution or Correlation of One Sequence with
Another Sequence Using a Direct Method)

Purpose

These subroutines compute the convolution and correlation of a sequence with
another sequence using a direct method. The input and output sequences contain
short-precision real numbers.

Note:

1. These subroutines compute the convolution and correlation using direct
methods. In most cases, these subroutines provide better performance than
using SCON or SCOR, if you determine that SCON or SCOR would have used
a direct method for its computation. For information on how to make this
determination, see reference [4 on page 1313].

2. For long-precision data, you should use DDCON or DDCOR with the
decimation rate, id, equal to 1.

3. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SCOND | SCORD (h, inch, x, incx, y, incy, nh, nx, iy0, ny)

C and C++ scond | scord (h, inch, x, incx, y, incy, nh, nx, iy0, ny);

On Entry

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequence in array X.

Specified as: an array of (at least) length 1+(Nh-1)|inch|, containing
short-precision real numbers.

inch
is the stride between the elements within the sequence in array H.

Specified as: an integer; inch > 0 or inch < 0.

x is the array X, consisting of the input sequence of length Nx, to be convolved or
correlated with the sequence in array H.

Specified as: an array of (at least) length 1+(Nx-1)|incx|, containing
short-precision real numbers.

incx
is the stride between the elements within the sequence in array X.

Specified as: an integer; incx > 0 or incx < 0.

y See On Return.

incy
is the stride between the elements within the sequence in output array Y.

Specified as: an integer; incy > 0 or incy < 0.

nh is the number of elements, Nh, in the sequence in array H.

Specified as: an integer; Nh > 0.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1107

nx is the number of elements, Nx, in the sequence in array X.

Specified as: an integer; Nx > 0.

iy0
is the convolution or correlation index of the element to be stored in the first
position of the sequence in array Y.

Specified as: an integer. It can have any value.

ny is the number of elements, Ny, in the sequence in array Y.

Specified as: an integer; Ny > 0.

On Return

y is the array Y of length Ny, consisting of the output sequence that is the result
of the convolution or correlation of the sequence in array H with the sequence
in array X. Returned as: an array of (at least) length 1+(Ny-1)|incy|, containing
short-precision real numbers.

Notes
1. Output should not overwrite input—that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 73.

2. If iy0 and ny are such that output outside the basic range is needed, where the
basic range is 0 ≤ k ≤ (nh+nx-2) for SCOND and (-nh+1) ≤ k ≤ (nx-1) for SCORD,
the subroutine stores zeros using scalar code. It is not efficient to store many
zeros in this manner. It is more efficient to set iy0 and ny so that the output is
produced within the above range of k values.

Function

The convolution and correlation of a sequence in array H with a sequence in array
X are expressed as follows:

Convolution for SCOND:

Correlation for SCORD:

for k = iy0, iy0+1, ..., iy0+Ny-1

where:

yk are elements of the sequence of length Ny in array Y.

xk are elements of the sequence of length Nx in array X.hj are elements of the
sequence of length Nh in array H.

1108 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

iy0 is the convolution or correlation index of the element to be stored in the first
position of each sequence in array Y.

min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See reference
[4 on page 1313].

Special Usage

SCORD can also perform the functions of SCON and SACOR; that is, it can
compute convolutions and autocorrelations. To compute a convolution, you must
specify a negative stride for H (see Example 9). To compute the autocorrelation, you
must specify the two input sequences to be the same (see Example 10). In fact, you
can also compute the autoconvolution by using both of these techniques together,
letting the two input sequences be the same, and specifying a negative stride for
the first input sequence.

Error conditions

Computational Errors
None

Input-Argument Errors

1. nh, nx, or ny ≤ 0
2. inch, incx, or incy = 0

Examples

Example 1

This example shows how to compute a convolution of a sequence in H with a
sequence in X, where both sequences are ramp functions.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Example 2

This example shows how the output from Example 1 differs when the value
for IY0 is -2 rather than 0, and NY is 15 rather than 11. The output has two
zeros at the beginning and end of the sequence, for points outside the range of
nonzero output.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , -2 , 15)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1109

Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0,
160.0, 151.0, 122.0, 72.0, 0.0, 0.0)

Example 3

This example shows how the same output as Example 1 can be obtained when
H and X are interchanged, because the convolution is symmetric in H and X.
(The arguments are switched in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(X , 1 , H , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Example 4

This example shows how the output from Example 1 differs when a negative
stride is specified for the sequence in H. By reversing the H sequence, the
correlation is computed.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(H , -1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,

104.0, 53.0, 18.0)

Example 5

This example shows how to compute the autoconvolution of a sequence by
letting the two input sequences for H and X be the same. (X is specified for both
arguments in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCOND(X , 1 , X , 1 , Y , 1 , 4 , 4 , 0 , 7)

X = (11.0, 12.0, 13.0, 14.0)

Output:
Y = (121.0, 264.0, 430.0, 620.0, 505.0, 364.0, 196.0)

Example 6

This example shows how to compute a correlation of a sequence in H with a
sequence in X, where both sequences are ramp functions.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

1110 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,

104.0, 53.0, 18.0)

Example 7

This example shows how the output from Example 6 differs when the value
for IY0 is -5 rather than -3 and NY is 15 rather than 11. The output has two
zeros at the beginning and end of the sequence, for points outside the range of
nonzero output.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -5 , 15)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (0.0, 0.0, 44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0,

170.0, 104.0, 53.0, 18.0, 0.0, 0.0)

Example 8

This example shows how the output from Example 6 differs when H and X are
interchanged (in the calling sequence). The output sequence is the reverse of
that in Example 6. To get the full range of output, IY0 is set to -NX+1.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(X , 1 , H , 1 , Y , 1 , 4 , 8 , -7 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (18.0, 53.0, 104.0, 170.0, 160.0, 150.0, 140.0, 130.0,

110.0, 81.0, 44.0)

Example 9

This example shows how the output from Example 6 differs when a negative
stride is specified for the sequence in H. By reversing the H sequence, the
convolution is computed.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(H , -1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Example 10

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1111

This example shows how to compute the autocorrelation of a sequence by
letting the two input sequences for H and X be the same. (X is specified for both
arguments in the calling sequence.)

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY
| | | | | | | | | |

CALL SCORD(X , 1 , X , 1 , Y , 1 , 4 , 4 , -3 , 7)

X = (11.0, 12.0, 13.0, 14.0)

Output:
Y = (154.0, 311.0, 470.0, 630.0, 470.0, 311.0, 154.0)

1112 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCONF and SCORF (Convolution or Correlation of One Sequence with
One or More Sequences Using the Mixed-Radix Fourier Method)

Purpose

These subroutines compute the convolutions and correlations, respectively, of a
sequence with one or more sequences using the mixed-radix Fourier method. The
input and output sequences contain short-precision real numbers.

Note:

1. Two invocations of these subroutines are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran
CALL SCONF | SCORF (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1,
naux1, aux2, naux2)

C and C++ sconf | scorf (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1,
aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions, the transform of the sequence in h, and
other parameters, depending on arguments other than x, are computed and
saved in aux1. The contents of x and y are not used or changed.

If init = 0, the convolutions or correlations of the sequence that was in h at
initialization with the sequences in x are computed. h is not used or changed.
The only arguments that may change after initialization are x, y, and aux2. All
scalar arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequences in array X.

Specified as: an array of (at least) length 1+(Nh-1)|inc1h|, containing
short-precision real numbers.

inc1h
is the stride between the elements within the sequence in array H.

Specified as: an integer; inc1h > 0.

x is the array X, consisting of m input sequences of length Nx, each to be
convolved or correlated with the sequence in array H.

Specified as: an array of (at least) length 1+(Nx-1)inc1x+(m-1)inc2x, containing
short-precision real numbers.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1113

inc2x
is the stride between the first elements of the sequences in array X.

Specified as: an integer; inc2x > 0.

y See On Return.

inc1y
is the stride between the elements within each sequence in output array Y.

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of each sequence in output array Y.

Specified as: an integer; inc2y > 0.

nh is the number of elements, Nh, in the sequence in array H.

Specified as: an integer; Nh > 0.

nx is the number of elements, Nx, in each sequence in array X.

Specified as: an integer; Nx > 0.

m is the number of sequences in array X to be convolved or correlated.

Specified as: an integer; m > 0.

iy0
is the convolution or correlation index of the element to be stored in the first
position of each sequence in array Y.

Specified as: an integer. It can have any value.

ny is the number of elements, Ny, in each sequence in array Y.

Specified as: an integer; Ny > 0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the convolutions.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 23 (32-bit integer arguments) or 45 (64-bit
integer arguments) and naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For values between 23 (32-bit integer arguments) or 45 (64-bit integer
arguments) and the minimum value, you have the option of having the
minimum value returned in this argument. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

1114 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SCONF and SCORF dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

If init = 0, this is array Y, consisting of m output sequences of length Ny that
are the result of the convolutions or correlations of the sequence in array H
with the sequences in array X.

Returned as: an array of (at least) length 1+(Ny-1)inc1y+(m-1)inc2y, containing
short-precision real numbers.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc1x and inc1y must be equal,
and inc2x and inc2y must be equal. In this case, output overwrites input.

4. If you specify different arrays for X and Y, they must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. If iy0 and ny are such that output outside the basic range is needed, the
subroutine stores zeros. These ranges are: 0 ≤ k ≤ Nx+Nh-2 for SCONF and 1-Nh

≤ k ≤ Nx-1 for SCORF.

Formulas

Formulas for the Length of the Fourier Transform
Before calculating the necessary sizes of naux1 and naux2, you must determine
the length n of the Fourier transform. The value of n is based on nf. You can
use one of two techniques to determine nf:
v Use the simple overestimate of nf = nx+nh-1. (If iy0 = 0 and ny > nh+nx, this

is the actual value, not an overestimate.)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1115

v Use the values of the arguments iy0, nh, nx, and ny inserted into the
following formulas to get a value for the variable nf:

iy0p = max(iy0, 0)
ix0 = max((iy0p+1)-nh, 0)
ih0 = max((iy0p+1)-nx, 0)
nd = ix0+ih0
n1 = iy0+ny
nxx = min(n1, nx)-ix0
nhh = min(n1, nh)-ih0
ntt = nxx+nhh-1
nn1 = n1-nd
iyy0 = iy0p-nd
nzleft = max(0, nhh-iyy0-1)
nzrt = min(nn1, ntt)-nxx
nf = max(12, nxx+max(nzleft, nzrt))

After calculating the value for nf, using one of these two techniques, refer to
the formula or table of allowable values of n in “Acceptable Lengths for the
Transforms” on page 984, selecting the value equal to or greater than nf.

Processor-Independent Formulas for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on the value determined for n
in Formulas for the Length of the Fourier Transform.

NAUX1 Formulas

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 58000.
If n > 16384, use naux1 = 40000+2.14n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 78000.
If n > 16384, use naux1 = 60000+2.14n.

NAUX2 Formulas

If n ≤ 16384, use naux2 = 30000.
If n > 16384, use naux2 = 20000+1.07n.

Function

The convolutions and correlations of a sequence in array H with one or more
sequences in array X are expressed as follows.

Convolutions for SCONF:

Correlations for SCORF:

1116 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

for:

k = iy0, iy0+1, ..., iy0+Ny-1
i = 1, 2, ..., m

where:

yki are elements of the m sequences of length Ny in array Y.

xki are elements of the m sequences of length Nx in array X.

hj are elements of the sequence of length Nh in array H.

iy0 is the convolution or correlation index of the element to be stored in the first
position of each sequence in array Y.

min and max select the minimum and maximum values, respectively.

These subroutines use a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application. The length of the
transform, n, that you must calculate to determine the correct sizes for naux1 and
naux2 is the same length used by the Fourier transform subroutines called by this
subroutine. It is assumed that elements outside the range of definition are zero. See
references [24 on page 1314] and [100 on page 1319].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the convolutions.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. nh, nx, ny, or m ≤ 0
2. inc1h, inc1x, inc2x, inc1y, or inc2y ≤ 0
3. The resulting internal Fourier transform length n, is too large. See

“Convolutions and Correlations by Fourier Methods” on page 990.
4. The subroutine has not been initialized with the present arguments.
5. naux1 ≤ 23
6. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1117

7. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows how to compute a convolution of a sequence in H, where H
and X are ramp functions. It calculates all nonzero values of the convolution of
the sequences in H and X. The arrays are declared as follows:

REAL*4 H(8), X(10,1), Y(17)

Because this convolution is symmetric in H and X, you can interchange the H
and X sequences, leaving all other arguments the same, and you get the same
output shown below. First, initialize AUX1 using the calling sequence shown
below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do
the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0)

Output:
Y = (11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0, 480.0,

516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0, 292.0,
160.0)

Example 2

This example shows how the output from Example 1 differs when the value
for NY is 21 rather than 17, and the value for IY0 is -2 rather than 0. This yields
two zeros on each end of the convolution.

Output:
Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0,

480.0, 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0,
292.0, 160.0, 0.0, 0.0)

Example 3

This example shows how to compute the autoconvolution by letting the two
input sequences be the same for Example 2. First, initialize AUX1 using the
calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X , 1 , 1 , Y, 1 , 1 , 8, 10, 1, 0, 17, AUX1, 128, AUX2, 0)

1118 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

INIT = 1(for initialization)
INIT = 0(for computation)

Output:
Y = (1.0, 4.0, 10.0, 20.0, 35.0, 56.0, 84.0, 120.0, 147.0,

164.0, 170.0, 164.0, 145.0, 112.0, 64.0)

Example 4

This example shows how to compute all nonzero values of the convolution of
the sequence in H with the two sequences in X. First, initialize AUX1 using the
calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

X contains the following two sequences:
11.0 12.0
12.0 13.0
13.0 14.0
14.0 15.0
15.0 16.0
16.0 17.0
17.0 18.0
18.0 19.0
19.0 20.0
20.0 11.0

Output:

Y contains the following two sequences:
11.0 12.0
34.0 37.0
70.0 76.0

120.0 130.0
185.0 200.0
266.0 287.0
364.0 392.0
480.0 516.0
516.0 552.0
552.0 578.0
567.0 582.0
560.0 563.0
530.0 520.0
476.0 452.0
397.0 358.0
292.0 237.0
160.0 88.0

Example 5

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , H , 1 , 1 , Y, 1 , 1 , 8, 10, 1, -2, 21, AUX1, 128, AUX2, 0)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, 0, 17, AUX1, 148, AUX2, 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1119

This example shows how to compute a correlation of a sequence in H, where H
and X are ramp functions. It calculates all nonzero values of the correlation of
the sequences in H and X. The arrays are declared as follows:

REAL*4 H(8), X(10,1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H =(same as input H in Example 1)
X =(same as input X in Example 1)

Output:
Y = (88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0, 564.0,

600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
59.0, 20.0)

Example 6

This example shows how the output from Example 5 differs when the value
for NY is 21 rather than 17, and the value for IY0 is -9 rather than 0. This yields
two zeros on each end of the correlation.

Output:
Y = (0.0, 0.0, 88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0,

564.0, 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
59.0, 20.0, 0.0, 0.0)

Example 7

This example shows the effect of interchanging H and X. It uses the same input
as Example 5, with H and X switched in the calling sequence, and with IY0
with a value of -9. Unlike convolution, as noted in Example 1, the correlation is
not symmetric in H and X. First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0
to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

Output:

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCORF(INIT, H , 1 , X, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -7, 17, AUX1, 128, AUX2, 0)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, X , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -9, 17, AUX1, 128, AUX2, 0)

1120 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y = (20.0, 59.0, 116.0, 190.0, 280.0, 385.0, 504.0, 636.0,
600.0, 564.0, 518.0, 463.0, 400.0, 330.0, 254.0, 173.0,
88.0)

Example 8

This example shows how to compute the autocorrelation by letting the two
input sequences be the same. First, initialize AUX1 using the calling sequence
shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0
to do the calculation. Because there is only one H input sequence, only one
autocorrelation can be computed. Furthermore, this usage does not take
advantage of the fact that the output is symmetric. Therefore, you should use
SACORF to compute autocorrelations, because it does not have either of these
problems.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

Output:
Y = (8.0, 23.0, 44.0, 70.0, 100.0, 133.0, 168.0, 204.0, 168.0,

133.0, 100.0 , 70.0, 44.0, 23.0, 8.0)

Example 9

This example shows how to compute all nonzero values of the correlation of
the sequence in H with the two sequences in X. First, initialize AUX1 using the
calling sequence shown below with INIT ≠ 0. Then use the same calling
sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)
H =(same as input H in Example 4)
X =(same as input X in Example 4)

Output:

Y contains the following two sequences:
88.0 96.0

173.0 188.0
254.0 275.0
330.0 356.0
400.0 430.0
463.0 496.0
518.0 553.0
564.0 600.0

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 8, 1, -7, 15, AUX1, 148, AUX2, 0)

INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | |

CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, -7, 17, AUX1, 148, AUX2, 0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1121

600.0 636.0
636.0 592.0
504.0 462.0
385.0 346.0
280.0 245.0
190.0 160.0
116.0 92.0
59.0 42.0
20.0 11.0

1122 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation
with Decimated Output Using a Direct Method)

Purpose

These subroutines compute the convolution and correlation of a sequence with
another sequence, with decimated output, using a direct method.

Table 208. Data Types

h, x, y Subroutine

Short-precision real SDCON

Long-precision real DDCON

Short-precision real SDCOR

Long-precision real DDCOR

Note:

1. These subroutines are the short- and long-precision equivalents of SCOND and
SCORD when the decimation interval id is equal to 1. Because there is no
long-precision version of SCOND and SCORD, you can use DDCON and
DDCOR, respectively, with decimation interval id = 1 to perform the same
function.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SDCON | DDCON | SDCOR | DDCOR (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id)

C and C++ sdcon | ddcon | sdcor | ddcor (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id);

On Entry

h is the array H, consisting of the sequence of length Nh to be convolved or
correlated with the sequence in array X.

Specified as: an array of (at least) length 1+(Nh-1)|inch|, containing numbers of
the data type indicated in Table 208.

inch
is the stride between the elements within the sequence in array H.

Specified as: an integer; inch > 0 or inch < 0.

x is the array X, consisting of the input sequence of length Nx, to be convolved or
correlated with the sequence in array H.

Specified as: an array of (at least) length 1+(Nx-1)|incx|, containing numbers of
the data type indicated in Table 208.

incx
is the stride between the elements within the sequence in array X.

Specified as: an integer; incx > 0 or incx < 0.

y See On Return.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1123

incy
is the stride between the elements within the sequence in output array Y.

Specified as: an integer; incy > 0 or incy < 0.

nh is the number of elements, Nh, in the sequence in array H.

Specified as: an integer; Nh > 0.

nx is the number of elements, Nx, in the sequence in array X.

Specified as: an integer; Nx > 0.

iy0
is the convolution or correlation index of the element to be stored in the first
position of the sequence in array Y.

Specified as: an integer. It can have any value.

ny is the number of elements, Ny, in the sequence in array Y.

Specified as: an integer; Ny > 0.

id is the decimation interval id for the output sequence in array Y; that is, every
id-th value of the convolution or correlation is produced.

Specified as: an integer; id > 0.

On Return

y is the array Y of length Ny, consisting of the output sequence that is the result
of the convolution or correlation of the sequence in array H with the sequence
in array X, given for every id-th value in the convolution or correlation.

Returned as: an array of (at least) length 1+(Ny-1)|incy|, containing numbers
of the data type indicated in Table 208 on page 1123.

Notes
1. If you specify the same array for X and Y, the following conditions must be

true: incx = incy, incx > 0, incy > 0, id = 1, and iy0 ≥ Nh-1 for _DCON and iy0 ≥
0 for _DCOR. In this case, output overwrites input. In all other cases, output
should not overwrite input; that is, input arrays X and H must have no common
elements with output array Y. Otherwise, results are unpredictable. See
“Concepts” on page 73.

2. If iy0 and ny are such that output outside the basic range is needed, where the
basic range is 0 ≤ k ≤ (nh+nx-2) for SDCON and DDCON and is (-nh+1) ≤ k ≤
(nx-1) for SDCOR and DDCOR, the subroutine stores zeros using scalar code. It
is not efficient to store many zeros in this manner. If you anticipate that this
will happen, you may want to adjust iy0 and ny, so the subroutine computes
only for k in the above range, or use the ESSL subroutine SSCAL or DSCAL to
store the zeros, so you achieve better performance.

Function

The convolution and correlation of a sequence in array H with a sequence in array
X, with decimated output, are expressed as follows:

Convolution for SDCON and DDCON:

1124 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Correlation for SDCOR and DDCOR:

for k = iy0, iy0+id, iy0+(2)id, ..., iy0+(Ny-1)id

where:

yk are elements of the sequence of length Ny in array Y.

xk are elements of the sequence of length Nx in array X.

hj are elements of the sequence of length Nh in array H.

iy0 is the convolution or correlation index of the element to be stored in the first
position of the sequence in array Y.

min and max select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See reference
[4 on page 1313].

Special Usage

SDCON and DDCON can also perform a correlation, autoconvolution, or
autocorrelation. To compute a correlation, you must specify a negative stride for H.
To compute the autoconvolution, you must specify the two input sequences to be
the same. You can also compute the autocorrelation by using both of these
techniques together, letting the two input sequences be the same, and specifying a
negative stride for the first input sequence. (See SCOND Example 1.) Because
SCOND and SDCON are functionally the same, their results are the same as long
as the decimation interval id = 1 for SDCON.

SDCOR and DDCOR can also perform a convolution, autocorrelation, or
autoconvolution. To compute a convolution, you must specify a negative stride for
H. To compute the autocorrelation, you must specify the two input sequences to be
the same. You can also compute the autoconvolution by using both of these
techniques together, letting the two input sequences be the same and specifying a
negative stride for the first input sequence. For examples of these, see SCORD
Example 6. Because SCORD and SDCOR are functionally the same, their results are
the same as long as the decimation interval id = 1 for SDCOR.

Error conditions

Computational Errors
None

Input-Argument Errors

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1125

1. nh, nx, or ny ≤ 0
2. inch, incx, or incy = 0
3. id ≤ 0

Examples

Example 1

This example shows how to compute a convolution of a sequence in H with a
sequence in X, where both sequences are ramp functions. It shows how a
decimated output can be obtained, using the same input as Example 1 for
SCOND and using a decimation interval ID = 2.

Note: For further examples of use, see SCOND Example 1. Because SCOND
and SDCON are functionally the same, their results are the same as long as the
decimation interval ID = 1 for SDCON.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (11.0, 70.0, 130.0, 150.0, 151.0, 72.0)

Example 2

This example shows how to compute a correlation of a sequence in H with a
sequence in X, where both sequences are ramp functions. It shows how a
decimated output can be obtained, using the same input as Example 6 for
SCORD and using a decimation interval ID = 2.

Note: For further examples of use, see SCORD Example 6. Because SCORD
and SDCOR are functionally the same, their results are the same as long as the
decimation interval ID = 1 for SDCOR.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCOR(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output:
Y = (44.0, 110.0, 140.0, 160.0, 104.0, 18.0)

Example 3

This example shows how to compute the same function as computed in
Example 1 for SCOND. The input sequences and arguments are the same as
that example, except a decimation interval ID = 1 is specified here for SDCON.

Call Statement and Input:
H INCH X INCX Y INCY NH NX IY0 NY ID
| | | | | | | | | | |

CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11 , 1)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

1126 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,

151.0, 122.0, 72.0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1127

SACOR (Autocorrelation of One or More Sequences)
Purpose

This subroutine computes the autocorrelations of one or more sequences using a
direct method. The input and output sequences contain short-precision real
numbers.

Note: This subroutine is considered obsolete. It is provided in ESSL only for
compatibility with earlier releases. You should use SCORD, SDCOR, SCORF and
SACORF instead, because they provide better performance. For further details, see
reference [4 on page 1313].

Syntax

Fortran CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

C and C++ sacor (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, no computation is performed, error checking is performed, and the
subroutine exits back to the calling program.

If init = 0, the autocorrelations of the sequence in x are computed.

Specified as: an integer. It can have any value.

x is the array X, consisting of m input sequences of length Nx, to be
autocorrelated. Specified as: an array of (at least) length 1+(Nx-1)inc1x+(m-
1)inc2x, containing short-precision real numbers.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X.

Specified as: an integer; inc2x > 0.

y See On Return.

inc1y
is the stride between the elements within each sequence in output array Y.

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of each sequence in output array Y.

Specified as: an integer; inc2y > 0.

nx is the number of elements, Nx, in each sequence in array X.

Specified as: an integer; Nx > 0.

m is the number of sequences in array X to be correlated.

Specified as: an integer; m > 0.

ny is the number of elements, Ny, in each sequence in array Y.

1128 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; Ny > 0.

aux1
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

naux1
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

aux2
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

naux2
is no longer used in the computation, but must still be specified as a dummy
argument (for migration purposes from Version 1 of ESSL). It can have any
value.

On Return

y is array Y, consisting of m output sequences of length Ny that are the
autocorrelation functions of the sequences in array X. Returned as: an array of
(at least) length 1 + (Ny-1)inc1y + (m-1)inc2y, containing short-precision real
numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no

common elements with output array Y. Otherwise, results are unpredictable.
See “Concepts” on page 73.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. Auxiliary storage is not needed, but the arguments aux1, naux1, aux2, and
naux2 must still be specified. You can assign any values to these arguments.

Function

The autocorrelations of the sequences in array X are expressed as follows:

for:

k = 0, 1, ..., Ny-1
i = 1, 2, ..., m

where:

yki are elements of the m sequences of length Ny in array Y.
xji and xj+k,i are elements of the m sequences of length Nx in array X.

See references [24 on page 1314] and [100 on page 1319].

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1129

Only one invocation of this subroutine is needed:
1. You do not need to invoke the subroutine with init ≠ 0. If you do, however, the

subroutine performs error checking, exits back to the calling program, and no
computation is performed.

2. With init = 0, the subroutine performs the calculation of the convolutions or
correlations.

Error conditions

Computational Errors
None

Input-Argument Errors

1. nx, ny, or m ≤ 0
2. inc1x, inc2x, inc1y, or inc2y ≤ 0 (or incompatible)

Examples

Example 1

This example shows how to compute an autocorrelation for three short
sequences in array X, where the input sequence length NX is equal to the output
sequence length NY. This gives all nonzero autocorrelation values.

The arrays are declared as follows:
REAL*4 X(0:49999), Y(0:49999)
REAL*8 AUX1, AUX2

Call Statement and Input:

INIT = 0(for computation)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

Output:

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2

This example shows how the output from Example 1 differs when the values
for NY and INC2Y are 9 rather than 7. This shows that when NY is greater than
NX, the output array is longer, and that part is filled with zeros.

Output:

INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SACOR(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1 , 0 , AUX2 , 0)

1130 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 3

This example shows how the output from Example 1 differs when the value
for NY is 5 rather than 7. Also, the values for INC1X and INC1Y are 3, and the
values for INC2X and INC2Y are 1 rather than 7. This shows that when NY is less
than NX, the output array is shortened.

Output:

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1131

SACORF (Autocorrelation of One or More Sequences Using the
Mixed-Radix Fourier Method)

Purpose

This subroutine computes the autocorrelations of one or more sequences using the
mixed-radix Fourier method. The input and output sequences contain
short-precision real numbers.

Note:

1. Two invocations of this subroutine are necessary: one to prepare the working
storage for the subroutine, and the other to perform the computations.

2. On certain processors, SIMD algorithms may be used if alignment requirements
are met. For further details, see “Use of SIMD Algorithms by Some Subroutines
in the Libraries Provided by ESSL” on page 30.

Syntax

Fortran CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

C and C++ sacorf (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on
arguments other than x, are computed and saved in aux1. The contents of x
and y are not used or changed.

If init = 0, the autocorrelations of the sequence in x are computed. The only
arguments that may change after initialization are x, y, and aux2. All scalar
arguments must be the same as when the subroutine was called for
initialization with init ≠ 0.

Specified as: an integer. It can have any value.

x is the array X, consisting of m input sequences of length Nx, to be
autocorrelated. Specified as: an array of (at least) length 1+(Nx-1)inc1x+(m-
1)inc2x, containing short-precision real numbers.

inc1x
is the stride between the elements within each sequence in array X.

Specified as: an integer; inc1x > 0.

inc2x
is the stride between the first elements of the sequences in array X.

Specified as: an integer; inc2x > 0.

y See On Return.

inc1y
is the stride between the elements within each sequence in output array Y.

Specified as: an integer; inc1y > 0.

inc2y
is the stride between the first elements of each sequence in output array Y.

1132 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; inc2y > 0.

nx is the number of elements, Nx, in each sequence in array X.

Specified as: an integer; Nx > 0.

m is the number of sequences in array X to be correlated.

Specified as: an integer; m > 0.

ny is the number of elements, Ny, in each sequence in array Y.

Specified as: an integer; Ny > 0.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, the working storage is computed.

If init = 0, the working storage is used in the computation of the
autocorrelations.

Specified as: an area of storage, containing naux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: an integer; naux1 > 21 (32-bit integer arguments) or 43 (64-bit
integer arguments) and naux1 ≥ (minimum value required for successful
processing). To determine a sufficient value, use the processor-independent
formulas. For values between 21 (32-bit integer arguments) or 43 (64-bit integer
arguments) and the minimum value, you have the option of having the
minimum value returned in this argument. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

aux2
has the following meaning:

If naux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.

Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing naux2 long-precision real numbers.
On output, the contents are overwritten.

naux2
is the number of doublewords in the working storage specified in aux2.

Specified as: an integer, where:

If naux2 = 0 and error 2015 is unrecoverable, SACORF dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, naux2 ≥ (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 49.

On Return

y has the following meaning, where:

If init ≠ 0, this argument is not used, and its contents remain unchanged.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1133

If init = 0, this is array Y, consisting of m output sequences of length Ny that
are the autocorrelation functions of the sequences in array X.

Returned as: an array of (at least) length 1+(Ny-1)inc1y+(m-1)inc2y, containing
short-precision real numbers.

aux1
is the working storage for this subroutine, where:

If init ≠ 0, it contains information ready to be passed in a subsequent
invocation of this subroutine.

If init = 0, its contents are unchanged.

Returned as: the contents are not relevant.

Notes
1. aux1 should not be used by the calling program between calls to this

subroutine with init ≠ 0 and init = 0. However, it can be reused after
intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP Libraries, for optimal performance, the number of
threads specified should be the same for init ≠ 0 and init = 0.

3. If you specify the same array for X and Y, then inc1x and inc1y must be equal
and inc2x and inc2y must be equal. In this case, output overwrites input.

4. If you specify different arrays for X and Y, they must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 73.

5. If ny is such that output outside the basic range is needed, the subroutine
stores zeros. This range is: 0 ≤ k ≤ nx-1.

Formulas

Formula for Calculating the Length of the Fourier Transform
Before calculating the necessary sizes of naux1 and naux2, you must determine
the length n of the Fourier transform. To do this, you use the values of the
arguments nx and ny, inserted into the following formula, to get a value for
the variable nf. After calculating nf, reference the formula or table of allowable
values of n in “Acceptable Lengths for the Transforms” on page 984, selecting
the value equal to or greater than nf. Following is the formula for determining
nf:

nf = min(ny, nx)+nx+1

Processor-Independent Formulas for NAUX1 and NAUX2
The required values of naux1 and naux2 depend on the value determined for n
in Formula for Calculating the Length of the Fourier Transform and the
argument m.

NAUX1 Formulas:

For 32-bit integer arguments:

If n ≤ 16384, use naux1 = 55000.
If n > 16384, use naux1 = 40000+1.89n.

For 64-bit integer arguments:

If n ≤ 16384, use naux1 = 75000.
If n > 16384, use naux1 = 60000+1.89n.

NAUX2 Formulas:

1134 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If n ≤ 16384, use naux2 = 50000.
If n > 16384, use naux2 = 40000+1.64n.

Function

The autocorrelations of the sequences in array X are expressed as follows:

for:

k = 0, 1, ..., Ny-1
i = 1, 2, ..., m

where:

yki are elements of the m sequences of length Ny in array Y.
xji and xj+k,i are elements of the m sequences of length Nx in array X.

This subroutine uses a Fourier transform method with a mixed-radix capability.
This provides maximum performance for your application. The length of the
transform, n, that you must calculate to determine the correct sizes for naux1 and
naux2 is the same length used by the Fourier transform subroutines called by this
subroutine. See references [24 on page 1314] and [100 on page 1319].

Two invocations of this subroutine are necessary:
1. With init ≠ 0, the subroutine tests and initializes arguments of the program,

setting up the aux1 working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1

working storage correspond to the present arguments, and if so, performs the
calculation of the autocorrelations.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. nx, ny, or m ≤ 0
2. inc1x, inc2x, inc1y, or inc2y ≤ 0 (or incompatible)
3. The resulting correlation is too long.
4. The subroutine has not been initialized with the present arguments.
5. naux1 ≤ 21
6. naux1 is too small—that is, less than the minimum required value. Return

code 1 is returned if error 2015 is recoverable.
7. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1135

Examples

Example 1

This example shows how to compute an autocorrelation for three short
sequences in array X, where the input sequence length NX is equal to the output
sequence length NY. This gives all nonzero autocorrelation values. The arrays
are declared as follows:

REAL*4 X(0:49999), Y(0:49999)
REAL*8 AUX1(2959), AUX2(1)

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0.
Then use the same calling sequence with INIT = 0 to do the calculation.

Note: Because NAUX2= 0, this subroutine dynamically allocates the AUX2
working storage.

Call Statement and Input:

INIT = 1(for initialization)
INIT = 0(for computation)

X contains the following three sequences:
1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

Output:

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2

This example shows how the output from Example 1 differs when the value
for NY and INC2Y are 9 rather than 7. This shows that when NY is greater than
NX, the output array is longer and that part is filled with zeros.

Output:

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0
0.0 0.0 0.0
0.0 0.0 0.0

INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | |

CALL SACORF(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1, 2959, AUX2, 0)

1136 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Example 3

This example shows how the output from Example 1 differs when the value
for NY is 5 rather than 7. Also, the values for INC1X and INC1Y are 3 rather than
1, and the values for INC2X and INC2Y are 1 rather than 7. This shows that
when NY is less than NX, the output array is shortened.

Output:

Y contains the following three sequences:
59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1137

Related-Computation Subroutines

This contains the related-computation subroutine descriptions.

1138 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPOLY and DPOLY (Polynomial Evaluation)
Purpose

These subroutines evaluate a polynomial of degree k, using coefficient vector u,
input vector x, and output vector y:

where uk, xi, and yi are elements of u, x, and y, respectively.

Table 209. Data Types

u, x, y Subroutine

Short-precision real SPOLY

Long-precision real DPOLY

Syntax

Fortran CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n)

C and C++ spoly | dpoly (u, incu, k, x, incx, y, incy, n);

On Entry

u is the coefficient vector u of length k+1. It contains elements u0, u1, u0, u1, u2, ...,
uk, which are stored in this order. Specified as: a one-dimensional array of (at
least) length 1+k|incu|, containing numbers of the data type indicated in
Table 209.

incu
is the stride for vector u.

Specified as: an integer. It can have any value.

k is the degree k of the polynomial.

Specified as: an integer; k ≥ 0.

x is the input vector x of length n. Specified as: a one-dimensional array of (at
least) length 1+(n-1)|incx|, containing numbers of the data type indicated in
Table 209.

incx
is the stride for vector x.

Specified as: an integer. It can have any value.

y See On Return.

incy
is the stride for the output vector y. Specified as: an integer. It can have any
value.

n is the number of elements in input vector x and the number of resulting
elements in output vector y.

Specified as: an integer; n ≥ 0.

On Return

y is the output vector y of length n, containing the results of the polynomial

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1139

evaluation. Returned as: a one-dimensional array of (at least) length
1+(n-1)|incy|, containing numbers of the data type indicated in Table 209 on
page 1139.

Notes

Vectors u, x, and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 73.

Function

The evaluation of the polynomial:

is expressed as follows:

yi = u0+xi (u1+xi (u2+ ...+xi (uk-1 + xiuk) ...) for i = 1, 2, ..., n

See reference [96 on page 1319] for Horner's Rule. If n is 0, no computation is
performed. For SPOLY, intermediate results are accumulated in long precision.

SPOLY provides the same function as the IBM 3838 function POLY, with
restrictions removed. DPOLY provides a long-precision computation that is not
included in the IBM 3838 functions. See the IBM 3838 Array Processor Functional
Characteristics manual.

Error conditions

Computational Errors
None

Input-Argument Errors

1. k < 0
2. n < 0

Examples

Example 1

This example shows a polynomial evaluation with the degree, K, equal to 0.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , INCU , 0 , X , INCX , Y , 1 , 3)

U = (4.0)
INCU =(not relevant)
X =(not relevant)
INCX =(not relevant)

Output:
Y = (4.0, 4.0, 4.0)

Example 2

1140 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows a polynomial evaluation, using a negative stride INCU for
vector u. For u, processing begins at element U(4) which is 1.0.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , -1 , 3 , X , 1 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, 1.0, -3.0)

Output:
Y = (49.0, 10.0, -86.0)

Example 3

This example shows a polynomial evaluation, using a stride INCX of 0 for input
vector x.

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , 1 , 3 , X , 0 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , .)

Output:
Y = (26.0, 26.0, 26.0)

Example 4

This example shows a polynomial evaluation, using a stride INCX greater than
1 for input vector x, and a negative stride INCY for output vector y. For y,
results are stored beginning at element Y(5).

Call Statement and Input:
U INCU K X INCX Y INCY N
| | | | | | | |

CALL SPOLY(U , 1 , 3 , X , 2 , Y , -2 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , -3.0, . , 1.0)

Output:
Y = (10.0, . , -14.0, . , 26.0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1141

SIZC and DIZC (I-th Zero Crossing)
Purpose

These subroutines find the position of the i-th zero crossing in vector x. This is the
i-th transition between positive and negative or negative and positive, where 0 is
considered a positive value. It returns the position of the element in vector x where
the i-th zero crossing is detected. The direction of the scan is either from the first
element to the last or from the last element to the first, depending on the value
you specify for the scan direction argument.

Table 210. Data Types

x Subroutine

Short-precision real SIZC

Long-precision real DIZC

Syntax

Fortran CALL SIZC | DIZC (x, idrx, n, i, ky)

C and C++ sizc | dizc (x, idrx, n, i, ky);

On Entry

x is the target vector x of length n.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 210.

idrx
indicates the scan direction. If it is positive or 0, x is scanned from the first
element to the last (1, n). If it is negative, x is scanned from the last element to
the first (n, 1).

Specified as: an integer. It can have any value.

n is the number of elements in vector x. Specified as: an integer; n > 1.

i is the number of the zero crossing to be identified.

Specified as: an integer; i > 0.

ky See On Return.

On Return

ky is the integer vector ky of length 2, containing elements ky1 and ky2, where:

If the i-th zero crossing is found:
v ky1 = j, where j is the position of the element xj at the point that the i-th zero

crossing is found. The position is always relative to the beginning of the
vector regardless of the scan direction.

v ky2 = i

If the i-th zero crossing is not found:
v ky1 = 0
v ky2 = the total number of zero crossings encountered in the scan.

Returned as: an array of (at least) length 2, containing integers.

1142 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notes

The aux and naux arguments, required in some earlier releases of ESSL, are no
longer required by these subroutines. If your program still includes them, you do
not have to change your program; it continues to run normally. It ignores these
arguments. However, if you did any program checking for error code 2015, you
may want to remove it, because this error no longer occurs. (You must not code
these arguments in your C program.)

Function

The i-th zero crossing in vector x is found by scanning vector x for i occurrences of
TRUE for the following logical expressions. A zero crossing is defined here as a
crossing either from a positive value to a negative value or from a negative value
to a positive value, where 0 is considered a positive value. If the i-th zero crossing
is found, the value of j at that point is returned in ky1 as the position of the i-th
zero crossing, and i is returned in ky2.

If idrx ≥ 0:

TRUE = (xj-1 < 0 and xj ≥ 0) or (xj-1 ≥ 0 and xj < 0) for j = 2, n

If idrx < 0:

TRUE = (xj+1 < 0 and xj ≥ 0) or (xj+1 ≥ 0 and xj < 0) for j = n-1, 1

If the position of the i-th zero crossing is not found, 0 is returned in y1 and the
number of zero crossings encountered in the scan is returned in y2.

SIZC provides the same functions as the IBM 3838 functions NZCP and NZCN,
with restrictions removed. It combines these functions into one ESSL subroutine.
DIZC provides a long-precision computation that is not included in the IBM 3838
functions. See the IBM 3838 Array Processor Functional Characteristics manual.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n ≤ 1
2. i ≤ 0

Examples

Example 1

This example shows a scan of a vector x from the first element to the last. It is
looking for the fifth zero crossing, which is encountered at position 9.

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , 1 , 12 , 5 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1143

KY = (9, 5)

Example 2

This example shows a scan of a vector x from the last element to the first. It is
looking for the seventh zero crossing, which is encountered at position 3.
Because IDRX is negative, X is scanned from the last element, X(12), to the first
element, X(1).

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , -1 , 12 , 7 , KY)

X = (2.0, -1.0, 3.0, -3.0, 0.0, -8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:
KY = (3, 7)

Example 3

This example shows a scan of a vector x when the i-th zero crossing is not
found. It encounters seven zero crossings and returns this value in KY(2).

Call Statement and Input:
X IDRX N I KY
| | | | |

CALL SIZC(X , 1 , 12 , 10 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
2.0, -9.0)

Output:
KY = (0, 7)

1144 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

STREC and DTREC (Time-Varying Recursive Filter)
Purpose

These subroutines implement the first-order time-varying recursive equation, using
initial value s, target vectors u and x, and output vector y.

Table 211. Data Types

s, u, x, y Subroutine

Short-precision real STREC

Long-precision real DTREC

Syntax

Fortran CALL STREC | DTREC (s, u, incu, x, incx, y, incy, n , iopt)

C and C++ strec | dtrec (s, u, incu, x, incx, y, incy, n, iopt);

On Entry

s is the scalar s used in the initial computation for y1.

Specified as: a number of the data type indicated in Table 211.

u is the target vector u of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incu|,
containing numbers of the data type indicated in Table 211.

incu
is the stride for target vector u.

Specified as: an integer. It can have any value.

x is the target vector x of length n.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 211.

incx
is the stride for target vector x. Specified as: an integer. It can have any value.

y See On Return.

incy
is the stride for output vector y. Specified as: an integer; incy > 0 or incy < 0.

n is the number of elements in vectors u and x and the number of resulting
elements in output vector y.

Specified as: an integer; n ≥ 0.

iopt
this argument has no effect on the performance of the computation, but still
must be Specified as: an integer; iopt = 0 or 1.

On Return

y is the vector y of length n, containing the results of the implementation of the
first-order time-varying recursive equation. Returned as: a one-dimensional
array of (at least) length 1+(n-1)|incy|, containing numbers of the data type
indicated in Table 211.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1145

Notes

Vectors u, x, and y must have no common elements; otherwise, results are
unpredictable. See “Concepts” on page 73.

Function

The first-order time-varying recursive equation is expressed as follows:

y1 = s+u1x1
y2 = u2y1+u1x2
.
.
.
yi = uiyi-1+u1xi for i = 3, 4, ..., n

STREC provides the same function as the IBM 3838 function REC, with restrictions
removed. DTREC provides a long-precision computation that is not included in the
IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error conditions

Computational Errors
None

Input-Argument Errors

1. incy = 0
2. n < 0
3. iopt ≠ 0 or 1

Examples

Example 1

This example shows all strides INCU, INCX, and INCY equal to 1 for vectors u, x,
and y, respectively.

Call Statement and Input:
S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 1 , X , 1 , Y , 1 , 8 , 0)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

Output:
Y = (4.0, 10.0, 31.0, 94.0, 190.0, 193.0, 196.0, 394.0)

Example 2

This example shows a stride, INCU, that is greater than 1 for vector u. The
strides INCX and INCY for vectors x and y, respectively, are 1.

Call Statement and Input:
S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 2 , X , 1 , Y , 1 , 4 , 0)

U = (1.0, . , 3.0, . , 2.0, . , 1.0, .)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

1146 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
Y = (4.0, 14.0, 29.0, 30.0)

Example 3

This example shows a stride, INCU, of 1 for vector u, a stride, INCX, that is
greater than 1 for vector x, and a negative stride, INCY, for vector y. For y,
results are stored beginning at element Y(4).

Call Statement and Input:
S U INCU X INCX Y INCY N IOPT
| | | | | | | | |

CALL STREC(1.0 , U , 1 , X , 2 , Y , -1 , 4 , 1)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, . , 1.0, . , 2.0, . , 3.0)

Output:
Y = (90.0, 29.0, 9.0, 4.0)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1147

SQINT and DQINT (Quadratic Interpolation)
Purpose

These subroutines perform a quadratic interpolation at specified points in the
vector x, using initial linear displacement in the samples s, sample interval g,
output scaling parameter Ω, and sample reflection times in vector t. The result is
returned in vector y.

Table 212. Data Types

x, s, g, Ω, t, y Subroutine

Short-precision real SQINT

Long-precision real DQINT

Syntax

Fortran CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m)

C and C++ sqint | dqint (s, g, omega, x, incx, n, t, inct, y, incy, m);

On Entry

s is the scalar s, containing the initial linear displacement in samples.

Specified as: a number of the data type indicated in Table 212.

g is the scalar g, containing the sample interval.

Specified as: a number of the data type indicated in Table 212; g > 0.0.

omega
is the output scaling parameter Ω.

Specified as: a number of the data type indicated in Table 212.

x is the vector x of length n, containing the trace data.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 212.

incx
is the stride for vector x.

Specified as: an integer; incx > 0 or incx < 0.

n is the number of elements in vector x.

Specified as: an integer; n ≥ 3.

t is the vector t of length m, containing the sample reflection times to be
processed.

Specified as: a one-dimensional array of (at least) length 1+(m-1)|inct|,
containing numbers of the data type indicated in Table 212.

inct
is the stride for vector t.

Specified as: an integer; inct > 0 or inct < 0.

y See On Return.

incy
is the stride for output vector y.

1148 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; incy > 0 or incy < 0.

m is the number of elements in vector t and the number of elements in output
vector y.

Specified as: an integer; m ≥ 0.

On Return

y is the vector y of length m, containing the results of the quadratic interpolation.
Returned as: a one-dimensional array of (at least) length 1+(m-1)|incy|,
containing numbers of the data type indicated in Table 212 on page 1148.

Function

The quadratic interpolation, which is expressed as follows:

for i = 1, 2, ..., m

uses the following values:

x is the vector containing the specified points.
s is the initial linear displacement in the samples.
g is a sample interval.
Ω is the output scaling parameter.
t is the vector containing the sample reflection times.

and where trace, k, f, and w are four working vectors, and so is a working scalar
defined as:

trace1 = 3x1-3x2+x3
tracei+1 = xi for i = 1, 2, ..., n
so = s+2.0
wi = so+ti / g for i = 1, 2, ..., m
fi = fraction part of wi

ki+1 = integer part of wi

Note: Allowing ki+1 to have a value of 2 results in performance degradation. If
possible, avoid specifying a point at which this occurs.

If n or m is 0, no computation is performed.

SQINT provides the same function as the IBM 3838 function INT, with restrictions
removed. DQINT provides a long-precision computation that is not included in the
IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error conditions

Computational Errors
The condition (ki+1 > n) or (ki+1 ≤ 2) has occurred, where n is the number of
elements in vector x. See “Function” for how to calculate ki.
v The lower range l and the upper range j of the vector are identified in the

computational error message.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1149

v The return code is set to 1.
v The ranges l and j of the vector can be determined at run time by using the

ESSL error-handling facilities. To obtain this information, you must use
ERRSET to change the number of allowable errors for error code 2100 in the
ESSL error option table; otherwise, the default value causes your program to
terminate when this error occurs. For details, see “What Can You Do about
ESSL Computational Errors?” on page 66.

Input-Argument Errors

1. n < 3
2. m < 0
3. g ≤ 0
4. incx = 0
5. inct = 0
6. incy = 0

Examples

Example 1

This example shows a quadratic interpolation, using vectors with strides of 1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , 1 , 8 , T , 1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

Output:
Y = (9.0, 11.0, 13.0, 15.0)

Example 2

This example shows a quadratic interpolation, using vectors with a positive
stride of 1 and negative strides of -1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , -1 , 8 , T , -1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

Output:
Y = (3.0, 5.0, 7.0, 9.0)

Example 3

This example shows a quadratic interpolation, using vectors with a positive
stride greater than 1 and negative strides less than -1.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(2.0 , 1.0 , 1.0 , X , -2 , 8 , T , -1 , Y , 2 , 4)

X = (1.0, . , 3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0, . ,
13.0, . , 15.0)

T = (1.36, 2.36, 3.36, 4.36)

1150 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Output:
Y = (4.56, . , 8.56, . , 12.56, . , 16.56)

Example 4

This example shows a quadratic interpolation, using vectors with positive
strides and larger values for S and G than shown in the previous examples.

Call Statement and Input:
S G OMEGA X INCX N T INCT Y INCY M
| | | | | | | | | | |

CALL SQINT(3.0 , 10.0 , 1.0 , X , 1 , 8 , T , 2 , Y , 3 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, . , 2.5, . , 3.5, . , 4.5)

Output:
Y = (8.3, . , . , 8.5, . , . , 8.7, . , . , 8.9)

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1151

SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter
Coefficients)

Purpose

These subroutines compute the coefficients of an n-point Wiener-Levinson filter,
using vector x, the trace for which the filter is to be designed, and vector u, the
right-hand side of the system, chosen to remove reverberations or sharpen the
wavelet. The result is returned in vector y.

Table 213. Data Types

x, u, y aux Subroutine

Short-precision real Long-precision real SWLEV

Long-precision real Long-precision real DWLEV

Short-precision complex Long-precision complex CWLEV

Long-precision complex Long-precision complex ZWLEV

Syntax

Fortran CALL SWLEV | DWLEV | CWLEV | ZWLEV | (x, incx, u, incu, y, incy, n, aux, naux)

C and C++ swlev | dwlev | cwlev | zwlev (x, incx, u, incu, y, incy, n, aux, naux);

On Entry

x is the vector x of length n, containing the trace data for which the filter is to be
designed.

For SWLEV and DWLEV, x represents the first row (or the first column) of a
positive definite or negative definite symmetric Toeplitz matrix, which is the
autocorrelation matrix for which the filter is designed.

For CWLEV and ZWLEV, x represents the first row of a positive definite or
negative definite complex Hermitian Toeplitz matrix, which is the
autocorrelation matrix for which the filter is designed.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 213.

incx
is the stride for vector x.

Specified as: an integer; incx > 0.

u is the vector u of length n, containing the right-hand side of the system to be
solved.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incu|,
containing numbers of the data type indicated in Table 213.

incu
is the stride for vector u.

Specified as: an integer. It can have any value.

y See On Return.

incy
is the stride for vector y.

1152 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an integer; incy > 0 or incy < 0.

n is the number of elements in vectors x, u, and y.

Specified as: an integer; n ≥ 0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by these subroutines.

Specified as: an area of storage of length naux, containing numbers of the data
type indicated in Table 213 on page 1152.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SWLEV, DWLEV, CWLEV, and
ZWLEV dynamically allocate the work area used by the subroutine. The work
area is deallocated before control is returned to the calling program.

Otherwise, naux ≥ 3n.

You cannot use dynamic allocation if you need the information returned in
AUX(1).

On Return

y is the vector y of length n, containing the solution vector—that is, the
coefficients of the n-point Wiener-Levinson filter. Returned as: a
one-dimensional array of (at least) length 1+(n-1)|incy|, containing numbers of
the data type indicated in Table 213 on page 1152.

aux
is the storage work area used by these subroutines, where if naux ≠ 0:

If AUX(1) = 0.0, the input Toeplitz matrix is positive definite or negative
definite.

If AUX(1) > 0.0, the input Toeplitz matrix is indefinite (that is, it is not positive
definite and it is not negative definite). The value returned in AUX(1) is the
order of the first submatrix of A that is indefinite. The subroutine continues
processing. See reference [73 on page 1317] for information about under what
circumstances your solution vector y would be valid.

All other values in aux are overwritten and are not significant.

Returned as: an area of storage of length naux, containing numbers of the data
type indicated in Table 213 on page 1152, where AUX(1) ≥ 0.0.

Notes
1. For a description of a positive definite or negative definite symmetric Toeplitz

matrix, see “Positive Definite or Negative Definite Symmetric Toeplitz Matrix”
on page 89.

2. For a description of a positive definite or negative definite complex Hermitian
Toeplitz matrix, see “Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix” on page 90.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1153

3. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The computation of the coefficients of an n-point Wiener-Levinson filter in vector y
is expressed as solving the following system:

Ay = u

where:
v For SWLEV and DWLEV, matrix A is a real symmetric Toeplitz matrix whose

first row (or first column) is represented by vector x.
For CWLEV and ZWLEV, matrix A is a complex Hermitian Toeplitz matrix
whose first row is represented by vector x.

v u is the vector specifying the right side of the system, chosen to remove
reverberations or to sharpen the wavelet.

v y is the solution vector.

See reference [73 on page 1317], [35 on page 1315], and the IBM 3838 Array
Processor Functional Characteristics.

If n is 0, no computation is performed. For SWLEV and CWLEV, intermediate
results are accumulated in long precision.

SWLEV provides the same function as the IBM 3838 function WLEV, with
restrictions removed. See the IBM 3838 Array Processor Functional Characteristics
manual.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n < 0
2. incx ≤ 0
3. incy = 0
4. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value specified in the syntax for this argument.
Return code 1 is returned if error 2015 is recoverable.

Examples

Example 1

This example shows how to compute filter coefficients in vector y by solving
the system Ay = u. Matrix A is:

┌ ┐
| 50.0 -8.0 7.0 -5.0 |
| -8.0 50.0 -8.0 7.0 |

1154 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| 7.0 -8.0 50.0 -8.0 |
| -5.0 7.0 -8.0 50.0 |
└ ┘

This input Toeplitz matrix is positive definite, as indicated by the zero value in
AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

X = (50.0, -8.0, 7.0, -5.0)
U = (40.0, -10.0, 30.0, 20.0)
AUX =(not relevant)

Output:
Y = (0.7667, -0.0663, 0.5745, 0.5778)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 2

This example shows how to compute filter coefficients in vector y by solving
the system Ay = u. Matrix A is:

┌ ┐
| 10.0 -8.0 7.0 -5.0 |
| -8.0 10.0 -8.0 7.0 |
| 7.0 -8.0 10.0 -8.0 |
| -5.0 7.0 -8.0 10.0 |
└ ┘

This input Toeplitz matrix is not positive definite, as indicated by the zero
value in AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

X = (10.0, -8.0, 7.0, -5.0)
U = (40.0, -10.0, 30.0, 20.0)
AUX =(not relevant)

Output:
Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 3

This example shows a vector x with a stride greater than 1, a vector u with a
negative stride, and a vector y with a stride of 1. It uses the same input
Toeplitz matrix as in Example 2, which is not positive definite.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL SWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

X = (10.0, . , -8.0, . , 7.0, . , -5.0)
U = (20.0, . , 30.0, . , -10.0, . , 40.0)
AUX =(not relevant)

Output:

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 1155

Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

Example 4

This example shows how to compute filter coefficients in vector y by solving
the system Ay = u. Matrix A is:

┌ ┐
| (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
| (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
| (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
| (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
└ ┘

This input complex Hermitian Toeplitz matrix is positive definite, as indicated
by the zero value in AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL ZWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))
U = ((8.0, 3.0), (21.0, -5.0), (67.0, -13.0), (72.0, 11.0))
AUX =(not relevant)

Output:
Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

Example 5

This example shows a vector x with a stride greater than 1, a vector u with a
negative stride, and a vector y with a stride of 1. It uses the same input
complex Hermitian Toeplitz matrix as in Example 4.

This input complex Hermitian Toeplitz matrix is positive definite, as indicated
by the zero value in AUX(1) on output.

Call Statement and Input:
X INCX U INCU Y INCY N AUX NAUX
| | | | | | | | |

CALL ZWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

X = ((10.0, 0.0), . , (2.0, -3.0), . , (-3.0, 1.0), .
,

(1.0, 1.0))
U = ((72.0, 11.0), . , (67.0, -13.0), . , (21.0, -5.0), . ,

(8.0, 3.0), .)
AUX =(not relevant)

Output:
Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

1156 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 13. Sorting and Searching

The sorting and searching subroutines are described here.

Overview of the Sorting and Searching Subroutines
The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision-real. The sorting subroutines perform sorts
with or without index designations. The searching subroutines perform either a
binary or sequential search.

Table 214. List of Sorting and Searching Subroutines

Integer
Subroutine

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

ISORT SSORT DSORT “ISORT, SSORT, and DSORT (Sort the Elements of a
Sequence)” on page 1160

ISORTX SSORTX DSORTX “ISORTX, SSORTX, and DSORTX (Sort the Elements of a
Sequence and Note the Original Element Positions)” on
page 1162

ISORTS SSORTS DSORTS “ISORTS, SSORTS, and DSORTS (Sort the Elements of a
Sequence Using a Stable Sort and Note the Original
Element Positions)” on page 1165

IBSRCH SBSRCH DBSRCH “IBSRCH, SBSRCH, and DBSRCH (Binary Search for
Elements of a Sequence X in a Sorted Sequence Y)” on
page 1169

ISSRCH SSSRCH DSSRCH “ISSRCH, SSSRCH, and DSSRCH (Sequential Search for
Elements of a Sequence X in the Sequence Y)” on page
1173

Use Considerations
It is important to understand the concept of stride for sequences when using these
subroutines. For example, in the sort subroutines, a negative stride causes a
sequence to be sorted into descending order in an array. In the search subroutines,
a negative stride reverses the direction of the search. See “How Stride Is Used for
Vectors” on page 76.

Performance and Accuracy Considerations
1. The binary search subroutines provide better performance than the sequential

search subroutines because of the nature of the searching algorithms. However,
the binary search subroutines require that, before the subroutine is called, the
sequence to be searched is sorted into ascending order. Therefore, if your data
is already sorted, a binary search subroutine is faster. On the other hand, if
your data is in random order and the number of elements being searched for is
small, a sequential search subroutine is faster than doing a sort and binary
search.

2. When doing multiple invocations of the binary search subroutines, you get
better overall performance from the searching algorithms by doing fewer
invocations and specifying larger search element arrays for argument x.

© Copyright IBM Corp. 1986, 2015 1157

3. If you do not need the results provided in array RC by these subroutine, you
get better performance if you do not request it. That is, specify 0 for the iopt
argument.

1158 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Sorting and Searching Subroutines

This contains the sorting and searching subroutine descriptions.

Chapter 13. Sorting and Searching 1159

ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)
Purpose

These subroutines sort the elements of sequence x.

Table 215. Data Types

x Subroutine

Integer ISORT

Short-precision real SSORT

Long-precision real DSORT

Syntax

Fortran CALL ISORT | SSORT | DSORT (x, incx, n)

C and C++ isort | ssort | dsort (x, incx, n);

On Entry

x is the sequence x of length n, to be sorted.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 215.

incx
is the stride for both the input sequence x and the output sequence x. If it is
positive, elements are sorted into ascending order in the array, and if it is
negative, elements are sorted into descending order in the array.

Specified as: an integer. It can have any value.

n is the number of elements in sequence x. Specified as: an integer; n ≥ 0.

On Return

x is the sequence x of length n, with its elements sorted into designated order in
the array. Returned as: a one-dimensional array, containing numbers of the
data type indicated in Table 215.

Function

The elements of input sequence x are sorted into ascending order, in place and
using a partition sort. The elements of output sequence x can be expressed as
follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

By specifying a negative stride for sequence x, the elements of sequence x are
assumed to be reversed in the array, (xn, xn-1, ... , x1), thus producing a sort into
descending order within the array. If n is 0 or 1 or if incx is 0, no sort is performed.
See reference [87 on page 1318].

Error conditions

Resource Errors
Unable to allocate internal work area.

1160 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

This example shows a sequence x with a positive stride.

Call Statement and Input:
X INCX N
| | |

CALL ISORT(X , 2 , 5)

X = (2, . , -1, . , 5, . , 4, . , -2)

Output:
X = (-2, . , -1, . , 2, . , 4, . , 5)

Example 2

This example shows a sequence x with a negative stride.

Call Statement and Input:
X INCX N
| | |

CALL ISORT(X , -1 , 5)

X = (2, -1, 5, 4, -2)

Output:
X = (5, 4, 2, -1, -2)

Chapter 13. Sorting and Searching 1161

ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and
Note the Original Element Positions)

Purpose

These subroutines sort the elements of sequence x. The original positions of the
elements in sequence x are returned in the indices array, INDX. Where equal
elements occur in the input sequence, they do not necessarily remain in the same
relative order in the output sequence.

Note: If you need a stable sort, you should use ISORTS, SSORTS, or DSORTS
rather than these subroutines.

Table 216. Data Types

x Subroutine

Integer ISORTX

Short-precision real SSORTX

Long-precision real DSORTX

Syntax

Fortran CALL ISORTX | SSORTX | DSORTX (x, incx, n, indx)

C and C++ isortx | ssortx | dsortx (x, incx, n, indx);

On Entry

x is the sequence x of length n, to be sorted.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|
elements, containing numbers of the data type indicated in Table 216.

incx
is the stride for both the input sequence x and the output sequence x. If it is
positive, elements are sorted into ascending order in the array, and if it is
negative, elements are sorted into descending order in the array.

Specified as: an integer. It can have any value.

n is the number of elements in sequence x. Specified as: an integer; n ≥ 0.

indx
See On Return.

On Return

x is the sequence x of length n, with its elements sorted into designated order in
the array. Returned as: a one-dimensional array, containing numbers of the
data type indicated in Table 216.

indx
is the array, referred to as INDX, containing the n indices that indicate, for the
elements in the sorted output sequence, the original positions of those elements
in input sequence x.

Note: It is important to remember that when you specify a negative stride,
ESSL assumes that the order of the input and output sequence elements in the
X array is reversed; however, the elements in INDX are not reversed. See
“Function” on page 1163.

1162 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Returned as: a one-dimensional array of length n, containing integers; 1 ≤ (INDX
elements) ≤ n.

Function

The elements of input sequence x are sorted into ascending order, in place and
using a partition sort. The elements of output sequence x can be expressed as
follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

Where equal elements occur in the input sequence, they do not necessarily remain
in the same relative order in the output sequence.

By specifying a negative stride for x, the elements of input sequence x are assumed
to be reversed in the array, (xn, xn-1, ... , x1), thus producing a sort into descending
order within the array.

In addition, the INDX array contains the n indices that indicate, for the elements in
the sorted output sequence, the original positions of those elements in input
sequence x. (These are not the positions in the array, but rather the positions in the
sequence.) For each element xj in the input sequence, becoming element xxk in the
output sequence, the elements in INDX are defined as follows:

INDX(k) = j for j = 1, n and k = 1, n
where xxk = xj

To understand INDX when you specify a negative stride, you should remember that
both the input and output sequences, x, are assumed to be in reverse order in
array X, but INDX is not affected by stride. The sequence elements of x are assumed
to be stored in your input array as follows:

X = (xn, xn-1, ... , x1)

The sequence elements of x are stored in your output array by ESSL as follows:

X = (xxn, xxn-1, ... , xx1)

where the elements xxk are the elements xj, sorted into descending order in X. As
an example of how INDX is calculated, if xx1 = xn-1, then INDX(1) = n-1.

If n is 0, no computation is performed. See reference [87 on page 1318].

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors
n < 0

Examples

Example 1

Chapter 13. Sorting and Searching 1163

This example shows how to sort a sequence x into ascending order by
specifying a positive stride.

Call Statement and Input:
X INCX N INDX
| | | |

CALL ISORTX(X , 2 , 5 , INDX)

X = (2, . , -1, . , 5, . , 1, . , -2)

Output:
X = (-2, . , -1, . , 1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

Example 2

This example shows how to sort a sequence x into descending order by
specifying a negative stride. Therefore, both the input and output sequences
are assumed to be reversed in the array X. The input sequence is assumed to
be stored as follows:

X = (x5, x4, x3, x2, x1) = (2, -1, 5, 1, -2)

The output sequence is stored by ESSL as follows:

X = (xx5, xx4, xx3, xx2, xx1) = (5, 2, 1, -1, -2)

As a result, INDX is defined as follows:

INDX = (indx1, indx2, indx3, indx4, indx5) = (1, 4, 2, 5, 3)

For example, because output sequence element xx4 = 2 is input sequence
element x5, then INDX(4) = 5.

Call Statement and Input:
X INCX N INDX
| | | |

CALL ISORTX(X , -1 , 5 , INDX)

X = (2, -1, 5, 1, -2)

Output:
X = (5, 2, 1, -1, -2)
INDX = (1, 4, 2, 5, 3)

1164 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence
Using a Stable Sort and Note the Original Element Positions)

Purpose

These subroutines sort the elements of sequence x using a stable sort; that is,
where equal elements occur in the input sequence, they remain in the same relative
order in the output sequence. The original positions of the elements in sequence x
are returned in the indices array INDX.

Note: If you need a stable sort, then you should use these subroutines rather than
ISORTX, SSORTX, or DSORTX.

Table 217. Data Types

x, work Subroutine

Integer ISORTS

Short-precision real SSORTS

Long-precision real DSORTS

Syntax

Fortran CALL ISORTS | SSORTS | DSORTS (x, incx, n, indx, work, lwork)

C and C++ isorts | ssorts | dsorts (x, incx, n, indx, work, lwork);

On Entry

x is the sequence x of length n, to be sorted.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|
elements, containing numbers of the data type indicated in Table 217.

incx
is the stride for both the input sequence x and the output sequence x. If it is
positive, elements are sorted into ascending order in the array, and if it is
negative, elements are sorted into descending order in the array.

Specified as: an integer. It can have any value.

n is the number of elements in sequence x. Specified as: an integer; n ≥ 0.

indx
See On Return.

work
is the storage work area used by this subroutine. Its size is specified by lwork.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 217.

lwork
is the size of the work area specified by work— that is, the number of elements
in work.

Specified as: an integer; lwork ≥ n/2.

Note: This is the value to achieve optimal performance. The sort is performed
regardless of the value you specify for lwork, but you may receive an attention
message.

Chapter 13. Sorting and Searching 1165

On Return

x is the sequence x of length n, with its elements sorted into designated order in
the array. Returned as: a one-dimensional array, containing numbers of the
data type indicated in Table 217 on page 1165.

indx
is the array, referred to as INDX, containing the n indices that indicate, for the
elements in the sorted output sequence, the original positions of those elements
in input sequence x.

Note: It is important to remember that when you specify a negative stride,
ESSL assumes that the order of the input and output sequence elements in the
X array is reversed; however, the elements in INDX are not reversed. See
“Function.”

Returned as: a one-dimensional array of length n, containing integers; 1 ≤ (INDX
elements) ≤ n.

Function

The elements of input sequence x are sorted into ascending order using a partition
sort. The sorting is stable; that is, where equal elements occur in the input
sequence, they remain in the same relative order in the output sequence. The
elements of output sequence x can be expressed as follows:

x1 ≤ x2 ≤ x3 ≤ ... ≤ xn

By specifying a negative stride for x, the elements of input sequence x are assumed
to be reversed in the array, (xn, xn-1, ... , x1), thus producing a sort into descending
order within the array.

In addition, the INDX array contains the n indices that indicate, for the elements in
the sorted output sequence, the original positions of those elements in input
sequence x. (These are not the positions in the array, but rather the positions in the
sequence.) For each element xj in the input sequence, becoming element xxk in the
output sequence, the elements in INDX are defined as follows:

INDX(k) = j for j = 1, n and k = 1, n
where xxk = xj

To understand INDX when you specify a negative stride, you should remember that
both the input and output sequences, x, are assumed to be in reverse order in
array X, but INDX is not affected by stride. The sequence elements of x are assumed
to be stored in your input array as follows:

X = (xn, xn-1, ... , x1)

The sequence elements of x are stored in your output array by ESSL as follows:

X = (xxn, xxn-1, ... , xx1)

where the elements xxk are the elements xj, sorted into descending order in X. As
an example of how INDX is calculated, if xx1 = xn-1, then INDX(1) = n-1.

If n is 0, no computation is performed. See references [36 on page 1315] and [87 on
page 1318].

1166 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Resource Errors
Unable to allocate internal work area.

Computational Errors
None

Input-Argument Errors

n < 0

Examples

Example 1

This example shows how to sort a sequence x into ascending order by
specifying a positive stride. Because this is a stable sort, the -1 elements remain
in the same relative order in the output sequence, indicated by INDX(2) = 2
and INDX(3) = 4.

Call Statement and Input:
X INCX N INDX WORK LWORK
| | | | | |

CALL ISORTS(X , 2 , 5 , INDX , WORK , 5)

X = (2, . , -1, . , 5, . , -1, . , -2)

Output:
X = (-2, . , -1, . , -1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

Example 2

This example shows how to sort a sequence x into descending order by
specifying a negative stride. Therefore, both the input and output sequences
are assumed to be reversed in the array X. The input sequence is assumed to
be stored as follows:

X = (x5, x4, x3, x2, x1) = (2, -1, 5, -1, -2)

The output sequence is stored by ESSL as follows:

X = (xx5, xx4, xx3, xx2, xx1) = (5, 2, -1, -1, -2)

As a result, INDX is defined as follows:

INDX = (indx1, indx2, indx3, indx4, indx5) = (1, 2, 4, 5, 3)

For example, because output sequence element xx4 = 2 is input sequence
element x5, then INDX(4) = 5. Also, because this is a stable sort, the -1 elements
remain in the same relative order in the output sequence, indicated by INDX(2)
= 2 and INDX(3) = 4.

Call Statement and Input:
X INCX N INDX WORK LWORK
| | | | | |

CALL ISORTS(X , -1 , 5 , INDX , WORK , 5)

X = (2, -1, 5, -1, -2)

Output:

Chapter 13. Sorting and Searching 1167

X = (5, 2, -1, -1, -2)
INDX = (1, 2, 4, 5, 3)

1168 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a
Sequence X in a Sorted Sequence Y)

Purpose

These subroutines perform a binary search for the locations of the elements of
sequence x in another sequence y, where y has been sorted into ascending order.
The first occurrence of each element is found. When an exact match is not found,
the position of the next larger element in y is indicated. The locations are returned
in the indices array INDX, and, optionally, return codes indicating whether the exact
elements were found are returned in array RC.

Table 218. Data Types

x, y Subroutine

Integer IBSRCH

Short-precision real SBSRCH

Long-precision real DBSRCH

Syntax

Fortran CALL IBSRCH | SBSRCH | DBSRCH (x, incx, n, y, incy, m, indx, rc, iopt)

C and C++ ibsrch | sbsrch | dbsrch (x, incx, n, y, incy, m, indx, rc, iopt);

On Entry

x is the sequence x of length n, containing the elements for which sequence y is
searched.

Specified as: a one-dimensional array, containing numbers of the data type
indicated in Table 218. It must have at least 1+(n-1)|incx| elements.

incx
is the stride for sequence x.

Specified as: an integer. It can have any value.

n is the number of elements in sequence x and arrays INDX and RC.

Specified as: an integer; n ≥ 0.

y is the sequence y of length m, to be searched, where y must be sorted into
ascending order.

Note: Be careful in specifying the stride for sequence y. A negative stride
reverses the direction of the search, because the order of the sequence elements
is reversed in the array.

Specified as: a one-dimensional array of (at least) length 1+(m-1)|incy|,
containing numbers of the data type indicated in Table 218.

incy
is the stride for sequence y.

Specified as: an integer. It can have any value.

m is the number of elements in sequence y. Specified as: an integer; m ≥ 0.

indx
See On Return.

Chapter 13. Sorting and Searching 1169

rc See On Return.

iopt
has the following meaning, where:

If iopt = 0, the rc argument is not used in the computation.

If iopt = 1, the rc argument is used in the computation.

Specified as: an integer; iopt = 0 or 1.

On Return

indx
is the array, referred to as INDX, containing the n indices that indicate the
positions of the elements of sequence x in sequence y. The first occurrence of
the element found in sequence y is indicated in array INDX. When an exact
match between an element of sequence x and an element of sequence y is not
found, the position of the next larger element in sequence y is indicated. When
the element in sequence x is larger than all the elements in sequence y, then
m+1 is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing integers; 1 ≤ (INDX
elements) ≤ m+1.

rc has the following meaning, where:

If iopt = 0, then rc is not used, and its contents remain unchanged.

If iopt = 1, it is the array, referred to as RC, containing the n return codes that
indicate whether the elements in sequence x were found in sequence y. For i =
1, n, elements RC(i) = 0 if xi matches an element in sequence y, and RC(i) = 1 if
an exact match is not found in sequence y.

Returned as: a one-dimensional array of length n, containing integers; RC(i) = 0
or 1.

Notes
1. The elements of y must be sorted into ascending order; otherwise, results are

unpredictable. For details on how to do this, see “ISORT, SSORT, and DSORT
(Sort the Elements of a Sequence)” on page 1160.

2. If you do not need the results provided in array RC by these subroutines, you
get better performance if you do not request it. That is, specify 0 for the iopt
argument.

Function

These subroutines perform a binary search for the first occurrence (or last
occurrence, using negative stride) of the locations of the elements of sequence x in
another sequence y, where y must be sorted into ascending order before calling
this subroutine. The first occurrence of each element is found. Two arrays are
returned, containing the results of the binary searches:
v INDX, the indices array, contains the positions of the elements of sequence x in

sequence y. When an exact match between values of elements in sequences x
and y is not found, the location of the next larger element in sequence y is
indicated in array INDX.

v RC, the return codes array, indicates for each element in sequence x whether the
exact element was found in sequence y. If you do not need these results, you get
better performance if you set iopt = 0.

1170 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The results returned for the INDX and RC arrays are expressed as follows:
For i = 1, n

for all yj ≥ xi, j = 1, m , INDX(i) = min(j)
if all yj < xi, j = 1, m , INDX(i) = m+1

And for i = 1, n

if xi = yINDX(i), RC(i) = 0
if xi ≠ yINDX(i), RC(i) = 1

where:
x is a sequence of length n, containing the search elements
y is a sequence of length m to be searched. It must be sorted into ascending
order
INDX is the array of length n of indices
RC is the array of length n of return codes

See reference [87 on page 1318]. If n is 0, no search is performed. If m is 0, then:

INDX(i) = 1 and RC(i) = 1 for i = 1, n

It is important to note that a negative stride for sequence y reverses the direction
of the search, because the order of the sequence elements is reversed in the array.
For more details on sorting sequences, see “Function” on page 1160.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. m < 0
3. iopt ≠ 0 or 1

Examples

Example 1

This example shows a search where sequences x and y have positive strides,
and where the optional return codes are returned as part of the output.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

Output:
INDX = (1, 11, 3, 2, 8)
RC = (1, 1, 0, 0, 1)

Example 2

This example shows the same calling sequence as in Example 1, except that it
includes the IOPT argument, specified as 1. This is equivalent to using the
calling sequence in Example 1 and gives the same results.

Chapter 13. Sorting and Searching 1171

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

Example 3

This example shows a search where sequence x has a negative stride, and
sequence y has a positive stride. The optional return codes are not requested,
because IOPT is specified as 0.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , -2 , 5 , Y , 1 , 10 , INDX , RC , 0)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

Output:
INDX = (8, 2, 3, 11, 1)
RC =(not relevant)

Example 4

This example shows a search where sequence x has a positive stride, and
sequence y has a negative stride. As shown below, elements of y are in
descending order in array Y. The optional return codes are not requested,
because IOPT is specified as 0.

Call Statement and Input:
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |

CALL IBSRCH(X , 2 , 5 , Y , -1 , 10 , INDX , RC , 0)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (100, 90, 80, 60, 50, 40, 30, 30, 20, 10)
RC =(not relevant)

Output:
INDX = (1, 11, 3, 2, 8)

1172 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a
Sequence X in the Sequence Y)

Purpose

These subroutines perform a sequential search for the locations of the elements of
sequence x in another sequence y. Depending on the sign of the idir argument, the
search direction indicator, the location of either the first or last occurrence of each
element is indicated in the resulting indices array INDX. When an exact match
between elements is not found, the position is indicated as 0.

Table 219. Data Types

x, y Subroutine

Integer ISSRCH

Short-precision real SSSRCH

Long-precision real DSSRCH

Syntax

Fortran CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx)

C and C++ issrch | sssrch | dssrch (x, incx, n, y, incy, m, idir, indx);

On Entry

x is the sequence x of length n, containing the elements for which sequence y is
searched.

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
containing numbers of the data type indicated in Table 219.

incx
is the stride for sequence x.

Specified as: an integer. It can have any value.

n is the number of elements in sequence x and array INDX.

Specified as: an integer; n ≥ 0.

y is the sequence y of length m to be searched.

Note: Be careful in specifying the stride for sequence y. A negative stride
reverses the direction of the search, because the order of the sequence elements
is reversed in the array.

Specified as: a one-dimensional array of (at least) length 1+(m-1)|incy|,
containing numbers of the data type indicated in Table 219.

incy
is the stride for sequence y.

Specified as: an integer. It can have any value.

m is the number of elements in sequence y. Specified as: an integer; m ≥ 0.

idir
indicates the search direction, where:

If idir ≥ 0, sequence y is searched from the first element to the last (1, n), thus
finding the first occurrence of the element in the sequence.

Chapter 13. Sorting and Searching 1173

If idir < 0, sequence y is searched from the last element to the first (n, 1), thus
finding the last occurrence of the element in the sequence.

Specified as: an integer. It can have any value.

indx
See On Return.

On Return

indx
is the array, referred to as INDX, containing the n indices that indicate the
positions of the elements of sequence x in sequence y, where:

If idir ≥ 0, the first occurrence of the element found in sequence y is indicated
in array INDX.

If idir < 0, the last occurrence of the element found in sequence y is indicated
in array INDX.

In all cases, if no match is found, 0 is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing integers; 0 ≤ (INDX
elements) ≤ m.

Function

These subroutines perform a sequential search for the first occurrence (or last
occurrence, using a negative idir) of the locations of the elements of sequence x in
another sequence y. The results of the sequential searches are returned in the
indices array INDX, indicating the positions of the elements of sequence x in
sequence y. The positions indicated in array INDX are calculated relative to the first
sequence element position—that is, the position of y1. When an exact match
between values of elements in sequences x and y is not found, 0 is indicated in
array INDX for that position.

The results returned in array INDX are expressed as follows:

For i = 1, n

for all yj = xi, j = 1, m
INDX(i) = min(j), if idir ≥ 0
INDX(i) = max(j), if idir < 0

if all yj ≠ xi, j = 1, m
INDX(i) = 0

where:

x is a sequence of length n, containing the search elements.
y is a sequence of length m to be searched.
INDX is the array of length n of indices.

See reference [87 on page 1318]. If n is 0, no search is performed.

It is important to note that a negative stride for sequence y reverses the direction
of the search, because the order of the sequence elements is reversed in the array.

1174 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. m < 0

Examples

Example 1

This example shows a search where sequences x and y have positive strides,
and the search direction indicator, idir, is positive.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , 1 , 3 , Y , 2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (1, 3, 0)

Example 2

This example shows a search where sequences x and y have positive strides,
and the search direction indicator, idir, is negative.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , 2 , 3 , Y , 2 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (7, 3, 0)

Example 3

This example shows a search where sequences x and y have negative strides,
and the search direction indicator, idir, is positive.

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , -1 , 3 , Y , -2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

Output:
INDX = (0, 6, 2)

Example 4

This example shows a search where sequences x and y have negative strides,
and the search direction indicator, idir, is negative.

Chapter 13. Sorting and Searching 1175

Call Statement and Input:
X INCX N Y INCY M IDIR INDX
| | | | | | | |

CALL ISSRCH(X , -2 , 3 , Y , -1 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, 8, 12, 0, 1, 4, 0, 2)

Output:
INDX = (0, 6, 8)

1176 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 14. Interpolation

The interpolation subroutines are described here.

Overview of the Interpolation Subroutines
The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and one- and two-dimensional cubic
spline interpolation (Table 220).

Table 220. List of Interpolation Subroutines

Descriptive Name

Short-
Precision
Subroutine

Long-
Precision
Subroutine Location

Polynomial Interpolation SPINT DPINT “SPINT and DPINT (Polynomial Interpolation)” on
page 1179

Local Polynomial Interpolation STPINT DTPINT “STPINT and DTPINT (Local Polynomial
Interpolation)” on page 1184

Cubic Spline Interpolation SCSINT DCSINT “SCSINT and DCSINT (Cubic Spline
Interpolation)” on page 1188

Two-Dimensional Cubic Spline
Interpolation

SCSIN2 DCSIN2 “SCSIN2 and DCSIN2 (Two-Dimensional Cubic
Spline Interpolation)” on page 1193

Use Considerations
Polynomial interpolation (SPINT and DPINT) is a global scheme. As the number of
data points increases, the degree of the interpolating polynomial is raised;
therefore, the graph of the interpolating polynomial tends to be oscillatory.

Local polynomial interpolation (STPINT and DTPINT) is a local scheme. The data
generated is affected only by locally grouped data points. The degree of the local
interpolating polynomial is usually lower than a global interpolating polynomial.

Performance and Accuracy Considerations
1. Doing extrapolation with SPINT and DPINT is not encouraged unless you

know the consequences of doing polynomial extrapolation.
2. If performance is the overriding consideration, you should investigate using the

general signal processing subroutines, DQINT and SQINT.
3. There are some ESSL-specific rules that apply to the results of computations on

the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 62.

© Copyright IBM Corp. 1986, 2015 1177

Interpolation Subroutines

This contains the interpolation subroutine descriptions.

1178 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPINT and DPINT (Polynomial Interpolation)
Purpose

These subroutines compute the Newton divided difference coefficients and perform
a polynomial interpolation through a set of data points at specified abscissas.

Table 221. Data Types

x, y, c, t, s Subroutine

Short-precision real SPINT

Long-precision real DPINT

Syntax

Fortran CALL SPINT | DPINT (x, y, n, c, ninit, t, s, m)

C and C++ spint | dpint (x, y, n, c, ninit, t, s, m);

On Entry

x is the vector x of length n, containing the abscissas of the data points used in
the interpolations. The elements of x must be distinct.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 221.

y is the vector y of length n, containing the ordinates of the data points used in
the interpolations.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 221.

n is the number of elements in vectors x, y, and c—that is, the number of data
points. Specified as: an integer; n ≥ 0.

c is the vector c of length n, where:

If ninit ≤ 0, all elements of c are undefined on entry.

If ninit > 0, c contains the Newton divided difference coefficients, cj for j = 1,
ninit, for the interpolating polynomial through the data points (xj,yj) for j = 1,
ninit. If ninit < n, the values of cj for j = ninit+1, n are undefined.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 221.

ninit
indicates the following:

If ninit ≤ 0, this is the first call to this subroutine with the data in x and y;
therefore, none of the Newton divided difference coefficients in c have been
initialized.

If ninit > 0, a previous call to this subroutine was made with the data points
(xj, yj) for j = 1, ninit, where:
v If ninit = n, all the Newton divided difference coefficients in c were

computed for the data points. No additional coefficients are computed on
this entry.

Chapter 14. Interpolation 1179

v If ninit < n, the first ninit Newton divided difference coefficients in c were
computed for the data points (xj, yj) for j = 1, ninit. The coefficients are
updated for the additional data points (xj, yj) for j = ninit+1, n on this entry.

Specified as: an integer; ninit ≤ n.

t is the vector t of length m, containing the abscissas at which interpolation is to
be done.

Specified as: a one-dimensional array of (at least) length m, containing
numbers of the data type indicated in Table 221 on page 1179.

s See On Return.

m is the number of elements in vectors t and s—that is, the number of
interpolations to be performed.

Specified as: an integer; m ≥ 0.

On Return

c is the vector c of length n, containing the coefficients of the Newton divided
difference form of the interpolating polynomial through the data points (xj,yj)
for j = 1, n. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 221 on page 1179.

ninit
is the number of coefficients, n, in output vector c. (If you call this subroutine
again with the same data, this value should be specified for ninit.) Returned as:
an integer; ninit = n.

s is the vector s of length m, containing the resulting interpolated values; that is,
each si is the value of the interpolating polynomial evaluated at ti. Returned as:
a one-dimensional array of (at least) length m, containing numbers of the data
type indicated in Table 221 on page 1179.

Notes
1. In your C program, argument ninit must be passed by reference.
2. Vectors x, y, and t must have no common elements with vectors c and s, and

vector c must have no common element with vector s; otherwise, results are
unpredictable.

3. The elements of vector x must be distinct; that is, xi ≠ xj if i ≠ j for i, j = 1, n.

Function

Polynomial interpolation is performed at specified abscissas, ti for i = 1, m, in
vector t, using the method of Newton divided differences through the data points:

(xj, yj) for j = 1, n

where:

xj are elements of vector x.
yj are elements of vector y.

The interpolated value at each ti is returned in si for i = 1, m. See references [22 on
page 1314] and [63 on page 1317]. The interpolating values returned in s are
computed using the Newton divided difference coefficients, as defined here.

1180 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The divided difference coefficients, cj for j = 1, n, are returned in vector c. These
coefficients can then be reused on subsequent calls to this subroutine, using the
same data points (xj, yj), but with new values of ti. If the number of data points is
increased from one call this subroutine to the next, the new coefficients are
computed, and the existing coefficients are updated (not recomputed). This feature
can be used to test for the convergence of the interpolations through a sequence of
an increasingly larger set of points.

The values specified for ninit and m indicate which combination of functions are
performed by this subroutine: computing the coefficients, performing the
interpolation, or both. If m = 0, only the divided difference coefficients are
computed. No interpolation is performed. If n = 0, no computation or interpolation
is performed.

For SPINT, the Newton divided differences and interpolating values are
accumulated in long precision.

Newton Divided Differences and Interpolating Values:

The Newton divided differences of the following data points:

(xj, yj) for j = 1, n
where xj ≠ xl if j ≠ l for j, l = 1, n

are denoted by δkyj for k = 0, 1, 2, ..., n-1 and j = 1, 2, ..., n-k, and are defined as
follows:

For k = 0 and 1:
δ0yj = yj for j = 1, 2, ..., n
δ1yj = (yj+1 - yj) / (xj+1 - xj) for j = 1, 2, ..., n-1

For k = 2, 3, ..., n-1:
δkyj = (δk-1 yj+1 - δk-1yj) / (xj+k - xj) for j = 1, 2, ..., n-k

The value s of the Newton divided difference form of the interpolating polynomial
evaluated at an abscissa t is given by:

s = yn + (t-xn) δ1yn-1
+ (t-xn-1) (t-xn) δ2yn-2
+ ...+(t-x2) (t-x3) ... (t-xn) δn-1y1

Therefore, on output, the coefficients in vector c are as follows:

cn = yn

cn-1 = δ1yn-1
cn-2 = δ2yn-2
.
.
.
c1 = δn-1y1

Also, the interpolating values in s, in terms of c, are as follows for i = 1, m:

Chapter 14. Interpolation 1181

si = cn + (ti-xn) cn-1
+ (ti-xn-1) (ti-xn) cn-2
+ ...
+ (ti-x2) (ti-x3) ... (ti-xn) c1

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. ninit > n
3. m < 0

Examples

Example 1

This example shows a quadratic polynomial interpolation on the initial call
with the specified data points; that is, NINIT = 0, and C contains all undefined
values. On output, NINIT and C are updated with new values.

Call Statement and Input:
X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 3 , C , 0 , T , S , 2)

X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (. , . , .)
T = (-0.2, 0.2)

Output:
C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.04, 0.04)

Example 2

This example shows a quadratic polynomial interpolation on a subsequent call
with the same data points specified in Example 1, but using a different set of
abscissas in T. In this case, NINIT = N = 3, and C contains the values defined on
output in Example 1. On output here, the values in NINIT and C are
unchanged.

Call Statement and Input:
X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 3 , C , 3 , T , S , 2)

X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (1.00, 1.00, 1.00)
T = (-0.10, 0.10)

Output:
C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.01, 0.01)

Example 3

1182 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example is the same as Example 2 except that it specifies additional data
points on the subsequent call to the subroutine. In this case, 0 < NINIT < N. On
output here, the values in NINIT and C are updated. The interpolating
polynomial is a degree of 4.

Call Statement and Input:
X Y N C NINIT T S M
| | | | | | | |

CALL SPINT(X , Y , 5 , C , 3 , T , S , 2)

X = (-0.50, 0.00, 1.00, -1.00, 0.50)
Y = (0.25, 0.00, 1.00, 1.10, 0.26)
C = (1.00, 1.00, 1.00, . , .)
T = (-0.10, 0.10)

Output:
C = (0.04, -0.06, 1.02, -0.56, 0.26)
NINIT = 5
S = (0.0072, 0.0130)

Chapter 14. Interpolation 1183

STPINT and DTPINT (Local Polynomial Interpolation)
Purpose

These subroutines perform a polynomial interpolation at specified abscissas, using
data points selected from a table of data.

Table 222. Data Types

x, y, t, s, aux Subroutine

Short-precision real STPINT

Long-precision real DTPINT

Syntax

Fortran CALL STPINT | DTPINT (x, y, n, nint, t, s, m, aux, naux)

C and C++ stpint | dtpint (x, y, n, nint, t, s, m, aux, naux);

On Entry

x is the vector x of length n, containing the abscissas of the data points used in
the interpolations. The elements of x must be distinct and sorted into
ascending order.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 222.

y is the vector y of length n, containing the ordinates of the data points used in
the interpolations.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 222.

n is the number of elements in vectors x and y—that is, the number of data
points. Specified as: an integer; n ≥ 0.

nint
is the number of data points to be used in the interpolation at any given point.

Specified as: an integer; 0 ≤ nint ≤ n.

t is the vector t of length m, containing the abscissas at which interpolation is to
be done. For optimal performance, t should be sorted into ascending order.

Specified as: a one-dimensional array of (at least) length m, containing
numbers of the data type indicated in Table 222.

s See On Return.

m is the number of elements in vectors t and s—that is, the number of
interpolations to be performed.

Specified as: an integer; m ≥ 0.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

1184 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: an area of storage, containing numbers of the data type indicated
in Table 222 on page 1184. On output, the contents are overwritten.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, STPINT and DTPINT dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise, it must have the following value:

For STPINT

For 32-bit integer arguments
naux ≥ nint + m

For 64-bit integer arguments
naux ≥ nint + 2m

For DTPINT
naux ≥ nint + m

On Return

s is the vector s of length m, containing the resulting interpolated values; that is,
each si is the value of the interpolating polynomial evaluated at ti. Returned as:
a one-dimensional array of (at least) length m, containing numbers of the data
type indicated in Table 222 on page 1184.

Notes
1. Vectors x, y, and t must have no common elements with vector s or work area

aux; otherwise, results are unpredictable. See “Concepts” on page 73.
2. The elements of vector x must be distinct and must be sorted into ascending

order; that is, x1 < x2 < ... < xn. Otherwise, results are unpredictable. For details
on how to do this, see “ISORT, SSORT, and DSORT (Sort the Elements of a
Sequence)” on page 1160.

3. The elements of vector t should be sorted into ascending order; that is, t1 ≤ t2 ≤
t3 ≤ ... ≤ tm. Otherwise, performance is affected.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

Polynomial interpolation is performed at specified abscissas, ti for i = 1, m, in
vector t, using nint points selected from the following data:

(xj, yj) for j = 1, n

where:

x1 < x2 < x3 < ... < xn

xj are elements of vector x.
yj are elements of vector y.

Chapter 14. Interpolation 1185

The points (xj, yj), used in the interpolation at a given abscissa ti, are chosen as
follows, where k = nint/2:

For ti ≤ xk+1, the first nint points are used.
For ti > xn -nint+k, the last nint points are used.
Otherwise, points h through h+nint-1 are used, where:

xh+k-1 < ti ≤ xh+k

The interpolated value at each ti is returned in si for i = 1, m. See references [22 on
page 1314] and [63 on page 1317]. If n, nint, or m is 0, no computation is
performed. For a definition of the polynomial interpolation function performed
through a set of data points, see “Function” on page 1180.

For STPINT, the Newton divided differences and interpolating values are
accumulated in long precision.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n < 0
2. nint < 0 or nint > n
3. m < 0
4. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value specified in the syntax for this argument.
Return code 1 is returned if error 2015 is recoverable.

Examples

Example 1

This example shows interpolation using two data points—that is, linear
interpolation—at each ti value.

Call Statement and Input:
X Y N NINT T S M AUX NAUX
| | | | | | | | |

CALL STPINT(X , Y , 10 , 2 , T , S , 5 , AUX , 7)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

Output:
S = (-1.5000, 1.2500, 3.2000, 3.4000, 2.0000)

Example 2

This example shows interpolation using three data points—that is, quadratic
interpolation—at each ti value.

Call Statement and Input:

1186 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

X Y N NINT T S M AUX NAUX
| | | | | | | | |

CALL STPINT(X , Y , 10 , 3 , T , S , 5 , AUX , 8)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

Output:
S = (-2.6667, 1.2750, 3.2121, 3.4182, 2.0000)

Chapter 14. Interpolation 1187

SCSINT and DCSINT (Cubic Spline Interpolation)
Purpose

These subroutines compute the coefficients of the cubic spline through a set of data
points and evaluate the spline at specified abscissas.

Table 223. Data Types

x, y, C, t, s Subroutine

Short-precision real SCSINT

Long-precision real DCSINT

Syntax

Fortran CALL SCSINT | DCSINT (x, y, c, n, init, t, s, m)

C and C++ scsint | dcsint (x, y, c, n, init, t, s, m);

On Entry

x is the vector x of length n, containing the abscissas of the data points that
define the spline. The elements of x must be distinct and sorted into ascending
order. Specified as: a one-dimensional array of (at least) length n, containing
numbers of the data type indicated in Table 223.

y is the vector y of length n, containing the ordinates of the data points that
define the spline.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 223.

c is the matrix C with elements cjk for j = 1, n and k = 1, 4 that contain the
following:

If init ≤ 0, all elements of c are undefined on entry.

If init = 1, c11 contains the spline derivative at x1.

If init = 2, c21 contains the spline derivative at xn.

If init = 3, c11 contains the spline derivative at x1, and c21 contains the spline
derivative at xn.

If init > 3, c contains the coefficients of the spline computed for the data points
(xj,yj) for j = 1, n on a previous call to this subroutine.

Specified as: an n by (at least) 4 array, containing numbers of the data type
indicated in Table 223.

n is the number of elements in vectors x and y and the number of rows in matrix
C—that is, the number of data points.

Specified as: an integer; n ≥ 0.

init
indicates the following, where in those cases for uninitialized coefficients, this
is the first call to this subroutine with the data in x and y:

If init ≤ 0, the coefficients are uninitialized. The second derivatives of the spline
at x1 and xn are set to zero. (These are free end conditions, also called natural
boundary conditions.)

1188 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If init = 1, the coefficients are uninitialized. The value in c11 is used as the
spline derivative at x1.

If init = 2, the coefficients are uninitialized. The value in c21 is used as the
spline derivative at xn.

If init = 3, the coefficients are uninitialized. The value in c11 is used as the
spline derivative at x1 and the value in c21 is used as the spline derivative at xn.

If init > 3, the coefficients in c were computed for data points (xj, yj) for j = 1, n
on a previous call to this subroutine.

Specified as: an integer. It can have any value.

t is the vector t of length m, containing the abscissas at which the spline is
evaluated.

Specified as: a one-dimensional array of (at least) length m, containing
numbers of the data type indicated in Table 223 on page 1188.

s See On Return.

m is the number of elements in vectors t and s—that is, the number of points at
which the spline interpolation is evaluated.

Specified as: an integer; m ≥ 0.

On Return

c is the matrix C, containing the coefficients of the spline through the data points
(xj,yj) for j = 1, n. Returned as: an n by (at least) 4 array, containing numbers of
the data type indicated in Table 223 on page 1188.

init
is an indicator that is set to indicate that the coefficients have been initialized.
(If you call this subroutine again with the same data, this value should be
specified for init.) Returned as: an integer; init = 4.

s is the vector s of length m, containing the resulting values of the spline; that is,
each si is the value of the spline evaluated at ti. Returned as: a one-dimensional
array of (at least) length m, containing numbers of the data type indicated in
Table 223 on page 1188.

Notes
1. In your C program, argument init must be passed by reference.
2. Vectors x, y, and t must have no common elements with matrix C and vector s,

and matrix C must have no common elements with vector s; otherwise, results
are unpredictable.

3. The elements of vector x must be distinct and must be sorted into ascending
order; that is, x1 < x2 < ... < xn. Otherwise, results are unpredictable. For details
on how to do this, see “ISORT, SSORT, and DSORT (Sort the Elements of a
Sequence)” on page 1160.

Function

Interpolation is performed at specified abscissas, ti for i = 1, m, in vector t, using
the cubic spline passing through the data points:

(xj, yj) for j = 1, n

where:

Chapter 14. Interpolation 1189

x1 < x2 < x3 < ... < xn

xj are elements of vector x.
yj are elements of vector y.

The value of the cubic spline at each ti is returned in si for i = 1, m. See references
[22 on page 1314] and [63 on page 1317]. The coefficients of the spline, cjk for j = 1,
n and k = 1, 4, are returned in matrix C. These coefficients can then be reused on
subsequent calls to this subroutine, using the same data points (xj, yj), but with
new values of ti. The cubic spline values returned in s are computed using the
coefficients as follows:

si = cj1 + cj2 (xj-ti) + cj3 (xj-ti)
2 + cj4 (xj-ti)

3 for i = 1, m

where:

j = 1 for ti ≤ x1
j = k for x1 < ti ≤ xn, such that xk-1 < ti ≤ xk

j = n for xn < ti

The values specified for m and init indicate which combination of functions are
performed by this subroutine:
v If m = 0 and init > 3, no computation is performed.
v If m = 0 and init ≤ 3, only the coefficients are computed, and no interpolation is

performed.
v If m ≠ 0 and init > 3, the coefficients are not computed, and the interpolation is

performed.
v If m ≠ 0 and init ≤ 3, the coefficients are computed, and the interpolation is

performed.

In addition, if n = 0, no computation is performed.

The values specified for n and init determine the type of spline function:
v If n = 1, the constructed spline is a constant function.
v If n = 2 and init = 0, the constructed spline is a line through the points.
v If n = 2 and init = 1, the constructed spline is a cubic function through the points

whose derivative at x1 is c11.
v If n = 2 and init = 2, the constructed spline is a cubic function through the points

whose derivative at xn is c21.
v If n = 2 and init = 3, the constructed spline is a cubic function through the points

whose derivative at x1 is c11 and at xn is c21.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. m < 0

Examples

Example 1

1190 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example computes the spline coefficients through a set of data points with
no derivative value specified. It also evaluates the spline at the abscissas
specified in T. On output, INIT and C are updated with new values.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 0 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)
C =(not relevant)
T = (-1.000, 2.500, 4.000, 7.000)

Output:
┌ ┐
| 0.000 -0.868 0.000 -0.132 |
| 1.000 -1.264 0.396 -0.132 |

C = | 2.000 -0.076 -1.585 0.660 |
| 1.100 1.267 0.243 -0.609 |
| 0.000 1.010 0.014 0.076 |
| -1.000 0.995 0.000 0.005 |
└ ┘

INIT = 4
S = (-2.792, 1.649, 1.100, -2.000)

Example 2

This example computes the spline coefficients through a set of data points with
a derivative value specified at the right endpoint. It also evaluates the spline at
the abscissas specified in T. On output, INIT and C are updated with new
values.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 2 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

┌ ┐
| |
| 0.1 . . . |

C = | |
| |
| |
| |
└ ┘

T = (-1.000, 2.500, 4.000, 7.000)

Output:
┌ ┐
| 0.000 -0.865 0.000 -0.135 |
| 1.000 -1.270 0.405 -0.135 |

C = | 2.000 -0.054 -1.621 0.675 |
| 1.100 1.188 0.379 -0.667 |
| 0.000 1.303 -0.494 0.291 |
| -1.000 0.100 1.897 -0.797 |
└ ┘

INIT = 4
S = (-2.810, 1.652, 1.100, 1.794)

Chapter 14. Interpolation 1191

Example 3

This example computes the spline coefficients through a set of data points with
a derivative value specified at both endpoints. It does not evaluate the spline
at any points. On output, INIT and C are updated with new values. Because
arrays are not needed for arguments t and s, the value 0 is specified in their
place.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 3 , 0 , 0 , 0)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

┌ ┐
| -1.0 . . . |
| 0.1 . . . |

C = | |
| |
| |
| |
└ ┘

Output:
┌ ┐
| 0.000 1.000 3.230 1.230 |
| 1.000 -1.770 -0.460 1.230 |

C = | 2.000 0.079 -1.389 0.310 |
| 1.100 1.152 0.316 -0.568 |
| 0.000 1.312 -0.476 0.264 |
| -1.000 -0.100 1.888 -0.788 |
└ ┘

INIT = 4

Example 4

This example evaluates the spline at a set of points, using the coefficients
obtained in Example 3.

Call Statement and Input:
X Y C N INIT T S M
| | | | | | | |

CALL SCSINT(X , Y , C , 6 , 4 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)
C =(same as output C in Example 3)
T = (-1.000, 2.500, 4.000, 7.000)

Output:

C =(same as output C in Example 3)
S = (24.762, 1.731, 1.100, 1.776)
INIT = 4

1192 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)
Purpose

These subroutines compute the interpolation values at a specified set of points,
using data defined on a rectangular mesh in the x-y plane.

Table 224. Data Types

x, y, Z, t, u, aux, S Subroutine

Short-precision real SCSIN2

Long-precision real DCSIN2

Syntax

Fortran CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux)

C and C++ scsin2 | dcsin2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);

On Entry

x is the vector x of length n1, containing the x-coordinates of the data points that
define the spline. The elements of x must be distinct and sorted into ascending
order.

Specified as: a one-dimensional array of (at least) length n1, containing
numbers of the data type indicated in Table 224.

y is the vector y of length n2, containing the y-coordinates of the data points that
define the spline. The elements of y must be distinct and sorted into ascending
order.

Specified as: a one-dimensional array of (at least) length n2, containing
numbers of the data type indicated in Table 224.

z is the matrix Z, containing the data at (xi, yj) for i = 1, n1 and j = 1, n2 that
defines the spline.

Specified as: an ldz by (at least) n2 array, containing numbers of the data type
indicated in Table 224.

n1 is the number of elements in vector x and the number of rows in matrix
Z—that is, the number of x-coordinates at which the spline is defined.

Specified as: an integer; n1 ≥ 0.

n2 is the number of elements in vector y and the number of columns in matrix
Z—that is, the number of y-coordinates at which the spline is defined.

Specified as: an integer; n2 ≥ 0.

ldz
is the leading dimension of the array specified for z.

Specified as: an integer; ldz > 0 and ldz ≥ n1.

t is the vector t of length m1, containing the x-coordinates at which the spline is
evaluated.

Specified as: a one-dimensional array of (at least) length m1, containing
numbers of the data type indicated in Table 224.

Chapter 14. Interpolation 1193

u is the vector u of length m2, containing the y-coordinates at which the spline is
evaluated.

Specified as: a one-dimensional array of (at least) length m2, containing
numbers of the data type indicated in Table 224 on page 1193.

m1 is the number of elements in vector t—that is, the number of x-coordinates at
which the spline interpolation is evaluated. Specified as: an integer; m1 ≥ 0.

m2 is the number of elements in vector u—that is, the number of y-coordinates at
which the spline interpolation is evaluated. Specified as: an integer; m2 ≥ 0.

s See On Return.

lds
is the leading dimension of the array specified for s.

Specified as: an integer; lds > 0 and lds ≥ m1.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 222 on page 1184. On output, the contents are overwritten.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SCSIN2 and DCSIN2 dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.

Otherwise:

For SCSIN2

For 32-bit integer arguments
naux ≥ (10)(max(n1, n2)) + (n2 + 1)(m1) + 2(m2)

For 64-bit integer arguments
naux ≥ (10)(max(n1, n2)) + (n2 + 2)(m1) + 3(m2)

For DCSIN2
naux ≥ (10)(max(n1, n2)) + (n2 + 1)(m1) + 2(m2)

On Return

s is the matrix S with elements skh that contain the interpolation values at (tk, uh)
for k = 1, m1 and h = 1, m2. Returned as: an lds by (at least) m2 array,
containing numbers of the data type indicated in Table 224 on page 1193.

Notes
1. The cyclic reduction method used to solve the equations in this subroutine can

generate underflows on well-scaled problems. This does not affect accuracy, but
it may decrease performance. For this reason, you may want to disable
underflow before calling this subroutine.

1194 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

2. Vectors x, y, t, and u, matrix Z, and the aux work area must have no common
elements with matrix S; otherwise, results are unpredictable.

3. The elements within vectors x and y must be distinct. In addition, the elements
in the vectors must be sorted into ascending order; that is, x1 < x2 < ... < xn1 and
y1 < y2 < ... < yn2. Otherwise, results are unpredictable. For details on how to do
this, see “ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)” on
page 1160.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

Interpolation is performed at a specified set of points:

(tk, uh) for k = 1, m1 and h = 1, m2

by fitting bicubic spline functions with natural boundary conditions, using the
following set of data, defined on a rectangular grid, (xi, yj) for i = 1, n1 and j = 1,
n2:

zij for i = 1, n1 and j = 1, n2

where tk, uh, xi, yj, and zij are elements of vectors t, u, x, and y and matrix Z,
respectively. In vectors x and y, elements are assumed to be sorted into ascending
order.

The interpolation involves two steps:
1. For each j from 1 to n2, the single variable cubic spline:

with natural boundary conditions, is constructed using the data points:

(xi, zij) for i = 1, n1

The following interpolation values are then computed:

2. For each k from 1 to m1, the single variable cubic spline:

with natural boundary conditions, is constructed using the data points:

Chapter 14. Interpolation 1195

The following interpolation values are then computed:

See references [63 on page 1317] and [71 on page 1317]. Because natural boundary
conditions (zero second derivatives at the end of the ranges) are used for the
splines, unless the underlying function has these properties, interpolated values
near the boundaries may be less satisfactory than elsewhere. If n1, n2, m1, or m2 is
0, no computation is performed.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n1 < 0 or n1 > ldz

2. n2 < 0
3. m1 < 0 or m1 > lds

4. m2 < 0
5. ldz < 0
6. lds < 0
7. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value specified in the syntax for this argument.
Return code 1 is returned if error 2015 is recoverable.

Examples

Example

This example computes the interpolated values at a specified set of points,
given by T and U, from a set of data points defined on a rectangular mesh in
the x-y plane, using X, Y, and Z.

Call Statement and Input:
X Y Z N1 N2 LDZ T U M1 M2 S LDS AUX NAUX
| | | | | | | | | | | | | |

CALL SCSIN2(X , Y , Z , 6 , 5 , 6 , T , U , 4 , 3 , S , 4 , AUX , 90)

X = (0.0, 0.2, 0.3, 0.4, 0.5, 0.7)
Y = (0.0, 0.2, 0.3, 0.4, 0.6)

┌ ┐
| 0.000 0.008 0.027 0.064 0.216 |
| 0.008 0.016 0.035 0.072 0.224 |

Z = | 0.027 0.035 0.054 0.091 0.243 |
| 0.064 0.072 0.091 0.128 0.280 |
| 0.125 0.133 0.152 0.189 0.341 |
| 0.343 0.351 0.370 0.407 0.559 |
└ ┘

T = (0.10, 0.15, 0.25, 0.35)
U = (0.05, 0.25, 0.45)

Output:

1196 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

┌ ┐
| 0.001 0.017 0.095 |

S = | 0.003 0.019 0.097 |
| 0.016 0.031 0.110 |
| 0.043 0.059 0.137 |
└ ┘

Chapter 14. Interpolation 1197

1198 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 15. Numerical Quadrature

The numerical quadrature subroutines are described.

Overview of the Numerical Quadrature Subroutines
The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration.

Table 225. List of Numerical Quadrature Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SPTNQ DPTNQ “SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)”
on page 1203

SGLNQ† DGLNQ† “SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function
Using Gauss-Legendre Quadrature)” on page 1206

SGLNQ2† DGLNQ2† “SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function
Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)” on
page 1209

SGLGQ† DGLGQ† “SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function
Using Gauss-Laguerre Quadrature)” on page 1215

SGRAQ† DGRAQ† “SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function
Using Gauss-Rational Quadrature)” on page 1218

SGHMQ† DGHMQ† “SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function
Using Gauss-Hermite Quadrature)” on page 1222

† This subprogram is invoked as a function in a Fortran program.

Use Considerations
This contains some key points about using the numerical quadrature subroutines.

Choosing the Method
The theoretical aspects of choosing the method to use for integration can be found
in the references [33 on page 1315], [72 on page 1317], and [109 on page 1319].

Performance and Accuracy Considerations
1. There are n function evaluations for a method of order n. Because function

evaluations are expensive in terms of computing time, you should weigh the
considerations for computing time and accuracy in choosing a value for n.

2. To achieve optimal performance in the _GLNQ2 subroutines, specify the first
variable integrated to be the variable having more points. This allows both the
subroutine and the function evaluation to achieve optimal performance. Details
on how to do this are given in “Notes ” on page 1210.

© Copyright IBM Corp. 1986, 2015 1199

3. There are some ESSL-specific rules that apply to the results of computations on
the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About?” on page 62.

Programming Considerations for the SUBF Subroutine
This describes how to design and code the subf subroutine for use by the
numerical quadrature subrutines.

Designing SUBF
For the Gaussian quadrature subroutines, you must supply a separate subroutine
that is callable by ESSL. You specify the name of the subroutine in the subf
argument. This subroutine name is selected by you. You should design the subf
subroutine so it receives, as input, a tabulated set of points at which the integrand
is evaluated, and it returns, as output, the values of the integrand evaluated at
these points.

Depending on the numerical quadrature subroutine that you use, the subf
subroutine is defined in one of the two following ways:
v For _GLNQ, _GLGQ, _GRAQ, and _GHMQ, you define the subf subroutine with

three arguments: t, y, and n, where:

t is an input array, referred to as T, of tabulated Gaussian quadrature
abscissas, containing n real numbers, ti, where ti is automatically provided
by the ESSL subroutine and is determined by n and the Gaussian quadrature
method chosen.

y is an output array, referred to as Y, containing n real numbers, where for the
integrand, the following is true: yi = f(ti) for i = 1, n.

n is a positive integer indicating the number of elements in T and Y.
v For _GLNQ2, you define the subf subroutine with six arguments: s, n1, t, n2, z,

and ldz, where:

s is an input array, referred to as S, of tabulated Gaussian quadrature
abscissas, containing n1 real numbers, si, where si is automatically provided
by the ESSL subroutine and is determined by n1 and the Gaussian
quadrature method.

n1 is a positive integer indicating the number of elements in S and the number
of rows to be used in array Z.

t is an input array, referred to as T, of tabulated Gaussian quadrature
abscissas, containing n2 real numbers, ti, where ti is automatically provided
by the ESSL subroutine and is determined by n2 and the Gaussian
quadrature method.

n2 is a positive integer indicating the number of elements in T and the number
of columns to be used in array Z.

z is an ldz by (at least) n2 output array, referred to as Z, of real numbers,
where for the integrand, the following is true: zij = f(si, tj) for i = 1, n1 and j
= 1, n2.

ldz
is a positive integer indicating the size of the leading dimension of the array
Z.

1200 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Coding and Setting Up SUBF in Your Program
Examples of coding a subf subroutine in Fortran are provided for each subroutine
here. Examples of coding a subf subroutine in C, and C++ are provided in Example
1.

Depending on the programming language you use for your program that calls the
numerical quadrature subroutines, you have a choice of one or more languages
that you can use for writing subf. These rules and other language-related coding
rules for setting up subf in your program are described in the following:
v “Setting Up a User-Supplied Subroutine for ESSL in Fortran” on page 131
v “Setting Up a User-Supplied Subroutine for ESSL in C” on page 151
v “Setting Up a User-Supplied Subroutine for ESSL in C++” on page 166

Chapter 15. Numerical Quadrature 1201

Numerical Quadrature Subroutines

This contains the numerical quadrature subroutine descriptions.

1202 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of
Points)

Purpose

These subroutines approximate the integral of a real valued function specified in
tabular form, (xi, yi) for i = 1, n. For more than four points, an error estimate is
returned along with the resulting value.

Table 226. Data Types

x, y, xyint, eest Subroutine

Short-precision real SPTNQ

Long-precision real DPTNQ

Syntax

Fortran CALL SPTNQ | DPTNQ (x, y, n, xyint, eest)

C and C++ sptnq | dptnq (x, y, n, xyint, eest);

On Entry

x is the vector x of length n, containing the abscissas of the data points to be
integrated. The elements of x must be distinct and sorted into ascending or
descending order.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 226.

y is the vector y of length n, containing the ordinates of the data points to be
integrated.

Specified as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 226.

n is the number of elements in vectors x and y—that is, the number of data
points. The value of n determines the algorithm used by this subroutine. For
details, see “Function” on page 1204.

Specified as: an integer; n ≥ 2.

xyint
See On Return.

eest
See On Return.

On Return

xyint
is the approximation xyint of the integral. Returned as: a number of the data
type indicated in Table 226.

eest
has the following meaning, where:

If n < 5, it is undefined and is set to 0.

If n ≥ 5, it is an estimate, eest, of the error in the integral, where xyint+eest
tends to give a better approximation to the integral than xyint. For details, see
references [33 on page 1315] and [72 on page 1317].

Chapter 15. Numerical Quadrature 1203

Returned as: a number of the data type indicated in Table 226 on page 1203.

Notes
1. In your C program, arguments xyint and eest must be passed by reference.
2. The elements of vector x must be distinct—that is, xi ≠ xj for i ≠ j,—and they

must be sorted into ascending or descending order; otherwise, results are
unpredictable. For how to do this, see “ISORT, SSORT, and DSORT (Sort the
Elements of a Sequence)” on page 1160.

Function

The integral is approximated for a real valued function specified in tabular form,
(xi, yi) for i = 1, n, where xi are distinct and sorted into ascending or descending
order, and n ≥ 2. If yi = f(xi) for i = 1, n, then on output, xyint is an approximation
to the integral of the following form:

The algorithm used by this subroutine is based on the number of data points used
in the computation, where:
v If n = 2, the trapezoid rule is used to do the integration.
v If n = 3, the parabola through the three points is integrated.
v If n ≥ 4, the method of Gill and Miller is used to do the integration.

For n ≥ 5, an estimate of the error eest is returned. For the method of Gill and
Miller, it is shown that adding the estimate of the error eest to the result xyint often
gives a better approximation to the integral than the result xyint by itself. For n <
5, an estimate of the error is not returned. In this case, a value of 0 is returned for
eest. See references [72 on page 1317] and [33 on page 1315].

Error conditions

Computational Errors
None

Input-Argument Errors

n < 2

Examples

Example 1

This example shows the result of an integration, where the abscissas in X are
sorted into ascending order.

Call Statement and Input:
X Y N XYINT EEST
| | | | |

CALL SPTNQ(X , Y , 10 , XYINT , EEST)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.0, 3.5, 3.3)

Output:

1204 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

XYINT = 15.137
EEST = -0.003

Example 2

This example shows the result of an integration, where the abscissas in X are
sorted into descending order.

Call Statement and Input:
X Y N XYINT EEST
| | | | |

CALL SPTNQ(X , Y , 10 , XYINT , EEST)

X = (4.3, 3.9, 3.4, 3.0, 2.6, 2.1, 1.5, 1.0, 0.4, 0.0)
Y = (3.3, 3.5, 3.0, 4.0, 4.5, 5.0, 4.0, 3.0, 2.0, 1.0)

Output:
XYINT = -15.137
EEST = 0.003

Chapter 15. Numerical Quadrature 1205

SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function
Using Gauss-Legendre Quadrature)

Purpose

These functions approximate the integral of a real valued function over a finite
interval, using the Gauss-Legendre Quadrature method of specified order.

Table 227. Data Types

a, b, Result Subroutine

Short-precision real SGLNQ

Long-precision real DGLNQ

Syntax

Fortran SGLNQ | DGLNQ (subf, a, b, n)

C and C++ sglnq | dglnq (subf, a, b, n);

On Entry

subf
is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details, see
“Programming Considerations for the SUBF Subroutine” on page 1200.

Specified as: subf must be declared as an external subroutine in you application
program. It can be whatever name you choose.

a is the lower limit of integration, a.

Specified as: a number of the data type indicated in Table 227.

b is the upper limit of integration, b.

Specified as: a number of the data type indicated in Table 227.

n is the order of the quadrature method to be used.

Specified as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64,
96, 128, or 256.

On Return

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 227.

Notes
1. Declare the DGLNQ function in your program as returning a long-precision

real number. Declare the SGLNQ, if necessary, as returning a short-precision
real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 1207, and
the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 1200.

1206 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

The integral is approximated for a real valued function over a finite interval, using
the Gauss-Legendre Quadrature method of specified order. The region of
integration is from a to b. The method of order n is theoretically exact for integrals
of the following form, where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the form f(x), where f is a polynomial of degree less
than 2n. See references [33 on page 1315] and [109 on page 1319]. The result is
returned as the function value.

Error conditions

Computational Errors
None

Input-Argument Errors

n is not an allowable value, as listed in the syntax for this argument.

Examples

Example

This example shows how to compute the integral of the function f given by:

f(x) = x2+ex

over the interval (0.0, 2.0), using the Gauss-Legendre method with 10 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N

1 Y(I)=T(I)**2+EXP(T(I))
RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

XINT = SGLNQ(FUN1 , 0.0 , 2.0 , 10)
.
.
.

Chapter 15. Numerical Quadrature 1207

FUN1 = (see above)

Output:
XINT = 9.056

1208 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function
Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

Purpose

These functions approximate the integral of a real valued function of two variables
over a rectangular region, using the Gauss-Legendre Quadrature method of
specified order in each variable.

Table 228. Data Types

a, b, c, d, Z, Result Subroutine

Short-precision real SGLNQ2

Long-precision real DGLNQ2

Syntax

Fortran SGLNQ2 | DGLNQ2 (subf, a, b, n1, c, d, n2, z, ldz)

C and C++ sglnq2 | dglnq2 (subf, a, b, n1, c, d, n2, z, ldz);

On Entry

subf
is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with six arguments: s, n1, t, n2, z, and ldz. For
details, see “Programming Considerations for the SUBF Subroutine” on page
1200.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a is the lower limit of integration, a, for the first variable integrated.

Specified as: a number of the data type indicated in Table 228.

b is the upper limit of integration, b, for the first variable integrated.

Specified as: a number of the data type indicated in Table 228.

n1 is the order of the quadrature method to be used for the first variable
integrated.

Specified as: an integer; n1 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48,
64, 96, 128, or 256.

c is the lower limit of integration, c, for the second variable integrated.

Specified as: a number of the data type indicated in Table 228.

d is the upper limit of integration, d, for the second variable integrated.

Specified as: a number of the data type indicated in Table 228.

n2 is the order of the quadrature method to be used for the second variable
integrated.

Specified as: an integer; n2 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48,
64, 96, 128, or 256.

z is the matrix Z, containing the n1 rows and n2 columns of data used to

Chapter 15. Numerical Quadrature 1209

evaluate the integrand function. (The output values from the subf subroutine
are placed in Z.) Specified as: an ldz by (at least) n2 array, containing numbers
of the data type indicated in Table 228 on page 1209.

ldz
is the size of the leading dimension of the array specified for z.

Specified as: an integer; ldz > 0 and ldz ≥ n1.

On Return

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 228 on page 1209.

Notes
1. Declare the DGLNQ2 function in your program as returning a long-precision

real number. Declare the SGLNQ2 function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. For details on how to set up the subroutine, see
“Programming Considerations for the SUBF Subroutine” on page 1200.

Function

The integral:

is approximated for a real valued function of two variables s and t, over a
rectangular region, using the Gauss-Legendre Quadrature method of specified
order in each variable. The region of integration is:

(a, b) for s
(c, d) for t

The method gives a good approximation when your integrand is closely
approximated by a function of the form f(s, t), where f is a polynomial of degree
less than 2(n1) for s and 2(n2) for t. See the function description for “SGLNQ and
DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre
Quadrature)” on page 1206 and references [33 on page 1315] and [109 on page
1319]. The result is returned as the function value.

Special Usage

To achieve optimal performance in this subroutine and in the functional
evaluation, specify the first variable integrated in this subroutine as the variable
having more points. The first variable integrated is the variable in the inner
integral. For example, in the following integration, x is the first variable integrated:

1210 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This is the suggested order of integration if the x variable has more points than the
y variable. On the other hand, if the y variable has more points, you make y the
first variable integrated.

Because the order of integration does not matter to the resulting approximation,
you may be able to reverse the order that x and y are integrated and get better
performance. This can be expressed as:

Results are mathematically equivalent. However, because the algorithm is
computed in a different way, results may not be bitwise identical.

Table 229 shows how to assign your variables to the _GLNQ2 and subf arguments
for the x-y integration shown on the left and for the y-x integration shown on the
right. For examples of how to do each of these, see Example 1 and Example 2.

Table 229. How to Assign Your Variables for x-y Integration Versus y-x Integration

_GLNQ2 and SUBF
Arguments

Variables for
x-y Integration

Variables for
y-x Integration

For _GLNQ2:
a
b
n1
c
d
n2

For subf:
s
t
n1
n2

r1
r2
(order for x)
u1
u2
(order for y)

x
y
(order for x)
(order for y)

u1
u2
(order for y)
r1
r2
(order for x)

y
x
(order for y)
(order for x)

Error conditions

Computational Errors
None

Input-Argument Errors

1. ldz ≤ 0
2. n1 > ldz

3. n1 or n2 is not an allowable value, as listed in the syntax for this argument.

Examples

Example 1

This example shows how to compute the integral of the function f given by:

f(x, y) = ex sin y

over the intervals (0.0, 2.0) for the first variable x and (-2.0, -1.0) for the second
variable y, using the Gauss-Legendre method with 10 points in the x variable

Chapter 15. Numerical Quadrature 1211

and 5 points in the y variable:

Because the variable x has more points, it is the first variable integrated. This
allows the SGLNQ2 subroutine and the FUN1 evaluation to achieve optimal
performance. Therefore, the x and y variables correspond to S and T in the FUN1
subroutine. Also, the x and y variables correspond to the A, B, N1 and C, D, N2
sets of arguments, respectively, for SGLNQ2.

Using Fortran for SUBF:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (S,N1,T,N2,Z,LDZ)
INTEGER*4 N1,N2,LDZ
REAL*4 S(*),T(*),Z(LDZ,*)
DO 1 J=1,N2
DO 2 I=1,N1

2 Z(I,J)=EXP(S(I))*SIN(T(J))
1 CONTINUE

RETURN
END

Note: The computation for this user-supplied subroutine FUN1 can also be
performed by using the following statements in place of the above DO loops,
using T1 and T2 as temporary storage areas:

.

.

.
DO 1 I=1,N1

1 T1(I)=EXP(S(I))
DO 2 J=1,N2

2 T2(J)=SIN(T(J))
DO 3 J=1,N2
DO 4 I=1,N1

4 Z(I,J)=T1(I)*T2(J)
3 CONTINUE

.

.

.

When coding your application, this is the preferred technique. It reduces the
number of evaluations performed and, therefore, provides better performance.

Using C for SUBF:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in C as follows:

void fun1(s, n1, t, n2, z, ldz)
float *s, *t, *z;
int *n1, *n2, *ldz;
{

int i, j;
for(j = 0; j < *n2; ++j, z += *ldz)

{
for(i = 0; i < *n1; ++i)
z[i] = exp(s[i]) * sin(t[j]);
}

}

1212 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Using C++ for SUBF:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in C++ as follows:

void fun1(float *s, int *n1, float *t, int *n2, float *z, int *ldz)
{

int i, j;
for(j = 0; j < *n2; ++j, z += *ldz)

{
for(i = 0; i < *n1; ++i)
z[i] = exp(s[i]) * sin(t[j]);
}

}

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |

XYINT = SGLNQ2(FUN1 , 0.0 , 2.0 , 10 , -2.0 , -1.0 , 5 , Z , 10)
.
.
.

FUN1 = (see above)
Z = (not relevant)

Output:
XYINT = -6.1108

Example 2

This example shows how to reverse the order of integration of the variables x
and y. It computes the integral of the function f given by:

f(x, y) = cos x sin y

over the intervals (0.0, 1.0) for the variable x and (0.0, 20.0) for the variable y,
using the Gauss-Legendre method with 5 points in the x variable and 48 points
in the y variable. Because the order of integration does not matter to the
approximation:

the variable y, having more points, is the first variable integrated (performing
the integration shown on the right.) This allows the SGLNQ2 subroutine and
the FUN1 evaluation to achieve optimal performance. Therefore, the x and y
variables correspond to T and S in the FUN2 subroutine. Also, the x and y
variables correspond to the C, D, N2 and A, B, N1 sets of arguments, respectively,
for SGLNQ2.

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (S,N1,T,N2,Z,LDZ)
INTEGER*4 N1,N2,LDZ
REAL*4 S(*),T(*),Z(LDZ,*)
DO 1 J=1,N2
DO 2 I=1,N1

Chapter 15. Numerical Quadrature 1213

2 Z(I,J)=COS(T(J))*SIN(S(I))
1 CONTINUE

RETURN
END

Note: The same coding principles for achieving good performance that are
noted in Example 1 also apply to this user-supplied subroutine FUN2.

Program Statements and Input:
EXTERNAL FUN2.

.

.

.
SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |

YXINT = SGLNQ2(FUN2 , 0.0 , 20.0 , 48 , 0.0 , 1.0 , 5 , Z , 48)
.
.
.

FUN2 = (see above)
Z = (not relevant)

Output:
YXINT = 0.4981

1214 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function
Using Gauss-Laguerre Quadrature)

Purpose

These functions approximate the integral of a real valued function over a
semi-infinite interval, using the Gauss-Laguerre Quadrature method of specified
order.

Table 230. Data Types

a, b, Result Subroutine

Short-precision real SGLGQ

Long-precision real DGLGQ

Syntax

Fortran SGLGQ | DGLGQ (subf, a, b, n)

C and C++ sglgq | dglgq (subf, a, b, n);

On Entry

subf
is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details, see
“Programming Considerations for the SUBF Subroutine” on page 1200.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a has the following meaning, where:

If b > 0, it is the lower limit of integration.

If b < 0, it is the upper limit of integration.

Specified as: a number of the data type indicated in Table 230.

b is the scaling constant b for the exponential.

Specified as: a number of the data type indicated in Table 230; b > 0 or b < 0.

n is the order of the quadrature method to be used.

Specified as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, or
64.

On Return

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 230.

Notes
1. Declare the DGLGQ function in your program as returning a long-precision

real number. Declare the SGLGQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 1216, and

Chapter 15. Numerical Quadrature 1215

the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 1200.

Function

The integral is approximated for a real valued function over a semi-infinite
interval, using the Gauss-Laguerre Quadrature method of specified order. The
region of integration is:

(a, ∞) if b > 0
(-∞, a) if b < 0

The method of order n is theoretically exact for integrals of the following form,
where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the form f(x)e-bx, where f is a polynomial of degree
less than 2n. See references [33 on page 1315] and [109 on page 1319]. The result is
returned as the function value.

Error conditions

Computational Errors
None

Input-Argument Errors

1. b = 0
2. n is not an allowable value, as listed in the syntax for this argument.

Examples

Example 1

This example shows how to compute the integral of the function f given by:

f(x) = sin (3.0x)e-1.5x

over the interval (-2.0, ∞), using the Gauss-Laguerre method with 20 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)

1216 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DO 1 I=1,N
1 Y(I)=SIN(3.0*T(I))*EXP(-1.5*T(I))

RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

XINT = SGLGQ(FUN1 , -2.0 , 1.5 , 20)
.
.
.

FUN1 = (see above)

Output:
XINT = 5.891

Example 2

This example shows how to compute the integral of the function f given by:

f(x) = sin (3.0x)e1.5x

over the interval (-∞, -2.0), using the Gauss-Laguerre method with 20 points:

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

1 Y(I)=SIN(3.0*T(I))*EXP(1.5*T(I))
RETURN
END

Program Statements and Input:
EXTERNAL FUN2

.

.

.
SUBF A B N
| | | |

XINT = SGLGQ(FUN2 , -2.0 , -1.5 , 20)
.
.
.

FUN2 = (see above)

Output:
XINT = -0.011

Chapter 15. Numerical Quadrature 1217

SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function
Using Gauss-Rational Quadrature)

Purpose

These functions approximate the integral of a real valued function over a
semi-infinite interval, using the Gaussian-Rational quadrature method of specified
order.

Table 231. Data Types

a, b, Result Subroutine

Short-precision real SGRAQ

Long-precision real DGRAQ

Syntax

Fortran SGRAQ | DGRAQ (subf, a, b, n)

C and C++ sgraq | dgraq (subf, a, b, n);

On Entry

subf
is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details, see
“Programming Considerations for the SUBF Subroutine” on page 1200.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a has the following meaning, where:

If a+b > 0, it is the lower limit of integration.

If a+b < 0, it is the upper limit of integration.

Specified as: a number of the data type indicated in Table 231.

b is the centering constant b for the integrand.

Specified as: a number of the data type indicated in Table 231.

n is the order of the quadrature method to be used.

Specified as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64,
96, 128, or 256.

On Return

Function value

is the approximation of the integral. Returned as: a number of the data type
indicated in Table 231.

Notes
1. Declare the DGRAQ function in your program as returning a long-precision

real number. Declare the SGRAQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this

1218 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ESSL subroutine. The variable x, described under “Function,” and the argument
n correspond to the subf arguments t and n, respectively. For details on how to
set up the subroutine, see “Programming Considerations for the SUBF
Subroutine” on page 1200.

Function

The integral is approximated for a real valued function over a semi-infinite
interval, using the Gauss-Rational quadrature method of specified order. The
region of integration is:

(a, ∞) if a+b > 0
(-∞, a) if a+b < 0

The method of order n is theoretically exact for integrals of the following form,
where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the following form, where f is a polynomial of
degree less than 2n:

See references [33 on page 1315] and [109 on page 1319]. The result is returned as
the function value to a Fortran, C, or C++ program.

Error conditions

Computational Errors
None

Input-Argument Errors

1. a+b = 0
2. n is not an allowable value, as listed in the syntax for this argument.

Examples

Example 1

This example shows how to compute the integral of the function f given by:

f(x) = (e1.0/x) / x2

over the interval (-∞, -2.0), using the Gauss-Rational method with 10 points:

Chapter 15. Numerical Quadrature 1219

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

TEMP=1.0/T(I)
1 Y(I)=EXP(TEMP)*TEMP**2

RETURN
END

Program Statements and Input:
EXTERNAL FUN1

.

.

.
SUBF A B N
| | | |

XINT = SGRAQ(FUN1 , -2.0 , 0.0 , 10)
.
.
.

FUN1 = (see above)

Output:
XINT = 0.393

Example 2

This example shows how to compute the integral of the function f given by:

f(x) = (x-3.0)-2 + 10(x-3.0)-11

over the interval (4.0, ∞), using the Gauss-Rational method with 6 points:

The user-supplied subroutine FUN2, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N

TEMP=1.0/(T(I)-3.0)
1 Y(I)=TEMP**2+10.0*TEMP**11

RETURN
END

Program Statements and Input:
EXTERNAL FUN2

.

.

.
SUBF A B N

1220 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

| | | |
XINT = SGRAQ(FUN2 , 4.0 , -3.0 , 6)

.

.

.
FUN2 = (see above)

Output:
XINT = 2.00

Chapter 15. Numerical Quadrature 1221

SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function
Using Gauss-Hermite Quadrature)

Purpose

These functions approximate the integral of a real valued function over the entire
real line, using the Gauss-Hermite Quadrature method of specified order.

Table 232. Data Types

a, b, Result Subroutine

Short-precision real SGHMQ

Long-precision real DGHMQ

Syntax

Fortran SGHMQ | DGHMQ (subf, a, b, n)

C and C++ sghmq | dghmq (subf, a, b, n);

On Entry

subf
is the user-supplied subroutine that evaluates the integrand function. The
subroutine should be defined with three arguments: t, y, and n. For details, see
“Programming Considerations for the SUBF Subroutine” on page 1200.

Specified as: subf must be declared as an external subroutine in your
application program. It can be whatever name you choose.

a is the centering constant a for the exponential.

Specified as: a number of the data type indicated in Table 232.

b is the scaling constant b for the exponential.

Specified as: a number of the data type indicated in Table 232; b > 0.

n is the order of the quadrature method to be used.

Specified as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64,
or 96.

On Return

Function value

is the approximation of the integral. Returned as: a number of the data type
indicated in Table 232.

Notes
1. Declare the DGHMQ function in your program as returning a long-precision

real number. Declare the SGHMQ function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. The variable x, described under “Function” on page 1223, and
the argument n correspond to the subf arguments t and n, respectively. For
details on how to set up the subroutine, see “Programming Considerations for
the SUBF Subroutine” on page 1200.

1222 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Function

The integral is approximated for a real valued function over the entire real line,
using the Gauss-Hermite Quadrature method of specified order. The region of
integration is from -∞ to ∞. The method of order n is theoretically exact for integrals
of the following form, where f is a polynomial of degree less than 2n:

The method of order n is a good approximation when your integrand is closely
approximated by a function of the following form, where f is a polynomial of
degree less than 2n:

See references [33 on page 1315] and [109 on page 1319]. The result is returned as
the function value to a Fortran, C, or C++ program.

Error conditions

Computational Errors
None

Input-Argument Errors

1. b ≤ 0
2. n is not an allowable value, as listed in the syntax for this argument.

Examples

Example

This example shows how to compute the integral of the function f given by:

over the interval (-∞, ∞), using the Gauss-Hermite method with 4 points:

The user-supplied subroutine FUN1, which evaluates the integrand function, is
coded in Fortran as follows:

SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N

1 Y(I)=T(I)**2*EXP(-2.0*(T(I)+5.0)**2)
RETURN
END

Program Statements and Input:

Chapter 15. Numerical Quadrature 1223

EXTERNAL FUN1
.
.
.

SUBF A B N
| | | |

XINT = SGHMQ(FUN1 , -5.0 , 2.0 , 4)
.
.
.

FUN1 = (see above)

Output:
XINT = 31.646

1224 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 16. Random Number Generation

The random number generation subroutines are described here.

Overview of the Random Number Generation Subroutines
Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers using one of the following
algorithms:
v SIMD-oriented Mersenne Twister algorithm
v Multiplicative congruential methods
v Polar methods
v Tausworthe exclusive-or algorithm

Table 233. List of Random Number Generation Initialization Subroutines

Subroutine Descriptive Name and Location

INITRNG “INITRNG (Initialize Random Number Generators)” on page 1227

Table 234. List of Random Number Generation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine Descriptive Name and Location

SURNG DURNG “SURNG and DURNG (Generate a Vector of Uniformly Distributed
Pseudo-Random Numbers)” on page 1232

SNRNG DNRNG “SNRNG and DNRNG (Generate a Vector of Normally Distributed
Pseudo-Random numbers)” on page 1235

SURAND DURAND “SURAND and DURAND (Generate a Vector of Uniformly Distributed
Random Numbers)” on page 1239

SNRAND DNRAND “SNRAND and DNRAND (Generate a Vector of Normally Distributed
Random Numbers)” on page 1242

SURXOR§ DURXOR§ “SURXOR and DURXOR (Generate a Vector of Long Period Uniformly
Distributed Random Numbers)” on page 1245

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs.

Use Considerations
If you need a very long period random number generator, you should select the
following subroutines:
v SURNG rather than SURAND or SURXOR
v DURNG rather than DURAND or DURXOR
v SNRNG rather than SNRAND
v DNRNG rather than DNRAND.

© Copyright IBM Corp. 1986, 2015 1225

Random Number Generation Subroutines

This contains the random number generation subroutine descriptions.

1226 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

INITRNG (Initialize Random Number Generators)
Purpose

This subroutine initializes the selected pseudo-random number generator for use in
subsequent calls to SURNG, DURNG, SNRNG or DNRNG. To generate a
repeatable or non-repeatable vector of pseudo-random numbers, follow the call to
INITRNG with one or more calls to SURNG, DURNG, SNRNG or DNRNG.

Syntax

Fortran CALL INITRNG (iopt, irepeat, iseed, liseed, istate, listate)

C and C++ initrng (iopt, irepeat, iseed, liseed, istate, listate);

On Entry

iopt
indicates the random number generator desired for use, where:

If iopt = 1, a single-precision, SIMD-oriented Mersenne Twister pseudo-random
number generator with a period of 219937-1 (SFMT19937) is used.

If iopt = 2, a long-precision, SIMD-oriented Mersenne Twister pseudo-random
number generator with a period of 219937-1 (DSFMT19937) is used.

Specified as: an integer; iopt = 1 or 2.

irepeat
indicates whether repeatable or non-repeatable pseudo-random number
sequences will be generated, where:

If irepeat = 0, the pseudo-random number generator uses values from iseed to
generate repeatable pseudo-random number sequences.

If irepeat = 1, the pseudo-random number generator uses hardware-generated
values to generate non-repeatable pseudo-random number sequences.

Specified as: an integer; irepeat = 0 or 1.

iseed
If irepeat = 0, iseed is an array containing the initial seed values to use in
initializing the pseudo-random number generator to generate repeatable
pseudo-random number sequences.

If irepeat = 1, iseed is ignored.

Specified as: a one-dimensional integer array of (at least) length max(1,liseed).

liseed
is the number of elements in array ISEED, where:

If irepeat = 0, liseed is determined as follows:

32-bit integer environment
If iopt = 1 or 2, liseed ≥ 624.

64-bit integer environment
If iopt = 1 or 2, liseed ≥ 312.

Note: If irepeat = 0 and insufficient seeds are provided, the seed values
supplied in iseed are used and this subroutine initializes the remaining seed
values on the basis of the supplied seed values.

Chapter 16. Random Number Generation 1227

If irepeat = 1, liseed is ignored.

Specified as: If irepeat = 0, an integer > 0.

istate
See "On Return".

listate
If listate ≠ -1, listate is the number of elements in the array istate, where listate
depends on both the environment the subroutine is running in and the value
of iopt, as follows:

32-bit integer environment

v If iopt = 1, listate ≥ 696.
v If iopt = 2, listate ≥ 839.

64-bit integer environment

v If iopt = 1, listate ≥ 348.
v If iopt = 2, listate ≥ 420.

If listate = -1, an istate size query is assumed. The subroutine returns the
minimum required size of istate in the output argument listate.

Specified as: an integer; -1 or > 0.

On Return

istate
If listate > 0 on entry, istate contains information about the pseudo-random
number generator and the initial seeds for use in subsequent calls to SURNG,
DURNG, SNRNG or DNRNG.

If listate = -1 on entry, then istate is unchanged.

Returned as: a one-dimensional integer array of (at least) length max(1,listate)

listate
If listate = -1 on entry, then on return it contains the minimum required size of
istate.

Otherwise, it remains unchanged.

Returned as: an integer.

Notes
1. In your C program, argument listate must be passed by reference.
2. For a 64-bit integer environment where iopt = 1 or iopt = 2, if liseed is larger

than 231, only the first 231-1 iseed values are used to initialize the istate output
value.

3. iseed and istate must have no common elements; otherwise, results are
unpredictable.

Function

This subroutine initializes the selected pseudo-random number generator for use in
subsequent calls to SURNG, DURNG, SNRNG or DNRNG. To generate a
repeatable or non-repeatable vector of pseudo-random numbers, follow the call to
INITRNG with one or more calls to SURNG, DURNG, SNRNG or DNRNG.

The following pseudo-random number generators are supported:

1228 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

1. SIMD-oriented fast Mersenne Twister pseudo-random number generator
SFMT19937 (see [94 on page 1319]) with a period length equal to 219937-1 of the
produced sequence.

2. Double precision floating point SFMT19937 pseudo-random number generator
DSFMT19937 ((see [95 on page 1319]) with a period length equal to 219937-1 of
the produced sequence.

See references [93 on page 1318], [94 on page 1319] and [95 on page 1319].

Error conditions

Computational Errors
None

Input-Argument Errors

1. iopt ≠ 1 or 2
2. irepeat = 0 and liseed < 1
3. In a 32-bit integer environment:
v iopt = 1 and listate ≠ -1 and listate < 696.
v iopt = 2 and listate ≠ -1 and listate < 839.

4. In a 64-bit integer environment:
v iopt = 1 and listate ≠ -1 and listate < 348.
v iopt = 2 and listate ≠ -1 and listate < 420.

Examples

Example 1

This example shows a call to INITRNG to find the optimal size of the istate
array needed by the SFMT19937 pseudo-random number generator.

Call Statement and Input:
IOPT IREPEAT ISEED LISEED ISTATE LISTATE

| | | | | |
CALL INITRNG(1 , IREPEAT , ISEED , LISEED , ISTATE , -1)

Output:
LISTATE = 696 (in a 32-bit integer environment)

LISTATE = 348 (in a 64-bit integer environment)

Example 2

This example shows a call to INITRNG to find the optimal size of the istate
array needed by the DSFMT19937 pseudo-random number generator.

Call Statement and Input:
IOPT IREPEAT ISEED LISEED ISTATE LISTATE

| | | | | |
CALL INITRNG(2 , IREPEAT , ISEED , LISEED , ISTATE , -1)

Output:
LISTATE = 839 (in a 32-bit integer environment)

LISTATE = 420 (in a 64-bit integer environment)

Example 3

This example shows how to initialize the istate array with the seed values for
the SFMT19937 pseudo-random number generator to generate repeatable
random sequences in a subsequent call to SURNG or SNRNG.

Chapter 16. Random Number Generation 1229

Call Statement and Input:
IOPT IREPEAT ISEED LISEED ISTATE LISTATE

| | | | | |
CALL INITRNG(1 , 0 , ISEED , LISEED , ISTATE , 1000)

In a 32-bit integer environment:
ISEED(1) = 0
ISEED(2) = 1234
ISEED(3) = 0
ISEED(4) = 5678
LISEED = 4

In a 64-bit integer environment:
ISEED(1) = 1234
ISEED(2) = 5678
LISEED = 2

Output:

istate contains an array of seeds for the SFMT19937 pseudo-random number
generator to generate repeatable random sequences, which can be used in a
subsequent call to SURNG or SNRNG.

Example 4

This example shows how to initialize the istate array with the seed values for
the DSFMT19937 pseudo-random number generator to generate repeatable
random sequences in a subsequent call to DURNG or DNRNG.

Call Statement and Input:
IOPT IREPEAT ISEED LISEED ISTATE LISTATE

| | | | | |
CALL INITRNG(2 , 0 , ISEED , LISEED , ISTATE , 1000)

In a 32-bit integer environment:
ISEED(1) = 0
ISEED(2) = 1234
ISEED(3) = 0
ISEED(4) = 5678
LISEED = 4

In a 64-bit integer environment:
ISEED(1) = 1234
ISEED(2) = 5678
ISEED(1) = 1234
ISEED(2) = 5678
LISEED = 2

Output:

istate contains an array of seeds for the DSFMT19937 pseudo-random number
generator, which can be used in a subsequent call to DURNG or DNRNG.

Example 5

This example shows how to initialize the istate array with the seed values for
the DSFMT19937 pseudo-random number generator to generate non-repeatable
random sequences in a subsequent call to DURNG or DNRNG.

Call Statement and Input:
IOPT IREPEAT ISEED LISEED ISTATE LISTATE

| | | | | |
CALL INITRNG(2 , 1 , ISEED , LISEED , ISTATE , 1000)

Output:

1230 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

istate contains an array of seeds for the DSFMT19937 pseudo-random number
generator, which can be used in a subsequent call to DURNG or DNRNG.

Chapter 16. Random Number Generation 1231

SURNG and DURNG (Generate a Vector of Uniformly Distributed
Pseudo-Random Numbers)

Purpose

These subroutines generate a repeatable or non-repeatable vector x of uniform
pseudo-random numbers uniformly distributed over the interval [a, b].

For the initial call to these subroutines, you must initialize the pseudo-random
number generator with a preceding call to INITRNG.

Table 235. Data Types

x, a, b Subroutine

Short-precision real SURNG

Long-precision real DURNG

Syntax

Fortran CALL SURNG | DURNG (n, a, b, x, istate, listate)

C and C++ surng | durng (n, a, b, x, istate, listate);

On Entry

n is the number of pseudo-random numbers to be generated.

Specified as: an integer; n ≥ 0.

a is the left boundary of the interval [a, b].

Specified as: a number of the data type indicated in Table 235.

b is the right boundary of the interval [a, b].

Specified as: a number of the data type indicated in Table 235.

x See "On Return".

istate
is an array containing information about the current state of the
pseudo-random number generator.

Note: If you are invoking this subroutine for the first time, istate must be the
output of a preceding call to subroutine INITRNG, as follows:
v For SURNG, INITRNG must have been invoked with iopt = 1
v For DURNG, INITRNG must have been invoked with iopt = 2

Specified as: a one-dimensional integer array of (at least) length listate.

listate
is the number of elements in the array istate and depends on both the
environment the subroutine is running in and the value of iopt specified on the
previous call to INITRNG, as follows:

32-bit integer environment

v If INITRNG was called with iopt = 1, listate ≥ 696.
v If INITRNG was called with iopt = 2, listate ≥ 839.

64-bit integer environment

1232 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v If INITRNG was called with iopt = 1, listate ≥ 348.
v If INITRNG was called with iopt = 2, listate ≥ 420.

Specified as: an integer; listate > 0.

On Return

x is a vector of length n, containing the uniformly distributed pseudo-random
numbers.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 235 on page 1232.

istate
is an array of length listate containing updated information about the state of
the pseudo-random number generator for use in subsequent calls to this
subroutine.

Returned as: a one-dimensional integer array of (at least) length listate.

Notes

x and istate must have no common elements; otherwise, results are unpredictable.

Function

These subroutines generate a repeatable or non-repeatable vector x of uniform
pseudo-random numbers uniformly distributed over the interval [a, b].

For the initial call to these subroutines, you must initialize the pseudo-random
number generator with a preceding call to INITRNG.

The computation involves the following steps:
1. Retrieve the information for the initialized pseudo-random number generator.
2. Generate the uniformly distributed sequence with the selected pseudo-random

number generator.
3. Scale the sequence of pseudo-random numbers.

See references [93 on page 1318], [94 on page 1319] and [95 on page 1319].

If n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. a ≥ b

3. istate is not initialized (by a preceding call to INITRNG)
4. istate is initialized (by a preceding call to INITRNG):
v With iopt = 2 for a call to SURNG
v With iopt = 1 for a call to DURNG

5. listate is less than the minimum required value.

Chapter 16. Random Number Generation 1233

Examples

Example 1

This example shows a call to SURNG to generate 10 uniformly distributed
short-precision pseudo-random numbers between 0.0 and 1.0.

Call Statement and Input:
N A B X ISTATE LISTATE
| | | | | |

CALL SURNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

ISTATE = (same as ouput ISTATE in Example 3)

Note: For the initial call to SURNG, you must initialize the pseudo-random
number generator with a preceding call to INITRNG (see Example 3).

Output:
┌ ┐
| 0.439785 |
| 0.064906 |
| 0.385660 |
| 0.695451 |

X = | 0.496463 |
| 0.154272 |
| 0.002247 |
| 0.725402 |
| 0.037238 |
| 0.892588 |
└ ┘

ISTATE = contains the updated state of the pseudo-random number generator.

Example 2

This example shows a call to DURNG to generate 10 uniformly distributed
long-precision pseudo-random numbers between 0.0 and 1.0.

Call Statement and Input:
N A B X ISTATE LISTATE
| | | | | |

CALL DURNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

ISTATE = (same as ouput ISTATE in Example 4)

Note: For the initial call to DURNG, you must initialize the pseudo-random
number generator with a preceding call to INITRNG (see Example 4).

Output:
┌ ┐
| 0.948207 |
| 0.388311 |
| 0.758121 |
| 0.430842 |

X = | 0.261129 |
| 0.693552 |
| 0.113275 |
| 0.607048 |
| 0.192948 |
| 0.669879 |
└ ┘

ISTATE = contains the updated state of the pseudo-random number generator.

1234 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SNRNG and DNRNG (Generate a Vector of Normally Distributed
Pseudo-Random numbers)

Purpose

These subroutines generate a repeatable or non-repeatable vector x of normally
distributed pseudo-random numbers normally distributed with a mean of rmean
and a standard deviation of sigma, using the BoxMuller2 method.

For the initial call to these subroutines, you must initialize the pseudo-random
number generator with a preceding call to INITRNG.

Table 236. Data Types

x, rmean, sigma Subroutine

Short-precision real SNRNG

Long-precision real DNRNG

Syntax

Fortran CALL SNRNG | DNRNG (n, rmean, sigma, x, istate, listate)

C and C++ SNRNG | DNRNG (n, rmean, sigma, x, istate, listate);

On Entry

n is the number of pseudo-random numbers to be generated.

Specified as: an integer; n must be an even number and n ≥ 0.

rmean
is the mean value of the distribution.

Specified as: a number of the data type indicated in Table 236.

sigma
is the standard deviation value of the distribution.

Specified as: a number of the data type indicated in Table 236.

x See "On Return".

istate
is an array containing information about the current state of the
pseudo-random number generator.

Note: If you are invoking this subroutine for the first time, istate must be the
non-zero output of a preceding call to subroutine INITRNG, as follows:
v For SNRNG, INITRNG must have been invoked with iopt = 1
v For DNRNG, INITRNG must have been invoked with iopt = 2

Specified as: a one-dimensional integer array of (at least) length listate.

listate
is the number of elements in the array istate and depends on both the
environment the subroutine is running in and the value of iopt specified on the
previous call to INITRNG, as follows:

32-bit pointer environment

v If INITRNG was called with iopt = 1, listate ≥ 696.

Chapter 16. Random Number Generation 1235

v If INITRNG was called with iopt = 2, listate ≥ 839.

64-bit pointer environment

v If INITRNG was called with iopt = 1, listate ≥ 348.
v If INITRNG was called with iopt = 2, listate ≥ 420.

Specified as: an integer; listate > 0.

On Return

x is a vector of length n, containing the normally distributed pseudo-random
numbers.

Returned as: a one-dimensional array of (at least) length n, containing numbers
of the data type indicated in Table 236 on page 1235.

istate
is an array of length listate containing updated information about the state of
the pseudo-random number generator for use in subsequent calls to this
subroutine.

Returned as: a one-dimensional integer array of (at least) length listate.

Notes

x and istate must have no common elements; otherwise, results are unpredictable.

Function

These subroutines generate a repeatable or non-repeatable vector x of normally
distributed pseudo-random numbers normally distributed with a mean of rmean
and a standard deviation of sigma, using the BoxMuller2 method.

For the initial call to these subroutines, you must initialize the pseudo-random
number generator with a preceding call to INITRNG.

The computation involves the following steps:
1. Retrieve the information for the initialized pseudo-random number generator.
2. Generate the uniformly distributed sequence with the selected pseudo-random

number generator.
3. Generate the normally distributed sequence using the BoxMuller2 method.

See references [13 on page 1314], [93 on page 1318], [94 on page 1319] and [95 on
page 1319].

If n is 0, no computation is performed.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0 or n is an odd number
2. sigma ≤ 0
3. istate is not initialized (by a preceding call to INITRNG)
4. istate is initialized:

1236 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

v With iopt = 2 for a call to SNRNG
v With iopt = 1 for a call to DNRNG

5. listate is less than the minimum required value.

Examples

Example 1

This example shows a call to SNRNG to generate 10 normally distributed
short-precision pseudo-random numbers with a mean value of 0.0 and a
standard deviation of 1.0.

Call Statement and Input:
N RMEAN SIGMA X ISTATE LISTATE
| | | | | |

CALL SNRNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

ISTATE = (same as ouput ISTATE in Example 3)

Note: For the initial call to SNRNG, you must initialize the pseudo-random
number generator with a preceding call to INITRNG (see Example 3).

Output:
┌ ┐
| -0.426951 |
| 0.988221 |
| 0.929709 |
| -0.331744 |

X = | -0.965826 |
| 0.662854 |
| 0.066279 |
| -0.010326 |
| 0.172133 |
| 0.215101 |
└ ┘

ISTATE = contains the updated state of the pseudo-random number generator.

Example 2

This example shows a call to DNRNG to generate 10 normally distributed
long-precision pseudo-random numbers with a mean value of 0.0 and a
standard deviation of 1.0.

Call Statement and Input:
N RMEAN SIGMA X ISTATE LISTATE
| | | | | |

CALL DNRNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

ISTATE = (same as ouput ISTATE in Example 4)

Note: For the initial call to DNRNG, you must initialize the pseudo-random
number generator with a preceding call to INITRNG (see Example 4).

Output:
┌ ┐
| -1.570857 |
| -1.858332 |
| -0.709286 |
| -1.528250 |

X = | 0.729566 |
| -0.270181 |
| 0.305498 |

Chapter 16. Random Number Generation 1237

| -0.383550 |
| 0.573548 |
| -0.315877 |
└ ┘

ISTATE = contains the updated state of the pseudo-random number generator.

1238 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SURAND and DURAND (Generate a Vector of Uniformly Distributed
Random Numbers)

Purpose

These subroutines generate vector x of uniform (0,1) pseudo-random numbers,
using the multiplicative congruential method with a user-specified seed.

Table 237. Data Types

x seed Subroutine

Short-precision real Long-precision real SURAND

Long-precision real Long-precision real DURAND

Note: If you need a very long period random number generator, use SURXOR and
DURXOR instead of these subroutines.

Syntax

Fortran CALL SURAND | DURAND (seed, n, x)

C and C++ surand | durand (seed, n, x);

On Entry

seed
is the initial value used to generate the random numbers.

Specified as: a number of the data type indicated in Table 237. It should be a
whole number; that is, the fraction part should be 0. (If you specify a mixed
number, it is truncated.) Its value must be 1.0 ≤ seed < (2147483647.0 = 231-1).

Note: seed is always a long-precision real number, even in SURAND.

n is the number of random numbers to be generated.

Specified as: an integer; n ≥ 0.

x See On Return.

On Return

seed
is the new seed that is to be used to generate additional random numbers in
subsequent invocations of SURAND or DURAND. Returned as: a number of
the data type indicated in Table 237. It is a whole number whose value is 1.0 ≤
seed < (2147483647.0 = 231-1).

x is a vector of length n, containing the uniform pseudo-random numbers with
values between 0 and 1. Returned as: a one-dimensional array of (at least)
length n, containing numbers of the data type indicated in Table 237.

Notes

In your C program, argument seed must be passed by reference.

Chapter 16. Random Number Generation 1239

Function

The uniform (0,1) pseudo-random numbers are generated as follows, using the
multiplicative congruential method:

si = (a(si-1)) mod(m) = (ais0) mod(m)
xi = si/m for i = 1, 2, ..., n

where:

si is a random sequence.
xi is a random number.
s0 is the initial seed provided by the caller.
a = 75 = 16807.0
m = 231-1 = 2147483647.0
n is the number of random numbers to be generated.

See references [88 on page 1318] and [92 on page 1318]. If n is 0, no computation is
performed, and the initial seed is unchanged.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. seed < 1.0 or seed ≥ 2147483647.0

Examples

Example 1

This example shows a call to SURAND to generate 10 random numbers.

Call Statement and Input:
SEED N X

| | |
CALL SURAND(SEED , 10 , X)

SEED = 80629.0

Note: It is important to note that SEED is a long-precision number, even though
X contains short-precision numbers.

Output:
SEED = 759150100.0

X = (0.6310323,
0.7603202,
0.7015232,
0.5014868,
0.4895853,
0.4602344,
0.1603608,
0.1832564,
0.9899062,
0.3535068)

Example 2

This example shows a call to DURAND to generate 10 random numbers.

1240 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Call Statement and Input:
SEED N X

| | |
CALL DURAND(SEED , 10 , X)

SEED = 80629.0

Output:
SEED = 759150100.0

X = (0.6310323270182275,
0.7603201953509451,
0.7015232633340746,
0.5014868557925740,
0.4895853057920864,
0.4602344475967038,
0.1603607578018497,
0.1832563756887132,
0.9899062002030695,
0.3535068129904134)

Chapter 16. Random Number Generation 1241

SNRAND and DNRAND (Generate a Vector of Normally Distributed
Random Numbers)

Purpose

These subroutines generate vector x of normally distributed pseudo-random
numbers, with a mean of 0 and a standard deviation of 1, using Polar methods
with a user-specified seed.

Table 238. Data Types

x, aux seed Subroutine

Short-precision real Long-precision real SNRAND

Long-precision real Long-precision real DNRAND

Syntax

Fortran CALL SNRAND | DNRAND (seed, n, x, aux, naux)

C and C++ snrand | dnrand (seed, n, x, aux, naux);

On Entry

seed
is the initial value used to generate the random numbers.

Specified as: a number of the data type indicated in Table 238. It must be a
whole number; that is, the fraction part must be 0. Its value must be 1.0 ≤ seed
< (2147483647.0 = 231-1).

Note: seed is always a long-precision real number, even in SNRAND.

n is the number of random numbers to be generated.

Specified as: an integer; n must be an even number and n ≥ 0.

x See On Return.

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size must be
greater than or equal to n/2.

Specified as: an area of storage, containing numbers of the data type indicated
in Table 238. They can have any value.

naux
is the size of the work area specified by aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, SNRAND and DNRAND
dynamically allocate the work area used by the subroutine. The work area is
deallocated before control is returned to the calling program.

Otherwise, naux ≥ n/2.

On Return

1242 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

seed
is the new seed that is to be used to generate additional random numbers in
subsequent invocations of SNRAND or DNRAND. Returned as: a number of
the data type indicated in Table 238 on page 1242. It is a whole number whose
value is 1.0 ≤ seed < (2147483647.0 = 231-1).

x is a vector of length n, containing the normally distributed pseudo-random
numbers. Returned as: a one-dimensional array of (at least) length n,
containing numbers of the data type indicated in Table 238 on page 1242.

Notes
1. In your C program, argument seed must be passed by reference.
2. Vector x must have no common elements with the storage area specified for

aux; otherwise, results are unpredictable.
3. You have the option of having the minimum required value for naux

dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

The normally distributed pseudo-random numbers, with a mean of 0 and a
standard deviation of 1, are generated as follows, using Polar methods with a
user-specified seed. The Polar method, which this technique is based on, was
developed by G. E. P. Box, M. E. Muller, and G. Marsaglia and is described in
reference [88 on page 1318].
1. Using seed, a vector of uniform (0,1) pseudo-random numbers, ui for i = 1, n, is

generated by calling SURAND or DURAND, respectively. These ui values are
then used in the subsequent steps.

2. All (yj, zj) for j = 1, n/2 are set as follows, where each (y, z) is a point in the
square -1 to 1:

yj = 2u2j-1-1
zj = 2u2j-1

3. All pj for j = 1, n/2 are set as follows, where each p measures the square of the
radius of (y, z):

If pj ≥ 1, then pj is discarded, and steps 1 through 3 are repeated until pj < 1.
4. All xi for i = 1, n are set as follows to produce the normally distributed random

numbers:

x2j-1 = yj ((-2 ln pj) / pj)
0.5

x2j = zj ((-2 ln pj) / pj)
0.5

for j = 1, n/2

If n is 0, no computation is performed, and the initial seed is unchanged.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Chapter 16. Random Number Generation 1243

Computational Errors
None

Input-Argument Errors

1. n < 0 or n is an odd number
2. seed < 1.0 or seed ≥ 2147483647.0
3. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less than

the minimum required value. Return code 1 is returned if error 2015 is
recoverable.

Examples

Example 1

This example shows a call to SNRAND to generate 10 random numbers.

Call Statement and Input:
SEED N X AUX NAUX

| | | | |
CALL SNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

Note: It is important to note that SEED is a long-precision number, even though
X contains short-precision numbers.

Output:
SEED = 48669425.0

X = (0.660649538,
1.312503695,
1.906438112,
0.014065863,
-0.800935328,
-3.058144093,
-0.397426069,
-0.370634943,
-0.064151444,
-0.275887042)

Example 2

This example shows a call to DNRAND to generate 10 random numbers.

Call Statement and Input:
SEED N X AUX NAUX

| | | | |
CALL DNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

Output:
SEED = 48669425.0

X = (0.6606495655963802,
1.3125037758861060,
1.9064381379483730,
0.0140658628770495,
-0.8009353314494653,
-3.0581441239248530,
-0.3974260845722100,
-0.3706349643478605,
-0.0641514443372939,
-0.2758870630332470)

1244 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SURXOR and DURXOR (Generate a Vector of Long Period Uniformly
Distributed Random Numbers)

Purpose

These subroutines generate a vector x of uniform [0,1) pseudo-random numbers,
using the Tausworthe exclusive-or algorithm.

Table 239. Data Types

x, vseed iseed Subroutine

Short-precision real Integer SURXOR

Long-precision real Integer DURXOR

Syntax

Fortran CALL SURXOR | DURXOR (iseed, n, x, vseed)

C and C++ surxor | durxor (iseed, n, x, vseed);

On Entry

iseed
has the following meaning, where:

If iseed ≠ 0, iseed is the initial value used to generate the random numbers. You
specify iseed ≠ 0 when you call this subroutine for the first time or when you
changed vseed between calls to this subroutine.

If iseed = 0, vseed is used to generate the random numbers, where vseed was
initialized by an earlier call to this subroutine. ESSL assumes you have not
changed vseed between calls to this subroutine, when you specify iseed = 0.

Specified as: an integer, as indicated in Table 239.

n is the number of random numbers to be generated.

Specified as: an integer; n ≥ 0.

x See On Return.

vseed
is the work area used by this subroutine and has the following meaning,
where:

If iseed ≠ 0, vseed is not used for input. The work area can contain anything.

If iseed = 0, vseed contains the seed vector generated by a preceding call to this
subroutine. vseed is used in this computation to generate the new random
numbers. It should not be changed between calls to this subroutine.

Specified as: a one-dimensional array of (at least) length 10000, containing
numbers of the data type indicated in Table 239.

On Return

iseed
is set to 0 for subsequent calls to SURXOR or DURXOR. Returned as: an
integer, as indicated in Table 239.

x is a vector of length n, containing the uniform pseudo-random numbers with

Chapter 16. Random Number Generation 1245

the following values: 0 ≤ x < 1. Returned as: a one-dimensional array of (at
least) length n, containing numbers of the data type indicated in Table 239 on
page 1245.

vseed
is the work area used by these subroutines, containing the new seed that is to
be used in subsequent calls to this subroutine. Returned as: a one-dimensional
array of (at least) length 10000, containing numbers of the data type indicated
in Table 239 on page 1245.

Notes
1. You can generate the same vector x of random numbers by starting over and

specifying your original nonzero iseed value.
2. Multiple calls to these subroutines with mixed sizes generate the same

sequence of numbers as a single call the total length, assuming you specify the
same initial iseed in both cases. For example, you can generate the same vector
x of random numbers by calling this subroutine twice and specifying n = 10 or
by calling this subroutine once and specifying n = 20. You need to specify the
same iseed in the initial call in both cases, and iseed = 0 in the second call with n
= 10.

3. Vector x must have no common elements with the storage area specified for
vseed; otherwise, results are unpredictable.

4. In your C program, argument iseed must be passed by reference.

Function

The pseudo-random numbers uniformly distributed in the interval [0,1) are
generated using the Tausworthe exclusive-or algorithm. This is based on a
linear-feedback shift-register sequence. The very long period of the generator,
21279-1, makes it useful in modern statistical simulations where the shorter period
of other generators could be exhausted during a single run. If you need a large
number of random numbers, you can use these subroutines, because with this
generator you do not request more than a small percentage of the entire period of
the generator.

This generator is based on two feedback positions to generate a new binary digit:

where:

p > q
k = 1, 2, ...
z is a bit vector.
and where:

For details, see references [62 on page 1317], [86 on page 1318], and [111 on page
1319]. The values of p and q are selected according to the criteria stated in
reference [117 on page 1320].

1246 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

The algorithm initializes a seed vector of length p, starting with iseed. The seed
vector is stored in vseed for use in subsequent calls to this subroutine with iseed =
0.

If n is 0, no computation is performed, and the initial seed is unchanged.

Special Usage

For some specialized applications, if you need multiple sources of random
numbers, you can specify different vseed areas, which are initialized with different
seeds on multiple calls to this subroutine. You then get multiple sequences of the
random number sequence provided by the generator that are sufficiently far apart
for most purposes.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n < 0
2. iseed = 0 and vseed does not contain valid data.

Examples

Example 1

This example shows a call to SURXOR to generate 10 random numbers.

Call Statement and Input:
ISEED N X VSEED

| | | |
CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 137

Output:
ISEED = 0

X = (0.6440868,
0.5105118,
0.4878680,
0.3209075,
0.6624528,
0.2499877,
0.0056630,
0.7329214,
0.7486335,
0.8050517)

Example 2

This example shows a call to SURXOR to generate 10 random numbers. This
example specifies iseed = 0 and uses the vseed output generated from Example
1.

Call Statement and Input:
ISEED N X VSEED

| | | |
CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 0

Chapter 16. Random Number Generation 1247

Output:
ISEED = 0

X = (0.9930249,
0.0441873,
0.6891295,
0.3101060,
0.6324178,
0.3299408,
0.3553145,
0.0100013,
0.0214620,
0.8059390)

Example 3

This example shows a call to DURXOR to generate 20 random numbers. This
sequence of numbers generated are like those generated in Examples 1 and 2.

Call Statement and Input:
ISEED N X VSEED

| | | |
CALL DURXOR(ISEED , 20 , X , VSEED)

ISEED = 137

Output:
ISEED = 0

X = (0.64408693438956721,
0.51051182536460882,
0.48786801310787142,
0.32090755617007050,
0.66245283144861666,
0.24998782843358081,
0.00566308101257373,
0.73292147005172925,
0.74863359794102236,
0.80505169697755319,
0.99302499462139138,
0.04418740640269125,
0.68912952155409579,
0.31010611495627916,
0.63241786342211936,
0.32994081459690583,
0.35531452631408911,
0.01000134413132581,
0.02146199494672940,
0.80593898487597615)

1248 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Chapter 17. Utilities

The utility subroutines are described here.

Overview of the Utility Subroutines
The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations.

Table 240. List of Utility Subroutines

Subroutine Descriptive Name and Location

EINFO “EINFO (ESSL Error Information-Handler Subroutine)” on page 1252

ERRSAV “ERRSAV (ESSL ERRSAV Subroutine)” on page 1255

ERRSET “ERRSET (ESSL ERRSET Subroutine)” on page 1256

ERRSTR “ERRSTR (ESSL ERRSTR Subroutine)” on page 1258

IVSSET§ Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library

IEVOPS§ Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library

IESSL “IESSL (Determine the Level of ESSL Installed)” on page 1259

SETGPUS “SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)” on page
1261

STRIDE “STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform
Subroutines)” on page 1263

DSRSM “DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)”
on page 1279

DGKTRN “DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline
Storage Mode)” on page 1283

DSKTRN “DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In
Skyline Storage Mode)” on page 1288

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Use Considerations
This describes what you use the utility subroutines for.

Determining the Level of ESSL Installed
IESSL gets the level of ESSL and returns it to your program. The level consists of
the following: version number, release number, modification number, and number
of the most recently installed ESSL PTF. You can use this function to verify that
you are running on or using the capabilities of the desired level.

Finding the Optimal Stride(s) for Your Fourier Transforms
STRIDE is used to determine optimal stride values for your Fourier transforms
when using any of the Fourier transform subroutines, except _RCFT and _CRFT.
You must invoke STRIDE for each optimal stride you want computed. Sometimes
you need a separate stride for your input and output data. For the

© Copyright IBM Corp. 1986, 2015 1249

three-dimensional Fourier transforms, you need an optimal stride for both the
second and third dimensions of the array. The examples provided for STRIDE
explain how it is used for each of the subroutines listed above.

After obtaining the optimal strides from STRIDE, you should arrange your data
using these stride values. After the data is set up, call the Fourier transform
subroutine. For additional information on how to set up your data, see “Setting Up
Your Data” on page 987.

Converting Sparse Matrix Storage
DSRSM is used to migrate your existing program from sparse matrices stored by
rows to sparse matrices stored in compressed-matrix storage mode. This converts
the matrices into a storage format that is compatible with the input requirements
for some ESSL sparse matrix subroutines, such as DSMMX.

DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

1250 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Utility Subroutines

This contains the utility subroutine descriptions.

Chapter 17. Utilities 1251

EINFO (ESSL Error Information-Handler Subroutine)
Purpose

This subroutine returns information to your program about the data involved in a
computational error that occurred in an ESSL subroutine. This is the same
information that is provided in the ESSL messages; however, it allows you to check
the information in your program at run time and continue processing. You pass the
computational error code of interest to this subroutine in icode, and it passes back
one or more pieces of information in the output arguments inf1 and, optionally,
inf2, as defined in Table 241. You should use this subroutine only for those
computational errors listed in the table. It does not apply to computational
errors that do not return information.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 147.

Table 241. Computational Error Information Returned by EINFO

Error Code Receiver Type of Information

2100 inf1

inf2

Lower range of a vector

Upper range of a vector

2101 inf1

inf2

Index of the eigenvalue that failed to converge

Number of iterations after which it failed to converge

2102 inf1

inf2

Index of the last eigenvector that failed to converge

Number of iterations after which it failed to converge

2103 inf1 Index of the pivot with zero value

2104 inf1 Index of the last pivot with nonpositive value

2105 inf1 Index of the pivot element near zero causing factorization
to fail

2107 inf1

inf2

Index of the singular value that failed to converge

Number of iterations after which it failed to converge

2109 inf1 Iteration count when it was determined that the matrix
was not definite

2114 inf1

inf2

Index of the last eigenvalue that failed to converge

Number of iterations after which it failed to converge

2115 inf1 Order of the leading minor that was discovered to have a
nonpositive determinant

2117 inf1 Column number for which pivot value was near zero

2118 inf1 Row number for which pivot value was near zero

2120 inf1 Row number of empty row where factorization failed

2121 inf1 Column number of empty column where factorization
failed

2126 inf1 Row number for which pivot value was unacceptable

1252 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 241. Computational Error Information Returned by EINFO (continued)

Error Code Receiver Type of Information

2145 inf1 First diagonal element with zero value

2150 inf1 First diagonal element with zero value

Syntax

Fortran CALL EINFO (icode[, inf1[, inf2]])

C and C++ einfo (icode, inf1, inf2);

On Entry

icode
has the following meaning, where:

If icode = 0, this indicates that the ESSL error option table is to be initialized.
(You specify this value once in the beginning of your program before calls to
ERRSET.)

If icode has any of the allowable error code values listed in Table 241 on page
1252, this is the computational error code of interest. (You specify one of these
values whenever you want information returned about a computational error.)

Specified as: an integer; icode = 0 or an error code value indicated in Table 241
on page 1252.

inf1
See On Return.

inf2
See On Return.

On Return

inf1
has the following meaning, where:

If icode = 0, this argument is not used in the computation. In this case, inf1 is
an optional argument, except in C and C++ programs.

If icode ≠ 0, then inf1 is the first information receiver, containing numerical
information related to the computational error.

Returned as: an integer.

inf2
has the following meaning, where:

If icode = 0, this argument is not used in the computation.

If icode ≠ 0, then inf2 is the second information receiver, containing numerical
information related to the computational error. It should be specified when the
error code provides a second piece of information, and you want the
information.

In both of these cases, inf2 is an optional argument, except in C and C++
programs. For more details, see “Notes ” on page 1254.

Returned as: an integer.

Chapter 17. Utilities 1253

Notes
1. If icode is not 0 and is not one of the error codes specified in Table 241 on page

1252, this subroutine returns to the caller, and no information is provided in
inf1 and inf2.

2. If there are two pieces of information for the error and you specify one output
argument, the second piece of information is not returned to the caller.

3. If there is one piece of information for the error and you specify two output
arguments, the second output argument is not set by this subroutine.

4. In C and C++ programs you must code the inf1 and inf2 arguments, because
they are not optional arguments.

5. In Fortran programs, inf1 and inf2 are optional arguments. This is an exception
to the rule, because other ESSL subroutines do not allow optional arguments.

6. Examples of how to use EINFO are provided in Chapter 4, “Coding Your
Program,” on page 131.

1254 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ERRSAV (ESSL ERRSAV Subroutine)
Purpose

The ERRSAV subroutine copies an ESSL error option table entry into an 8-byte
storage area that is accessible to your program.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 147.

Syntax

Fortran CALL ERRSAV (ierno, tabent)

C and C++ errsav (ierno, tabent);

On Entry

ierno
is the error number in the option table. The entry for ierno in the ESSL error
option table is stored in the 8-byte storage area tabent.

Specified as: an integer; ierno must be one of the error numbers in the option
table. For a list of these numbers, see Table 42 on page 69.

On Return

tabent
is the storage area where the option table entry is stored.

Specified as: an area of storage of length 8-bytes.

Notes

Examples of how to use ERRSAV are provided in Chapter 4, “Coding Your
Program,” on page 131.

Chapter 17. Utilities 1255

ERRSET (ESSL ERRSET Subroutine)
Purpose

The ERRSET subroutine allows you to control execution when error conditions
occur. It modifies the information in the ESSL error option table for the error
number indicated. For a range of error messages, you can specify the following:
v How many times a particular error is allowed to occur before the program is

terminated
v How many times a particular error message is printed before printing is

suppressed
v Whether the ESSL error exit routine is to be invoked

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 147.

Syntax

Fortran CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange)

C and C++ errset (ierno, inoal, inomes, itrace, iusadr, irange);

On Entry

ierno
is the error number in the option table. The entry for ierno in the ESSL error
option table is updated as indicated by the other arguments. Specified as: an
integer; ierno must be one of the error numbers in the option table. For a list of
these numbers, see Table 42 on page 69.

inoal
indicates the number of errors allowed before each execution is terminated,
where:

If inoal ≤ 0, the specification is ignored, and the number-of-errors option is not
changed.

If inoal = 1, execution is terminated after one error.

If 2 ≤ inoal ≤ 255, then inoal specifies the number of errors allowed before each
execution is terminated.

If inoal > 255, an unlimited number of errors is allowed.

Specified as: an integer, where:

If iusadr = ENOTRM, then 2 ≤ inoal ≤ 255.

inomes
indicates the number of messages to be printed, where:

If inomes < 0, all messages are suppressed.

If inomes = 0, the number-of-messages option is not changed.

If 0 < inomes ≤ 255, then inomes specifies the number of messages to be printed.

1256 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If inomes > 255, an unlimited number of error messages is allowed.

Specified as: an integer.

itrace
this argument is ignored, but must be specified.

Specified as: an integer where, itrace = 0, 1, or 2 (for migration purposes).

iusadr
indicates whether or not the ESSL error exit routine is to be invoked, where:

If iusadr is zero, the option table is not altered.

If iusadr is one, the option table is set to show no exit routine. Therefore,
standard corrective action is to be used when continuing execution.

If iusadr = ENOTRM, the option table entry is set to the ESSL error exit routine
ENOTRM. Therefore, the ENOTRM subroutine is to be invoked after the
occurrence of the indicated errors. (ENOTRM must appear in an EXTERNAL
statement in your program.)

Specified: as a 32-bit integer in a 32-bit integer, 32-bit pointer environment, or
as the name of a subroutine; iusadr = 0, 1, or ENOTRM.

Specified: as a 64-bit integer in either a 32-bit integer, 64-bit pointer
environment or a 64-bit integer, 64-bit pointer environment, or as the name of a
subroutine; iusadr = 0_8, 1_8, or ENOTRM.

irange
indicates the range of errors to be updated in the ESSL error option table,
where:

If irange < ierno, the parameter is ignored.

If irange ≥ ierno, the options specified for the other parameters are to be applied
to the entire range of error conditions encompassed by ierno and irange.

Specified as: an integer.

Notes
1. Examples of how to use ERRSET are provided in Chapter 4, “Coding Your

Program,” on page 131.
2. If you specify ENOTRM for iusadr, then inoal must be in the following range: 2

≤ inoal ≤ 255.

Chapter 17. Utilities 1257

ERRSTR (ESSL ERRSTR Subroutine)
Purpose

The ERRSTR subroutine stores an entry in the ESSL error option table.

For multithreaded application programs, if you want the error handling
capabilities that this subroutine provides to be implemented on each thread created
by your program, this subroutine must be called from each thread. If your
application creates multiple threads, the action performed by a call to this
subroutine applies to the thread that this subroutine was invoked from. For an
example, see “Example of Handling Errors in a Multithreaded Application
Program” on page 147.

Syntax

Fortran CALL ERRSTR (ierno, tabent)

C and C++ errstr (ierno, tabent);

On Entry

ierno
is the error number in the option table. The information in the 8-byte storage
area tabent is stored into the entry for ierno in the ESSL error option table.

Specified as: an integer; ierno must be one of the error numbers in the option
table. For a list of these numbers, see Table 42 on page 69.

tabent
is the storage area containing the table entry data.

Specified as: an area of storage of length 8-bytes.

Notes

Examples of how to use ERRSTR are provided in Chapter 4, “Coding Your
Program,” on page 131.

1258 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IESSL (Determine the Level of ESSL Installed)
Purpose

This function returns the level of ESSL installed on your system, where the level
consists of a version number, release number, and modification number, plus the
fix number of the most recent PTF installed.

Syntax

Fortran IESSL ()

C and C++ iessl ();

On Return

Function value

is the level of ESSL installed on your system. It is provided as an integer in the
form vvrrmmff, where each two digits represents a part of the level:
v vv is the version number.
v rr is the release number.
v mm is the modification number.
v ff is the fix number of the most recent PTF installed.

Returned as: an integer; vvrrmmff > 0.

Notes
1. To use IESSL effectively, you must install your ESSL PTFs in their proper

sequential order. As part of the result, IESSL returns the value ff of the most
recent PTF installed, rather than the highest number PTF installed. Therefore,
if you do not install your PTFs sequentially, the ff value returned by IESSL does
not reflect the actual level of ESSL.

2. Declare the IESSL function in your program as returning an integer value.

Function

The IESSL function enables you to determine the current level of ESSL installed on
your system. It is useful to you in those instances where your program is using a
subroutine or feature that exists only in certain levels of ESSL. It is also useful
when your program is dependent upon certain PTFs being applied to ESSL.

Examples

Example 1

This example shows several ways to use the IESSL function. Most typically,
you use IESSL for checking the version and release level of ESSL. Suppose you
are dependent on a new capability in ESSL, such as a new subroutine or
feature, provided for the first time in ESSL Version 3. You can add the
following check in your program before using the new capability:

IF IESSL() ≥ 3010000

By specifying 0000 for mmff, the modification and fix level, you are
independent of the order in which your modifications and PTFs are installed.

Less typically, you use IESSL for checking the PTF level of ESSL. Suppose you
are dependent on PTF 2 being installed on your ESSL Version 3 system. You

Chapter 17. Utilities 1259

want to know whether to call a different user-callable subroutine to set up
your array data. You can add the following check in your program before
making the call:

IF IESSL() ≥ 3010002

If your system support group installed the ESSL PTFs in their proper
sequential order, this test works properly; otherwise, it is unpredictable.

1260 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL
Should Use)

Purpose

SETGPUS allows you to set the number and specify which GPUs ESSL should use.

Syntax

Fortran SETGPUS (ngpus,ids)

C and C++ setgpus (ngpus,ids);

On Entry

ngpus
is the number of GPUs ESSL should use.

Specified as: an integer; 0 < ngpus ≤ number of CUDA devices.

ids
is the array of length ngpus containing the IDs for the GPUs ESSL should use.

Specified as: an integer; 0 ≤ idsi < (number of CUDA devices) for i = 1, ngpus.

Function

This subroutine allows you to set the number and specify which GPUs ESSL
should use.

Error conditions

Resource Errors

1. The number of OpenMP Threads is less than ngpus. ESSL issues attention
message 2538-2615 and uses the same number of GPUs as there are
OpenMP threads.

2. Not all the CUDA devices specified by the ids array are in the same
NVIDIA compute mode.

Input-Argument Errors

1. SETGPUS has been called either:
v More than once
v After the first call to any ESSL subroutine that is GPU enabled.

2. ngpus ≤ 0 or ngpus > (number of CUDA devices).
3. idsi < 0 or idsi > (number of CUDA devices) - 1 for i = 1, ngpus.
4. NVIDIA compute mode is PROHIBITED for GPUs identified in the ids

array.
5. Environment variable ESSL_CUDA_HYBRID is not 'yes', 'no', or unset.
6. Environment variable ESSL_CUDA_PIN is not 'yes', 'no', 'pinned', or unset.

Examples

Example

This example shows setting 2 GPUs that ESSL should use. This call results in
ESSL using GPUs 1 and 0 for CUDA applications.

Call Statement and Input:

Chapter 17. Utilities 1261

NGPUS IDS
| |

CALL SETGPUS(2 , IDS)

IDS = (1,0)

1262 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

STRIDE (Determine the Stride Value for Optimal Performance in
Specified Fourier Transform Subroutines)

Purpose

This subroutine determines an optimal stride value for you to use for your input
or output data when you are computing large row Fourier transforms in any of the
Fourier transform subroutines, except _RCFT and _CRFT. The strides determined
by this subroutine allow your arrays to fit comfortably in various levels of storage
hierarchy on your particular processor, thus allowing you to improve your
run-time performance.

Note: This subroutine returns a single stride value. Where you need multiple
strides, you must invoke this subroutine multiple times; for example, in the
multidimensional Fourier transforms and, also, when input and output data types
differ. For more details, see “Function” on page 1264.

Syntax

Fortran CALL STRIDE (n, incd, incr, dt, iopt)

C and C++ stride (n, incd, incr, dt, iopt);

On Entry

n is the length n of the Fourier transform for which the optimal stride is being
determined. The transform corresponding to n is usually a row transform; that
is, the data elements are stored using a stride value.

Specified as: an integer; n > 0.

incd
is the minimum allowable stride for the Fourier transform for which the
optimal stride is being determined. For each situation in each subroutine, there
is a specific way to compute this minimum value. This is explained in Example
1—SCFT.

Specified as: an integer; incd > 0 or incd < 0.

incr
See On Return.

dt is the data type of the numbers for the Fourier transform for which the optimal
stride is being determined, where:

If dt = 'S', the numbers are short-precision real.

If dt = 'D', the numbers are long-precision real.

If dt = 'C', the numbers are short-precision complex.

If dt = 'Z', the numbers are long-precision complex.

Specified as: a single character; dt = 'S', 'D', 'C', or 'Z'.

iopt
is provided only for migration purposes from ESSL Version 1 and is no longer
used; however, you must still specify it as a dummy argument.

Specified as: an integer; iopt = 0, 1, or 2.

On Return

Chapter 17. Utilities 1263

incr
is the stride that allows you to improve your run-time performance in your
Fourier transform computation on your particular processor. In general, this
value differs for each processor you are running on.

Returned as: an integer; incr > 0 or incr < 0 and |incr| ≥ |incd|, where incr has
the same sign (+ or -) as incd.

Notes
1. In your C program, argument incr must be passed by reference.
2. All subroutines accept lowercase letters for the dt argument.
3. For each situation in each of the Fourier transform subroutines, there is a

specific way to compute the value you should specify for the incd argument.
Details on how to compute each of these values is given in Example 1—SCFT.
See the example corresponding to the Fourier transform subroutine you are
using.

4. Where different data types are specified for the input and output data in your
Fourier transform subroutine, you should be careful to indicate the correct data
type in the dt argument in this subroutine.

5. For additional information on how to set up your data, see “Setting Up Your
Data” on page 987.

Function

This subroutine determines an optimal stride, incr, for you to use for your input or
output data when computing large row Fourier transforms. The stride value
returned by this subroutine is based on the size and structure of your transform
data, using:
v The size of each data item (dt)
v The minimum allowable stride for this transform (incd)
v The length of the transform (n)

This information is used in determining the optimal stride for the processor you
are currently running on. The stride determined by this subroutine allows your
arrays to fit comfortably in various levels of storage hierarchy for that processor,
thus giving you the ability to improve your run-time performance.

You get only one stride value returned by this subroutine on each invocation.
Therefore, in many instances, you may need to invoke this subroutine multiple
times to obtain several stride values to use in your Fourier transform computation:
v For multidimensional Fourier transforms using several strides, this subroutine

must be called once for each optimal stride you want to obtain. Successive
invocations should go from the lower (earlier) dimensions to the higher (later)
dimensions, because the results from the lower dimensions are used to calculate
the incd values for the higher dimensions.

v Where input and output data have different data types and you want to obtain
optimal strides for each, this subroutine must be called once for each data type.

Where multiple invocations are necessary, they are explained in Example 1—SCFT.
The examples also explain how to calculate the incd values for each invocation.
There are nine examples to cover the Fourier transform subroutines that can use
the STRIDE subroutine.

1264 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

After calling this subroutine and obtaining the optimal stride value, you then set
up your input or output array accordingly. This may involve movement of data for
input arrays or increasing the sizes of input or output arrays. To accomplish this,
you may want to set up a separate subroutine with the stride values passed into it
as arguments. You can then dimension your arrays in that subroutine, depending
on the values calculated by STRIDE. For additional information on how to set up
your data, see “Setting Up Your Data” on page 987.

Error conditions

Computational Errors
None

Input-Argument Errors

1. n ≤ 0
2. incd = 0
3. iopt ≠ 0, 1, or 2
4. dt ≠ S, D, C, or Z

Examples

Example 1—SCFT

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the SCFT subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N). In this case, the STRIDE subroutine helps
in determining a good value of inc1x for this array. The required minimum
value of inc1x is m, the number of Fourier transforms being computed. To find
a good value of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N , M , INC1X , ’C’ , 0)

Here, the arguments refer to the SCFT subroutine. In the following table,
values of inc1x are given (as obtained from the STRIDE subroutine) for some
combinations of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 65
256 256 264
512 60 60
1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is
replaced by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and
inc2y are not very important. For these, any value over the required minimum
of n can be used.

Example 2--DCOSF

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the DCOSF subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N/2+1). In this case, the STRIDE subroutine

Chapter 17. Utilities 1265

helps in determining a good value of inc1x for this array. The required
minimum value of inc1x is m, the number of Fourier transforms being
computed. To find a good value of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N/2+1 , M , INC1X , ’D’ , 0)

Here, the arguments refer to the DCOSF subroutine. In the following table,
values of inc1x are given (as obtained from the STRIDE subroutine) for some
combinations of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 64
256 256 264
512 60 60
1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is
replaced by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and
inc2y are not very important. For these, any value over the required minimum
of n/2+1 can be used.

Example 3--DSINF

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the DSINF subroutine.

If inc2x = 1, the input sequences are stored in the transposed form as rows of a
two-dimensional array X(INC1X,N/2). In this case, the STRIDE subroutine helps
in determining a good value of inc1x for this array. The required minimum
value of inc1x is m, the number of Fourier transforms being computed. To find
a good value of inc1x, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N/2 , M , INC1X , ’D’ , 0)

Here, the arguments refer to the DSINF subroutine. In the following table,
values of inc1x are given (as obtained from the STRIDE subroutine) for some
combinations of n and m and for POWER3 with 64KB level 1 cache:

N M INC1X

128 64 64
240 32 32
240 64 64
256 256 264
512 60 60
1024 64 65

The above example also applies when the output sequences are stored in the
transposed form (inc2y = 1). In that case, in the above example, inc1x is
replaced by inc1y.

In computing column transforms (inc1x = inc1y = 1), the values of inc2x and
inc2y are not very important. For these, any value over the required minimum
of n/2 can be used.

Example 4--SCFT2

1266 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCFT2 subroutine.

If inc1y = 1, the two-dimensional output array is stored in the normal form. In
this case, the output array can be declared as Y(INC2Y,N2), where the required
minimum value of inc2y is n1. The STRIDE subroutine helps in picking a good
value of inc2y. To find a good value of inc2y, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 , INC2Y , ’C’ , 0)

Here, the arguments refer to the SCFT2 subroutine. In the following table,
values of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1
cache:

N1 N2 INC2Y

64 64 64
128 128 136
240 240 240
512 512 520
840 840 848

If the input array is stored in the normal form (inc1x = 1), the value of inc2x is
not important. However, if you want to use the same array for input and
output, you should use inc2x = inc2y.

If inc2y = 1, the two-dimensional output array is stored in the transposed form.
In this case, the output array can be declared as Y(INC1Y,N1), where the
required minimum value of inc1y is n2. The STRIDE subroutine helps in
picking a good value of inc1y. To find a good value of inc1y, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N1 , N2 , INC1Y , ’C’ , 0)

Here, the arguments refer to the SCFT2 subroutine. In the following table,
values of inc1y are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and n2 and for POWER3 with 64K level 1 cache:

N1 N2 INC1Y

60 64 64
120 128 136
256 240 240
512 512 520
840 840 848

If the input array is stored in the transposed form (inc2x = 1), the value of
inc1x is also important. The above example can be used to find a good value of
inc1x, by replacing inc1y with inc1x. If both arrays are stored in the transposed
form, a good value for inc1y is also a good value for inc1x. In that situation,
the two arrays can also be made equivalent.

Example 5--SRCFT2

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SRCFT2 subroutine.

For this subroutine, the output array is declared as Y(INC2Y,N2), where the
required minimum value of inc2y is n1/2+1. The STRIDE subroutine helps in
picking a good value of inc2y. To find a good value of inc2y, use STRIDE as
follows:

Chapter 17. Utilities 1267

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1/2 + 1 , INC2Y , ’C’ , 0)

Here, the arguments refer to the SRCFT2 subroutine. In the following table,
values of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1
cache:

N1 N2 INC2Y

240 240 121
420 420 211
512 512 257
840 840 421
1024 1024 513
2048 2048 1032

For this subroutine, the leading dimension of the input array (inc2x) is not
important. If you want to use the same array for input and output, you should
use inc2x ≥ 2(inc2y).

Example 6--SCRFT2

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCRFT2 subroutine.

For this subroutine, the output array is declared as Y(INC2Y,N2), where the
required minimum value of inc2y is n1+2. The STRIDE subroutine helps in
picking a good value of inc2y. To find a good value of inc2y, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 + 2 , INC2Y , ’S’ , 0)

Here, the arguments refer to the SCRFT2 subroutine. In the following table,
values of inc2y are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER3 with 64KB level 1
cache:

N1 N2 INC2Y

240 240 242
420 420 422
512 512 514
840 840 842
1024 1024 1026
2048 2048 2064

For this subroutine, the leading dimension of the input array (inc2x) is also
important. In general, inc2x = inc2y/2 is a good choice. This is also the
requirement if you want to use the same array for input and output.

Example 7--SCFT3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of inc2y and inc3y. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for inc2y. The minimum
acceptable value for inc2y is n1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 , INC2Y , ’C’ , 0)

1268 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Here, the arguments refer to the SCFT3 subroutine. Next, you should find a
good value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y, INC3Y , ’C’ , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this
may not happen. In that case, you can declare the Y array as a two-dimensional
array Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location
in these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)

v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from
the STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3
and for POWER3 with 64KB level 1 cache:

N1,N2,N3 INC2Y INC3Y

30 30 900
32 32 1032
64 64 4112

120 120 14408
128 136 17416
240 240 57608
256 264 67592
420 420 176400

As mentioned before, the strides of the input array are not important. The
array can be declared as a three-dimensional array. If you want to use the same
array for input and output, the requirements are inc2x ≥ inc2y and inc3x ≥
inc3y. A simple thing to do is to use inc2x = inc2y and make inc3x a multiple of
inc2x not smaller than inc3y. Then X can be declared as a three-dimensional
array X(INC2X,INC3X/INC2X,N3).

Example 8--SRCFT3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SRCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of inc2y and inc3y. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for inc2y. The minimum
acceptable value for inc2y is n1/2+1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1/2 + 1 , INC2Y , ’C’ , 0)

Here, the arguments refer to the SRCFT3 subroutine. Next, you should find a
good value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y , INC3Y , ’C’ , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this
may not happen. In that case, you can declare the Y array as a two-dimensional

Chapter 17. Utilities 1269

array Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location
in these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)

v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from
the STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3
and for POWER3 with 64KB level 1 cache:

N1,N2,N3 INC2Y INC3Y

30 16 488
32 17 552
64 33 2128

120 61 7320
128 65 8328
240 121 29064
256 129 33032
420 211 88620

As mentioned before, the strides of the input array are not important. The
array can be declared as a three-dimensional array. If you want to use the same
array for input and output, the requirements are inc2x ≥ 2(inc2y) and inc3x ≥
2(inc3y). A simple thing to do is to use inc2x = 2(inc2y) and make inc3x a
multiple of inc2x not smaller than 2(inc3y). Then X can be declared as a
three-dimensional array X(INC2X,INC3X/INC2X,N3).

Example 9--SCRFT3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCRFT3 subroutine.

The STRIDE subroutine helps in picking good values of inc2y and inc3y. This
requires two calls to the STRIDE subroutine as shown below. First, you should
find a good value for inc2y. The minimum acceptable value for inc2y is n1+2.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N2 , N1 + 2 , INC2Y , ’S’ , 0)

Here, the arguments refer to the SCRFT3 subroutine. Next, you should find a
good value for inc3y. The minimum acceptable value for inc3y is (n2)(inc2y).

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N3 , N2*INC2Y , INC3Y , ’S’ , 0)

If inc3y turns out to be a multiple of inc2y, then Y can be declared a
three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3). For large problems, this
may not happen. In that case, you can declare the Y array as a two-dimensional
array Y(0:INC3Y-1,0:N3-1) or a one-dimensional array Y(0:INC3Y*N3-1). Using
zero-based indexing, the element y(k1,k2,k3) is stored in the following location
in these arrays:
v For the two-dimensional array, location (k1+k2*inc2y,k3)

v For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

In the following table, values of inc2y and inc3y are given (as obtained from
the STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3
and for POWER3 with 64KB level 1 cache:

N1,N2,N3 INC2Y INC3Y

30 32 976
32 34 1104

1270 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

64 66 4256
120 122 14640
128 130 16656
240 242 58128
256 258 66064
420 422 177240

For this subroutine, the strides (inc2x and inc3x) of the input array are also
important. In general, inc2x = inc2y/2 and inc3x = inc3y/2 are good choices.
These are also the requirement if you want to use the same array for input and
output.

Example 10--SCFTD, D = 1

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the SCFTD subroutine.

If incmx = 1, the input sequences are stored in the transposed form as rows of
a two-dimensional array X(INCX(1),N(1)). In this case, the STRIDE subroutine
helps in determining a good value of incx1 for this array. The required
minimum value of incx1 is m, the number of Fourier transforms being
computed. To find a good value of incx1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1) , M , INCX(1) , ’C’ , 0)

Here, the arguments refer to the SCFTD subroutine. In the following table,
values of incx1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and m and for POWER6 with 64KB level 1 cache:

N M INC1X

128 64 66
240 32 34
240 64 66
256 256 264
512 60 60
1024 64 66

The above example also applies when the output sequences are stored in the
transposed form (incmy = 1). In that case, in the above example, incx1 is
replaced by incy1.

In computing column transforms (incx1 = incy1 = 1), the values of incmx and
incmy are not very important. For these, any value over the required minimum
of n1 can be used.

Example 11--SCFTD, D = 2

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCFTD subroutine with m = 1.

If incy1 = 1, the two-dimensional output array is stored in the normal form. In
this case, the output array can be declared as Y(INCY(2),N(2)), where the
required minimum value of incy2 is n1. The STRIDE subroutine helps in picking
a good value of incy2. To find a good value of incy2, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1) , INCY(2) , ’C’ , 0)

Here, the arguments refer to the SCFTD subroutine. In the following table,
values of incy2 are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 = n2 and for POWER6 with 64KB level 1 cache:

Chapter 17. Utilities 1271

N(1) N(2) INCY(2)

64 64 64
128 128 136
240 240 240
512 512 520
840 840 840

If the input array is stored in the normal form (incx1 = 1), the value of incx2 is
not important. However, if you want to use the same array for input and
output, you should use incx2 = incy2.

If incy2 = 1, the two-dimensional output array is stored in the transposed form.
In this case, the output array can be declared as Y(INCY(1),N(1)), where the
required minimum value of incy1 is n2. The STRIDE subroutine helps in picking
a good value of incy1. To find a good value of incy1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1) , N(2) , INCY(1) , ’C’ , 0)

Here, the arguments refer to the SCFTD subroutine. In the following table,
values of incy1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and n2 and for POWER6 with 64KB level 1 cache:

N(1) N(2) INCY(1)

60 64 64
120 128 136
256 240 240
512 512 520
840 840 840

If the input array is stored in the transposed form (incx2 = 1), the value of incx1
is also important. The above example can be used to find a good value of incx1,
by replacing incy1 with incx1. If both arrays are stored in the transposed form, a
good value for incy1 is also a good value for incx1. In that situation, the two
arrays can also be made equivalent.

Example 12--SCFTD, D = 3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCFTD subroutine with m = 1.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of incy2 and incy3. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for incy2. The minimum
acceptable value for incy2 is n1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1) , INCY(2) , ’C’ , 0)

Here, the arguments refer to the SCFTD subroutine. Next, you should find a
good value for incy3. The minimum acceptable value for incy3 is (n2)(incy2)
assuming incy1 = 1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , ’C’ , 0)

If incy3 turns out to be a multiple of incy2, then Y can be declared a
three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)). For large
problems, this may not happen. In that case, you can declare the Y array as a
two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or a one-dimensional array

1272 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Y(0:INCY(3)*N(3)-1). Using zero-based indexing, the element yk1,k2,k3 is stored
in the following location in these arrays:
v For the two-dimensional array, location (k1+k2*incy2,k3)
v For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

In the following table, values of incy2 and incy3 are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3 and
for POWER6 with 64KB level 1 cache:

N1,N2,N3 INCY(2) INCY(3)

30 30 900
32 32 1032
64 64 4104

120 120 14400
128 136 17416
240 240 57608
256 264 67592
420 420 176400

As mentioned before, the strides of the input array are not important. The
array can be declared as a three-dimensional array. If you want to use the same
array for input and output, the requirements are incx2 ≥ incy2 and incx3 ≥ incy3.
A simple thing to do is to use incx2 = incy2 and make incx3 a multiple of incx2
not smaller than incy3. Then X can be declared as a three-dimensional array
X(INCX(2),INCX(3)/INCX(2),N(3)).

Example 13--SRCFTD, D = 1

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the SRCFTD subroutine.

If incmx equal to 1, the input sequences are stored in the transposed form as
rows of a two-dimensional array X(INCX(1),N(1)). In this case, the STRIDE
subroutine helps in determining a good value of incx1 for this array. The
required minimum value of incx1 is m, the number of Fourier transforms being
computed. To find a good value of incx1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1) , M , INCX(1) , ’S’ , 0)

Here, the arguments refer to the SRCFTD subroutine. In the following table,
values of incx1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and m and for POWER6 with 64KB level 1 cache:

N(1) M INCX(1)

128 64 64
240 32 32
240 64 68
256 256 272
512 60 60
1024 64 64

If incmy equal to 1, the output sequences are stored in the transposed form as
rows of a two-dimensional array Y(INCY(1),N(1)/2+1). In this case, the
STRIDE subroutine helps in determining a good value of incy1 for this array.
The required minimum value of incy1 is m, the number of Fourier transforms
being computed. To find a good value of incy1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1)/2+1 , M , INCY(1) , ’C’ , 0)

Chapter 17. Utilities 1273

Here, the arguments refer to the SRCFTD subroutine. In the following table,
values of incy1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and m and for POWER6 with 64KB level 1 cache:

N(1) M INCY(1)

128 64 66
240 32 32
240 64 66
256 256 264
512 60 60
1024 64 66

In computing column transforms (incx1 equal to incy1 equal to 1), the values of
incmx and incmy are not very important. For these, any value over the required
minimum can be used.

Example 14--SRCFTD, D = 2

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SRCFTD subroutine with m equal to 1.

If incy1 equal to 1, the two-dimensional output array is stored in the normal
form. In this case, the output array can be declared as Y(INCY(2),N(2)), where
the required minimum value of incy2 is n1/2+1. The STRIDE subroutine helps
in picking a good value of incy2. To find a good value of incy2, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1)/2+1 , INCY(2) , ’C’ , 0)

Here, the arguments refer to the SRCFTD subroutine. In the following table,
values of incy2 are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 equal to n2 and for POWER6 with 64KB level 1
cache:

N(1) N(2) INCY(2)

240 240 122
420 420 212
512 512 258
840 840 422
1024 1024 514
2048 2048 1026

If the input array is stored in the normal form (incx1 equal to 1), the value of
incx2 is not important. However, if you want to use the same array for input
and output, you should use incx2 equal to 2(incy2).

If incy2 equal to 1, the two-dimensional output array is stored in the transposed
form. In this case, the output array can be declared as Y(INCY(1),N(1)/2+1),
where the required minimum value of incy1 is n2. The STRIDE subroutine helps
in picking a good value of incy1. To find a good value of incy1, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1)/2+1 , N(2) , INCY(1) , ’C’ , 0)

Here, the arguments refer to the SRCFTD subroutine. In the following table,
values of incy1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and n2 and for POWER6 with 64KB level 1 cache:

N(1) N(2) INCY(1)

240 240 240
420 420 420

1274 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

512 512 520
840 840 840
1024 1024 1032
2048 2048 2056

Example 15--SRCFTD, D = 3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SRCFTD subroutine with m equal to 1.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of incy2 and incy3. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for incy2. The minimum
acceptable value for incy2 is n1/2+1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1)/2+1 , INCY(2) , ’C’ , 0)

Here, the arguments refer to the SRCFTD subroutine. Next, you should find a
good value for incy3. The minimum acceptable value for incy3 is (n2)(incy2)
assuming incy1 equal to 1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , ’C’ , 0)

If incy3 turns out to be a multiple of n2, then Y can be declared a
three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)). For large
problems, this may not happen. In that case, you can declare the Y array as a
two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or a one-dimensional array
Y(0:INCY(3)*N(3)-1). Using zero-based indexing, the element yk1,k2,k3 is stored
in the following location in these arrays:
v For the two-dimensional array, location (k1+k2*incy2,k3)
v For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

In the following table, values of incy2 and incy3 are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 equal to n2
equal to n3 and for POWER6 with 64KB level 1 cache:
N(1),N(2),N(3) INCY(2) INCY(3)

30 16 480
32 18 576
64 34 2176

120 62 7440
128 66 8456
240 122 29280
256 130 33288
420 212 89040

As mentioned before, the strides of the input array are not important. The
array can be declared as a three-dimensional array. If you want to use the same
array for input and output, the requirements are incx2 equal to 2(incy2) and
incx3 equal to 2(incy3).

Example 16--SCRFTD, D = 1

This example shows the use of the STRIDE subroutine in computing
one-dimensional row transforms using the SCRFTD subroutine.

If incmx equal to 1, the input sequences are stored in the transposed form as
rows of a two-dimensional array X(INCX(1),N(1)). In this case, the STRIDE
subroutine helps in determining a good value of incx1 for this array. The

Chapter 17. Utilities 1275

required minimum value of incx1 is m, the number of Fourier transforms being
computed. To find a good value of incx1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1)/2+1 , M , INCX(1) , ’C’ , 0)

Here, the arguments refer to the SCRFTD subroutine. In the following table,
values of incx1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and m and for POWER6 with 64KB level 1 cache:

N(1) M INCX(1)

128 64 66
240 32 32
240 64 66
256 256 264
512 60 60
1024 64 66

If incmy equal to 1, the output sequences are stored in the transposed form as
rows of a two-dimensional array Y(INCY(1),N(1)). In this case, the STRIDE
subroutine helps in determining a good value of incy1 for this array. The
required minimum value of incy1 is m, the number of Fourier transforms being
computed. To find a good value of incy1, use STRIDE as follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1) , M , INCY(1) , ’S’ , 0)

Here, the arguments refer to the SCRFTD subroutine. In the following table,
values of incy1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and m and for POWER6 with 64KB level 1 cache:

N(1) M INCY(1)

128 64 64
240 32 32
240 64 68
256 256 272
512 60 60
1024 64 64

In computing column transforms (incx1 equal to incy1 equal to 1), the values of
incmx and incmy are not very important. For these, any value over the required
minimum can be used.

Example 17--SCRFTD, D = 2

This example shows the use of the STRIDE subroutine in computing
two-dimensional transforms using the SCRFTD subroutine with m equal to 1.

If incy1 equal to 1, the two-dimensional output array is stored in the normal
form. In this case, the output array can be declared as Y(INCY(2),N(2)), where
the required minimum value of incy2 is n1+2. The STRIDE subroutine helps in
picking a good value of incy2. To find a good value of incy2, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1)+2 , INCY(2) , ’S’ , 0)

Here, the arguments refer to the SCRFTD subroutine. In the following table,
values of incy2 are given (as obtained from the STRIDE subroutine) for some
two-dimensional arrays with n1 equal to n2 and for POWER6 with 64KB level 1
cache:

1276 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

N(1) N(2) INCY(2)

240 240 244
420 420 424
512 512 516
840 840 844
1024 1024 1028
2048 2048 2052

If the input array is stored in the normal form (incx1 equal to 1), the value of
incx2 is not important. However, if you want to use the same array for input
and output, you should use incy2 equal to 2(incx2).

If incy2 equal to 1, the two-dimensional output array is stored in the transposed
form. In this case, the output array can be declared as Y(INCY(1),N(1)+2),
where the required minimum value of incy1 is n2. The STRIDE subroutine helps
in picking a good value of incy1. To find a good value of incy1, use STRIDE as
follows:

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(1)+2 , N(2) , INCY(1) , ’S’ , 0)

Here, the arguments refer to the SCRFTD subroutine. In the following table,
values of incy1 are given (as obtained from the STRIDE subroutine) for some
combinations of n1 and n2 and for POWER6 with 64KB level 1 cache:

N(1) N(2) INCY(1)

240 240 240
420 420 420
512 512 528
840 840 840
1024 1024 1040
2048 2048 2064

Example 18--SCRFTD, D = 3

This example shows the use of the STRIDE subroutine in computing
three-dimensional transforms using the SCRFTD subroutine with m equal to 1.

For this subroutine, the strides for the input array are not important. They are
important for the output array. The STRIDE subroutine helps in picking good
values of incy2 and incy3. This requires two calls to the STRIDE subroutine as
shown below. First, you should find a good value for incy2. The minimum
acceptable value for incy2 is n1+2.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(2) , N(1)+2 , INCY(2) , ’S’ , 0)

Here, the arguments refer to the SCRFTD subroutine. Next, you should find a
good value for incy3. The minimum acceptable value for incy3 is (n2)(incy2)
assuming incy1 equal to 1.

N INCD INCR DT IOPT
| | | | |

CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , ’S’ , 0)

If incy3 turns out to be a multiple of incy2, then Y can be declared a
three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)). For large
problems, this may not happen. In that case, you can declare the Y array as a
two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or a one-dimensional array
Y(0:INCY(3)*N(3)-1). Using zero-based indexing, the element yk1,k2,k3 is stored
in the following location in these arrays:
v For the two-dimensional array, location (k1+k2*incy2,k3)

Chapter 17. Utilities 1277

v For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

In the following table, values of incy2 and incy3 are given (as obtained from the
STRIDE subroutine) for some three-dimensional arrays with n1 equal to n2
equal to n3 and for POWER6 with 64KB level 1 cache:
N(1),N(2),N(3) INCY(2) INCY(3)

30 32 960
32 36 1152
64 68 4352

120 124 14880
128 132 16912
240 244 58560
256 260 66576
420 424 178080

As mentioned before, the strides of the input array are not important. The
array can be declared as a three-dimensional array. If you want to use the same
array for input and output, the requirements are incy2 equal to 2(incx2) and
incy3 equal to 2(incx3).

1278 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DSRSM (Convert a Sparse Matrix from Storage-by-Rows to
Compressed-Matrix Storage Mode)

Purpose

This subroutine converts either m by n general sparse matrix A or symmetric
sparse matrix A of order n from storage-by-rows to compressed-matrix storage
mode, where matrix A contains long-precision real numbers.

Syntax

Fortran CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda)

C and C++ dsrsm (iopt, ar, ja, ia, m, nz, ac, ka, lda);

On Entry

iopt
indicates the storage variation used for sparse matrix A storage-by-rows:

If iopt = 0, matrix A is a general sparse matrix, where all the nonzero elements
in matrix A are used to set up the storage arrays.

If iopt = 1, matrix A is a symmetric sparse matrix, where only the upper
triangle and diagonal elements are used to set up the storage arrays.

Specified as: an integer; iopt = 0 or 1.

ar is the sparse matrix A, stored by rows in an array, referred to as AR. The iopt
argument indicates the storage variation used for storing matrix A. Specified
as: a one-dimensional array, containing long-precision real numbers. The
number of elements, ne, in this array can be determined by subtracting 1 from
the value in IA(m+1).

ja is the array, referred to as JA, containing the column numbers of each nonzero
element in sparse matrix A.

Specified as: a one-dimensional array, containing integers; 1 ≤ (JA elements) ≤
n. The number of elements, ne, in this array can be determined by subtracting
1 from the value in IA(m+1).

ia is the row pointer array, referred to as IA, containing the starting positions of
each row of matrix A in array AR and one position past the end of array AR.
Specified as: a one-dimensional array of (at least) length m+1, containing
integers; IA(i+1) ≥ IA(i) for i = 1, m+1.

m is the number of rows in sparse matrix A. Specified as: an integer; m ≥ 0.

nz is the number of columns in output arrays AC and KA that are available for use.

Specified as: an integer; nz > 0.

ac See On Return.

ka See On Return.

lda
is the size of the leading dimension of the arrays specified for ac and ka.

Specified as: an integer; 0 < lda ≤ m.

On Return

nz is the maximum number of nonzero elements, nz, in each row of matrix A,

Chapter 17. Utilities 1279

which is stored in compressed-matrix storage mode. Returned as: an integer;
(input argument) nz ≤ (output argument) nz.

ac is the m by n general sparse matrix A or symmetric matrix A of order n stored
in compressed-matrix storage mode in an array, referred to as AC. Returned as:
an lda by at least (input argument) nz array, containing long-precision real
numbers, where only the first (output argument) nz columns are used to store
the matrix.

ka is the array, referred to as KA, containing the column numbers of the matrix A
elements that are stored in the corresponding positions in array AC. Returned
as: an lda by at least (input argument) nz array, containing integers, where only
the first (output argument) nz columns are used to store the column numbers.

Notes
1. In your C program, argument nz must be passed by reference.
2. The value specified for input argument nz should be greater than or equal to

the number of nonzero elements you estimate to be in each row of sparse
matrix A. The value returned in output argument nz corresponds to the nz
value defined for compressed-matrix storage mode. This value is less than or
equal to the value specified for input argument nz.

3. For a description of the storage modes for sparse matrices, see
“Compressed-Matrix Storage Mode” on page 115 and “Storage-by-Rows” on
page 120.

Function

A sparse matrix A is converted from storage-by-rows (using arrays AR, JA, and IA)
to compressed-matrix storage mode (using arrays AC and KA). The argument iopt
indicates whether the input matrix A is stored by rows using the storage variation
for general sparse matrices or for symmetric sparse matrices. See reference [85 on
page 1318].

This subroutine is meant for existing programs that need to convert their sparse
matrices to a storage mode compatible with some of the ESSL sparse matrix
subroutines, such as DSMMX.

Error conditions

Computational Errors
None

Input-Argument Errors

1. iopt ≠ 0 or 1
2. m < 0
3. lda < 1
4. lda < m
5. nz ≤ 0
6. IA(m+1) < 1
7. IA(i+1)-IA(i) < 0, for any i = 1, m
8. nz is too small to store matrix A in array AC, where:
v If iopt = 0 , AC and KA are not modified.
v If iopt = 1 , AC and KA are modified.

1280 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Examples

Example 1

This example shows a general sparse matrix A, which is stored by rows and
converted to compressed-matrix storage mode, where sparse matrix A is:

┌ ┐
| 11.0 0.0 0.0 14.0 |
| 0.0 22.0 0.0 24.0 |
| 0.0 0.0 33.0 34.0 |
| 0.0 0.0 0.0 44.0 |
└ ┘

Because there is a maximum of only two nonzero elements in each row of A,
and argument nz is specified as 5, columns 3 through 5 of arrays AC and KA are
not used.

Call Statement and Input:
IOPT AR JA IA M NZ AC KA LDA
| | | | | | | | |

CALL DSRSM(0 , AR , JA , IA , 4 , 5 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

Output:
NZ = 2

┌ ┐
| 11.0 14.0 . . . |

AC = | 22.0 24.0 . . . |
| 33.0 34.0 . . . |
| 44.0 0.0 . . . |
└ ┘

┌ ┐
| 1 4 . . . |

KA = | 2 4 . . . |
| 3 4 . . . |
| 4 4 . . . |
└ ┘

Example 2

This example shows a symmetric sparse matrix A, which is stored by rows and
converted to compressed-matrix storage mode, where sparse matrix A is:

┌ ┐
| 11.0 0.0 0.0 14.0 |
| 0.0 22.0 0.0 24.0 |
| 0.0 0.0 33.0 34.0 |
| 14.0 24.0 34.0 44.0 |
└ ┘

Because there is a maximum of only four nonzero elements in each row of A,
and argument nz is specified as 6, columns 5 and 6 of arrays AC and KA are not
used.

Call Statement and Input:
IOPT AR JA IA M NZ AC KA LDA
| | | | | | | | |

CALL DSRSM(1 , AR , JA , IA , 4 , 6 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

Chapter 17. Utilities 1281

Output:
NZ = 4

┌ ┐
| 11.0 14.0 0.0 0.0 . . |

AC = | 22.0 24.0 0.0 0.0 . . |
| 33.0 34.0 0.0 0.0 . . |
| 44.0 24.0 34.0 14.0 . . |
└ ┘

┌ ┐
| 1 4 4 4 . . |

KA = | 2 4 4 4 . . |
| 3 4 4 4 . . |
| 4 2 3 1 . . |
└ ┘

1282 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out
and Profile-In Skyline Storage Mode)

Purpose

This subroutine converts general sparse matrix A of order n from one skyline
storage mode to another—that is, between the following:
v Diagonal-out skyline storage mode
v Profile-in skyline storage mode

Syntax

Fortran CALL DGKTRN (n, au, nu, idu, al, nl, idl, itran, aux, naux)

C and C++ dgktrn (n, au, nu, idu, al, nl, idl, itran, aux, naux);

On Entry

n is the order of general sparse matrix A. Specified as: an integer; n ≥ 0.

au is the array, referred to as AU, containing the upper triangular part of general
sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Specified as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

nu is the length of array AU.

Specified as: an integer; nu ≥ 0 and nu ≥ (IDU(n+1)-1).

idu
is the array, referred to as IDU, containing the relative positions of the diagonal
elements of matrix A in input array AU.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

al is the array, referred to as AL, containing the lower triangular part of general
sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Note: Entries in AL for diagonal elements of A are assumed not to have
meaningful values.

Specified as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

nl is the length of array AL.

Specified as: an integer; nl ≥ 0 and nl ≥ (IDL(n+1)-1).

idl
is the array, referred to as IDL, containing the relative positions of the diagonal
elements of matrix A in input array AL.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

Chapter 17. Utilities 1283

itran
is an array of parameters, ITRAN(i), where:
v ITRAN(1) indicates the input storage mode used for matrix A. This

determines the arrangement of data in arrays AU, IDU, AL, and IDL on input,
where:
If ITRAN(1) = 0, diagonal-out skyline storage mode is used.
If ITRAN(1) = 1, profile-in skyline storage mode is used.

v ITRAN(2) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays AU, IDU, AL, and IDL on output,
where:
If ITRAN(2) = 0, diagonal-out skyline storage mode is used.
If ITRAN(2) = 1, profile-in skyline storage mode is used.

v ITRAN(3) indicates the direction of sweep that ESSL uses through the matrix
A, allowing you to optimize performance (see “Notes ” on page 1285),
where:
If ITRAN(3) = 1, matrix A is transformed in the positive direction, starting in
row or column 1 and ending in row or column n.
If ITRAN(3) = -1, matrix A is transformed in the negative direction, starting
in row or column n and ending in row or column 1.

Specified as: a one-dimensional array of (at least) length 3, containing integers,
where:

ITRAN(1) = 0 or 1
ITRAN(2) = 0 or 1
ITRAN(3) = -1 or 1

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing naux long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, DGKTRN dynamically allocates
the work area used by this subroutine. The work area is deallocated before
control is returned to the calling program.

Otherwise, it must have one of the following values:

For 32-bit integer arguments
naux ≥ 2n

For 64-bit integer arguments
naux ≥ 4n

On Return

au is the array, referred to as AU, containing the upper triangular part of general
sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

1284 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Returned as: a one-dimensional array of (at least) length nu, containing
long-precision real numbers.

idu
is the array, referred to as IDU, containing the relative positions of the diagonal
elements of matrix A in output array AU. Returned as: a one-dimensional array
of (at least) length n+1, containing integers.

al is the array, referred to as AL, containing the lower triangular part of general
sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Note: You should assume that entries in AL for diagonal elements of A do not
have meaningful values.

Returned as: a one-dimensional array of (at least) length nl, containing
long-precision real numbers.

idl
is the array, referred to as IDL, containing the relative positions of the diagonal
elements of matrix A in output array AL. Returned as: a one-dimensional array
of (at least) length n+1, containing integers.

Notes
1. Your various arrays must have no common elements; otherwise, results are

unpredictable.
2. The ITRAN(3) argument allows you to specify the direction of travel through

matrix A that ESSL takes during the transformation. By properly specifying
ITRAN(3), you can optimize the performance of the transformation, which is
especially beneficial when transforming large matrices.
The direction specified by ITRAN(3) should be opposite the most recent
direction of access through the matrix performed by the DGKFS or DGKFSP
subroutine, as indicated in the following table:

Most Recent
Computation Performed
by DGKFS/DGKFSP

Direction Used by
DGKFS/DGKFSP Direction to Specify in ITRAN(3)

Factor and Solve Negative Positive (ITRAN(3) = 1)

Factor Only Positive Negative (ITRAN(3) = -1)

Solve Only Negative Positive (ITRAN(3) = 1)

3. For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 124 and “Diagonal-Out Skyline
Storage Mode” on page 122.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

A general sparse matrix A, stored in diagonal-out or profile-in skyline storage
mode is converted to either of these same two storage modes. (Generally, you
convert from one to the other, but the capability exists to specify the same storage

Chapter 17. Utilities 1285

mode for input and output.) The argument ITRAN(3) indicates the direction in
which you want the transformation performed on matrix A, allowing you to
optimize your performance in this subroutine. This is especially beneficial for large
matrices.

This subroutine is meant to be used in conjunction with DGKFS and DGKFSP,
which process matrices stored in these skyline storage modes.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n < 0
2. nu < 0
3. IDU(n+1) > nu+1
4. IDU(i+1) ≤ IDU(i) for i = 1, n
5. IDU(i+1) > IDU(i)+i and ITRAN(1) = 0 for i = 1, n
6. IDU(i) > IDU(i-1)+i and ITRAN(1) = 1 for i = 2, n
7. nl < 0
8. IDL(n+1) > nl+1
9. IDL(i+1) ≤ IDL(i) for i = 1, n

10. IDL(i+1) > IDL(i)+i and ITRAN(1) = 0 for i = 1, n
11. IDL(i) > IDL(i-1)+i and ITRAN(1) = 1 for i = 2, n
12. ITRAN(1) ≠ 0 or 1
13. ITRAN(2) ≠ 0 or 1
14. ITRAN(3) ≠ -1 or 1
15. Error 2015 is recoverable or naux≠0, and naux is too small—that is, less

than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

This example shows how to convert a 9 by 9 general sparse matrix A from
diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix A
is:

┌ ┐
| 11.0 12.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 |
| 21.0 22.0 23.0 24.0 25.0 0.0 0.0 0.0 29.0 |
| 31.0 32.0 33.0 34.0 35.0 0.0 37.0 0.0 39.0 |
| 41.0 42.0 43.0 44.0 45.0 46.0 47.0 0.0 49.0 |
| 0.0 0.0 0.0 54.0 55.0 56.0 57.0 58.0 59.0 |
| 0.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 |
| 0.0 0.0 0.0 74.0 75.0 76.0 77.0 78.0 79.0 |
| 0.0 0.0 0.0 84.0 85.0 86.0 87.0 88.0 89.0 |
| 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 |
└ ┘

Assuming that DGKFS last performed a solve on matrix A, the direction of the
transformation is positive; that is, ITRAN(3) is 1. This provides the best
performance here.

1286 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Note: On input and output, the diagonal elements in AL do not have
meaningful values.

Call Statement and Input:

AU = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 77.0, 67.0,
57.0, 47.0, 37.0, 88.0, 78.0, 68.0, 58.0, 99.0, 89.0,
79.0, 69.0, 59.0, 49.0, 39.0, 29.0)

IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (. , . , 21.0, . , 32.0, 31.0, . , 43.0, 42.0, 41.0, . ,

54.0, . , 65.0, 64.0, 63.0, 62.0, . , 76.0, 75.0, 74.0,
. , 87.0, 86.0, 85.0, 84.0, . , 98.0, 97.0, 96.0, 95.0,
94.0, 93.0, 92.0, 91.0)

IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
ITRAN = (0, 1, 1)

Output:
AU = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 24.0, 34.0, 44.0,

25.0, 35.0, 45.0, 55.0, 46.0, 56.0, 66.0, 37.0, 47.0,
57.0, 67.0, 77.0, 58.0, 68.0, 78.0, 88.0, 29.0, 39.0,
49.0, 59.0, 69.0, 79.0, 89.0, 99.0)

IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (. , 21.0, . , 31.0, 32.0, . , 41.0, 42.0, 43.0, . , 54.0,

. , 62.0, 63.0, 64.0, 65.0, . , 74.0, 75.0, 76.0, . ,
84.0, 85.0, 86.0, 87.0, . , 91.0, 92.0, 93.0, 94.0, 95.0,
96.0, 97.0, 98.0, .)

IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)

Example 2

This example shows how to convert the same 9 by 9 general sparse matrix A
in Example 1 from profile-in skyline storage mode to diagonal-out skyline
storage mode.

Assuming that DGKFS last performed a factorization on matrix A, the direction
of the transformation is negative; that is, ITRAN(3) is -1. This provides the best
performance here.

Note: On input and output, the diagonal elements in AL do not have
meaningful values.

Call Statement and Input:

AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
ITRAN = (1, 0, -1)

Output:

AU =(same as input AU in Example 1)
IDU =(same as input IDU in Example 1)
AL =(same as input AL in Example 1)
IDL =(same as input IDL in Example 1)

N AU NU IDU AL NL IDL ITRAN AUX NAUX
| | | | | | | | | |

CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

N AU NU IDU AL NL IDL ITRAN AUX NAUX
| | | | | | | | | |

CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

Chapter 17. Utilities 1287

DSKTRN (For a Symmetric Sparse Matrix, Convert Between
Diagonal-Out and Profile-In Skyline Storage Mode)

Purpose

This subroutine converts symmetric sparse matrix A of order n from one skyline
storage mode to another—that is, between the following:
v Diagonal-out skyline storage mode
v Profile-in skyline storage mode

Syntax

Fortran CALL DSKTRN (n, a, na, idiag, itran, aux, naux)

C and C++ dsktrn (n, a, na, idiag, itran, aux, naux);

On Entry

n is the order of symmetric sparse matrix A. Specified as: an integer; n ≥ 0.

a is the array, referred to as A, containing the upper triangular part of symmetric
sparse matrix A, stored as follows, where:

If ITRAN(1) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(1) = 1, A is stored in profile-in skyline storage mode.

Specified as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

na is the length of array A.

Specified as: an integer; na ≥ 0 and na ≥ (IDIAG(n+1)-1).

idiag
is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A in input array A.

Specified as: a one-dimensional array of (at least) length n+1, containing
integers.

itran
is an array of parameters, ITRAN(i), where:
v ITRAN(1) indicates the input storage mode used for matrix A. This

determines the arrangement of data in arrays A and IDIAG on input, where:
If ITRAN(1) = 0, diagonal-out skyline storage mode is used.
If ITRAN(1) = 1, profile-in skyline storage mode is used.

v ITRAN(2) indicates the output storage mode used for matrix A. This
determines the arrangement of data in arrays A and IDAIG on output, where:
If ITRAN(2) = 0, diagonal-out skyline storage mode is used.
If ITRAN(2) = 1, profile-in skyline storage mode is used.

v ITRAN(3) indicates the direction of sweep that ESSL uses through the matrix
A, allowing you to optimize performance (see “Notes ” on page 1289),
where:
If ITRAN(3) = 1, matrix A is transformed in the positive direction, starting in
row or column 1 and ending in row or column n.
If ITRAN(3) = -1, matrix A is transformed in the negative direction, starting
in row or column n and ending in row or column 1.

1288 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Specified as: a one-dimensional array of (at least) length 3, containing integers,
where:

ITRAN(1) = 0 or 1
ITRAN(2) = 0 or 1
ITRAN(3) = -1 or 1

aux
has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is
specified by naux.

Specified as: an area of storage, containing naux long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux.

Specified as: an integer, where:

If naux = 0 and error 2015 is unrecoverable, DSKTRN dynamically allocates the
work area used by this subroutine. The work area is deallocated before control
is returned to the calling program.

Otherwise

For 32-bit integer arguments
naux ≥ n

For 64-bit integer arguments
naux ≥ 2n

On Return

a is the array, referred to as A, containing the upper triangular part of symmetric
sparse matrix A, stored as follows, where:

If ITRAN(2) = 0, A is stored in diagonal-out skyline storage mode.

If ITRAN(2) = 1, A is stored in profile-in skyline storage mode.

Returned as: a one-dimensional array of (at least) length na, containing
long-precision real numbers.

idiag
is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A in output array A. Returned as: a
one-dimensional array of (at least) length n+1, containing integers.

Notes
1. Your various arrays must have no common elements; otherwise, results are

unpredictable.
2. The ITRAN(3) argument allows you to specify the direction of travel through

matrix A that ESSL takes during the transformation. By properly specifying
ITRAN(3), you can optimize the performance of the transformation, which is
especially beneficial when transforming large matrices.
The direction specified by ITRAN(3) should be opposite the most recent
direction of access through the matrix performed by the DSKFS or DSKFSP
subroutine, as indicated in the following table:

Chapter 17. Utilities 1289

Most Recent
Computation Performed
by DSKFS/DSKFSP

Direction Used by
DSKFS/DSKFSP Direction to Specify in ITRAN(3)

Factor and Solve Negative Positive (ITRAN(3) = 1)

Factor Only Positive Negative (ITRAN(3) = -1)

Solve Only Negative Positive (ITRAN(3) = 1)

3. For a description of how sparse matrices are stored in skyline storage mode,
see “Profile-In Skyline Storage Mode” on page 124 and “Diagonal-Out Skyline
Storage Mode” on page 122.

4. You have the option of having the minimum required value for naux
dynamically returned to your program. For details, see “Using Auxiliary
Storage in ESSL” on page 49.

Function

A symmetric sparse matrix A, stored in diagonal-out or profile-in skyline storage
mode is converted to either of these same two storage modes. (Generally, you
convert from one to the other, but the capability exists to specify the same storage
mode for input and output.) The argument ITRAN(3) indicates the direction in
which you want the transformation performed on matrix A, allowing you to
optimize your performance in this subroutine. This is especially beneficial for large
matrices.

This subroutine is meant to be used in conjunction with DSKFS and DSKFSP,
which process matrices stored in these skyline storage modes.

Error conditions

Resource Errors
Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors
None

Input-Argument Errors

1. n < 0
2. na < 0
3. IDIAG(n+1) > na+1
4. IDIAG(i+1) ≤ IDIAG(i) for i = 1, n
5. IDIAG(i+1) > IDIAG(i)+i and ITRAN(1) = 0 for i = 1, n
6. IDIAG(i) > IDIAG(i-1)+i and ITRAN(1) = 1 for i = 2, n
7. ITRAN(1) ≠ 0 or 1
8. ITRAN(2) ≠ 0 or 1
9. ITRAN(3) ≠ -1 or 1

10. naux Error 2015 is recoverable or naux≠0, and is too small—that is, less
than the minimum required value. Return code 1 is returned if error 2015
is recoverable.

Examples

Example 1

1290 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

This example shows how to convert a 9 by 9 symmetric sparse matrix A from
diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix A
is:

┌ ┐
| 11.0 12.0 13.0 14.0 0.0 0.0 0.0 0.0 0.0 |
| 12.0 22.0 23.0 24.0 25.0 26.0 0.0 28.0 0.0 |
| 13.0 23.0 33.0 34.0 35.0 36.0 0.0 38.0 0.0 |
| 14.0 24.0 34.0 44.0 45.0 46.0 0.0 48.0 0.0 |
| 0.0 25.0 35.0 45.0 55.0 56.0 57.0 58.0 0.0 |
| 0.0 26.0 36.0 46.0 56.0 66.0 67.0 68.0 69.0 |
| 0.0 0.0 0.0 0.0 57.0 67.0 77.0 78.0 79.0 |
| 0.0 28.0 38.0 48.0 58.0 68.0 78.0 88.0 89.0 |
| 0.0 0.0 0.0 0.0 0.0 69.0 79.0 89.0 99.0 |
└ ┘

Assuming that DSKFS last performed a factorization on matrix A, the direction
of the transformation is negative; that is, ITRAN(3) is -1. This provides the best
performance here.

Call Statement and Input:

A = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
14.0, 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 36.0,
26.0, 77.0, 67.0, 57.0, 88.0, 78.0, 68.0, 58.0, 48.0,
38.0, 28.0, 99.0, 89.0, 79.0, 69.0)

IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
ITRAN = (0, 1, -1)

Output:
A = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 14.0, 24.0, 34.0,

44.0, 25.0, 35.0, 45.0, 55.0, 26.0, 36.0, 46.0, 56.0,
66.0, 57.0, 67.0, 77.0, 28.0, 38.0, 48.0, 58.0, 68.0,
78.0, 88.0, 69.0, 79.0, 89.0, 99.0)

IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)

Example 2

This example shows how to convert the same 9 by 9 symmetric sparse matrix
A in Example 1 from profile-in skyline storage mode to diagonal-out skyline
storage mode.

Assuming that DSKFS last performed a solve on matrix A, the direction of the
transformation is positive; that is, ITRAN(3) is 1. This provides the best
performance here.

Call Statement and Input:

A =(same as output A in Example 1)
IDIAG =(same as output IDIAG in Example 1)
ITRAN = (1, 0, 1)

Output:

A =(same as input A in Example 1)
IDIAG =(same as input IDIAG in Example 1)

N A NA IDIAG ITRAN AUX NAUX
| | | | | | |

CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9)

N A NA IDIAG ITRAN AUX NAUX
| | | | | | |

CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9

Chapter 17. Utilities 1291

1292 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 1986, 2015 1293

1294 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Appendix A. Basic Linear Algebra Subprograms (BLAS)

This appendix lists the ESSL subprograms corresponding to a subprogram in the
standard set of BLAS.

For information about CBLAS calling sequences, see “Syntax” on page xxiv and [10
on page 1314].

Level 1 BLAS

Table 242. Level 1 BLAS Included in ESSL

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Position of the First or Last Occurrence of the Vector Element Having the
Largest Magnitude

ISAMAX
ICAMAX
cblas_isamax
cblas_idamax

IDAMAX
IZAMAX
cblas_icamax
cblas_izamax

Sum of the Magnitudes of the Elements in a Vector SASUM
SCASUM
cblas_sasum
cblas_scasum

DASUM
DZASUM
cblas_dasum
cblas_dcasum

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the
Vector Y

SAXPY
CAXPY
cblas_saxpy
cblas_caxpy

DAXPY
ZAXPY
cblas_daxpy
cblas_zaxpy

Copy a Vector SCOPY
CCOPY
cblas_scopy
cblas_ccopy

DCOPY
ZCOPY
cblas_dcopy
cblas_zcopy

Dot Product of Two Vectors SDOT
CDOTU
CDOTC
cblas_sdot
cblas_cdotu_sub
cblas_cdotc_sub

DDOT
ZDOTU
ZDOTC
cblas_ddot
cblas_zdotu_sub
cblas_zdotc_sub

Euclidean Length of a Vector with Scaling of Input to Avoid Destructive
Underflow and Overflow

SNRM2
SCNRM2
cblas_snrm2
cblas_scnrm2

DNRM2
DZNRM2
cblas_dnrm2
cblas_dznrm2

Construct a Givens Plane Rotation SROTG
CROTG
cblas_srotg

DROTG
ZROTG
cblas_drotg

Apply a Plane Rotation SROT
CROT
CSROT
cblas_srot

DROT
ZROT
ZDROT
cblas_drot

Multiply a Vector X by a Scalar and Store in the Vector X SSCAL
CSCAL
CSSCAL
cblas_sscal
cblas_cscal
cblas_csscal

DSCAL
ZSCAL
ZDSCAL
cblas_dscal
cblas_zscal
cblas_zdscal

© Copyright IBM Corp. 1986, 2015 1295

|
|

||

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|

|
|
|

||
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

Table 242. Level 1 BLAS Included in ESSL (continued)

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Interchange the Elements of Two Vectors SSWAP
CSWAP
cblas_sswap
cblas_cswap

DSWAP
ZSWAP
cblas_dswap
cblas_zswap

Level 2 BLAS

Table 243. Level 2 BLAS Included in ESSL.

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Matrix-Vector Product for a General Matrix, Its Transpose, or Its
Conjugate Transpose

SGEMV
CGEMV
cblas_sgemv
cblas_cgemv

DGEMV
ZGEMV
cblas_dgemv
cblas_zgemv

Rank-One Update of a General Matrix SGER
CGERU
CGERC
cblas_sger
cblas_cgeru
cblas_cgerc

DGER
ZGERU
ZGERC
cblas_dger
cblas_zgeru
cblas_zgerc

Matrix-Vector Product for a Real Symmetric or Complex Hermitian
Matrix

SSPMV
CHPMV
SSYMV
CHEMV
cblas_sspmv
cblas_chpmv
cblas_ssymv
cblas_chemv

DSPMV
ZHPMV
DSYMV
ZHEMV
cblas_dspmv
cblas_zhpmv
cblas_dsymv
cblas_zhemv

Rank-One Update of a Real Symmetric or Complex Hermitian Matrix SSPR
CHPR
SSYR
CHER
cblas_sspr
cblas_chpr
cblas_ssyr
cblas_cher

DSPR
ZHPR
DSYR
ZHER
cblas_dspr
cblas_zhpr
cblas_dsyr
cblas_zher

Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix SSPR2
CHPR2
SSYR2
CHER2
cblas_sspr2
cblas_chpr2
cblas_ssyr2
cblas_cher2

DSPR2
ZHPR2
DSYR2
ZHER2
cblas_dspr2
cblas_zhpr2
cblas_dsyr2
cblas_zher2

Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its
Conjugate Transpose

SGBMV
CGBMV
cblas_sgbmv
cblas_cgbmv

DGBMV
ZGBMV
cblas_dgbmv
cblas_zgbmv

Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band
Matrix

SSBMV
CHBMV
cblas_ssbmv
cblas_chbmv

DSBMV
ZHBMV
cblas_dsbmv
cblas_zhbmv

1296 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|
|
|
|

||
|
|
|

|
|
|
|
|

||

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Table 243. Level 2 BLAS Included in ESSL (continued).

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its
Conjugate Transpose

STPMV
CTPMV
STRMV
CTRMV
cblas_stpmv
cblas_ctpmv
cblas_strmv
cblas_ctrmv

DTPMV
ZTPMV
DTRMV
ZTRMV
cblas_dtpmv
cblas_ztpmv
cblas_dtrmv
cblas_ztrmv

Solution of a Triangular System of Equations with a Single Right-Hand
Side

STPSV
CTPSV
STRSV
CTRSV
cblas_stpsv
cblas_ctpsv
cblas_strsv
cblas_ctrsv

DTPSV
ZTPSV
DTRSV
ZTRSV
cblas_dtpsv
cblas_ztpsv
cblas_dtrsv
cblas_ztrsv

Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its
Conjugate Transpose

STBMV
CTBMV
cblas_stbmv
cblas_ctbmv

DTBMV
ZTBMV
cblas_dtbmv
cblas_ztbmv

Triangular Band Equation Solve STBSV
CTBSV
cblas_stbsv
cblas_ctbsv

DTBSV
ZTBSV
cblas_dtbsv
cblas_ztbsv

Level 3 BLAS

Table 244. Level 3 BLAS Included in ESSL.

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Combined Matrix Multiplication and Addition for General Matrices, Their
Transposes, or Conjugate Transposes

SGEMM
CGEMM
cblas_sgemm
cblas_cgemm

DGEMM
ZGEMM
cblas_dgemm
cblas_zgemm

Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric
or Complex Hermitian

SSYMM
CSYMM
CHEMM
cblas_ssymm
cblas_csymm
cblas_chemm

DSYMM
ZSYMM
ZHEMM
cblas_dsymm
cblas_zsymm
cblas_zhemm

Triangular Matrix-Matrix Product STRMM
CTRMM
cblas_strmm
cblas_ctrmm

DTRMM
ZTRMM
cblas_dtrmm
cblas_ztrmm

Solution of Triangular Systems of Equations with Multiple Right-Hand
Sides

STRSM
CTRSM
cblas_strsm
cblas_ctrsm

DTRSM
ZTRSM
cblas_dtrsm
cblas_ztrsm

Appendix A. Basic Linear Algebra Subprograms (BLAS) 1297

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|
|

||

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

Table 244. Level 3 BLAS Included in ESSL (continued).

Descriptive Name
Short-Precision
Subprogram

Long-Precision
Subprogram

Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian
Matrix

SSYRK
CSYRK
CHERK
cblas_ssyrk
cblas_csyrk
cblas_cherk

DSYRK
ZSYRK
ZHERK
cblas_dsyrk
cblas_zsyrk
cblas_zherk

Rank-2K Update of a Real or Complex Symmetric or a Complex
Hermitian Matrix

SSYR2K
CSYR2K
CHER2K
cblas_ssyr2k
cblas_csyr2k
cblas_cher2k

DSYR2K
ZSYR2K
ZHER2K
cblas_dsyr2k
cblas_zsyr2k
cblas_zher2k

1298 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Appendix B. LAPACK

The following table lists the ESSL subroutines corresponding to subroutines in the
standard set of LAPACK.

LAPACK Subroutines

Table 245. LAPACK subroutines included in ESSL

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SGESV
CGESV

DGESV
ZGESV

“SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and
Multiple Right-Hand Side Solve)” on page 518

SGETRF
CGETRF

DGETRF
ZGETRF

“SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix
Factorization)” on page 522

SGETRS
CGETRS

DGETRS
ZGETRS

“SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix
Multiple Right-Hand Side Solve)” on page 527

SGECON
CGECON

DGECON
ZGECON

“SGECON, DGECON, CGECON, and ZGECON (Estimate the
Reciprocal of the Condition Number of a General Matrix)” on page
543

SGETRI
CGETRI

DGETRI
ZGETRI

“SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD
(General Matrix Inverse, Condition Number Reciprocal, and
Determinant)” on page 551

SLANGE
CLANGE

DLANGE
ZLANGE

“SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix
Norm)” on page 558

SPPSV
CPPSV

DPPSV
ZPPSV

“SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real
Symmetric and Complex Hermitian Matrix Factorization and
Multiple Right-Hand Side Solve)” on page 561

SPOSV
CPOSV

DPOSV
ZPOSV

“SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real
Symmetric or Complex Hermitian Matrix Factorization and
Multiple Right-Hand Side Solve)” on page 567

SPOTRF
CPOTRF
SPPTRF
CPPTRF

DPOTRF
ZPOTRF
DPPTRF
ZPPTRF

“SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF,
SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive
Definite Real Symmetric or Complex Hermitian Matrix
Factorization)” on page 573

SPOTRS
CPOTRS
SPPTRS
CPPTRS

DPOTRS
ZPOTRS
DPPTRS
ZPPTRS

“SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM,
ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite
Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand
Side Solve)” on page 585

SPOCON
CPOCON
SPPCON
CPPCON

DPOCON
ZPOCON
DPPCON
ZPPCON

“SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON,
CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition
Number of a Positive Definite Real Symmetric or Complex
Hermitian Matrix)” on page 596

SPOTRI
CPOTRI
SPPTRI
CPPTRI

DPOTRI
ZPOTRI
DPPTRI
ZPPTRI

“SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI,
DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite
Real Symmetric or Complex Hermitian Matrix Inverse, Condition
Number Reciprocal, and Determinant)” on page 610

SLANSY
CLANHE
SLANSP
CLANHP

DLANSY
ZLANHE
DLANSP
ZLANHP

“SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP,
CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian
Matrix Norm)” on page 621

© Copyright IBM Corp. 1986, 2015 1299

Table 245. LAPACK subroutines included in ESSL (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SSYSV
CSYSV
CHESV
SSPSV
CSPSV
CHPSV

DSYSV
ZSYSV
ZHESV
DSPSV
ZSPSV
ZHPSV

“SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV,
CSPSV, ZSPSV, CHPSV, ZHPSV (Indefinite Real or Complex
Symmetric or Complex Hermitian Matrix Factorization and
Multiple Right-Hand Side Solve)” on page 626

SSYTRF
CSYTRF
CHETRF
SSPTRF
CSPTRF
CHPTRF

DSYTRF
ZSYTRF
ZHETRF
DSPTRF
ZSPTRF
ZHPTRF

“SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF,
DSPTRF, CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or
Complex Symmetric or Complex Hermitian Matrix Factorization)”
on page 635

SSYTRS
CSYTRS
CHETRS
SSPTRS
CSPTRS
CHPTRS

DSYTRS
ZSYTRS
ZHETRS
DSPTRS
ZSPTRS
ZHPTRS

“SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS,
DSPTRS, CSPTRS, ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or
Complex Symmetric or Complex Hermitian Matrix Multiple
Right-Hand Side Solve)” on page 643

STRTRI
STPTRI
CTRTRI
CTPTRI

DTRTRI
DTPTRI
ZTRTRI
ZTPTRI

“STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI,
and ZTPTRI (Triangular Matrix Inverse)” on page 664

SLANTR
CLANTR
SLANTP
CLANTP

DLANTR
ZLANTR
DLANTP
ZLANTP

“SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP,
CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)”
on page 672

SGBSV
CGBSV

DGBSV
ZGBSV

“SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix
Factorization and Multiple Right-Hand Side Solve)” on page 679

SGBTRF
CGBTRF

DGBTRF
ZGBTRF

“SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix
Factorization)” on page 683

SGBTRS
CGBTRS

DGBTRS
ZGBTRS

“SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix
Multiple Right-Hand Side Solve)” on page 687

SPBSV
CPBSV

DPBSV
ZPBSV

“SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real
Symmetric or Complex Hermitian Band Matrix Factorization and
Multiple Right-Hand Side Solve)” on page 696

SPBTRF
CPBTRF

DPBTRF
ZPBTRF

“SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real
Symmetric or Complex Hermitian Band Matrix Factorization)” on
page 701

SPBTRS
CPBTRS

DPBTRS
ZPBTRS

“SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real
Symmetric or Complex Hermitian Band Matrix Multiple
Right-Hand Side Solve)” on page 706

SGTSV
CGTSV

DGTSV
ZGTSV

“SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix
Factorization and Multiple Right-Hand Side Solve)” on page 711

SGTTRF
CGTTRF

DGTTRF
ZGTTRF

“SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal
Matrix Factorization)” on page 715

SGTTRS
CGTTRS

DGTTRS
ZGTTRS

“SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal
Matrix Multiple Right-Hand Side Solve)” on page 719

SPTSV
CPTSV

DPTSV
ZPTSV

“SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real
Symmetric or Complex Hermitian Tridiagonal Matrix Factorization
and Multiple Right-Hand Side Solve)” on page 725

1300 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Table 245. LAPACK subroutines included in ESSL (continued)

Short-Precision
Subprogram

Long-Precision
Subprogram Descriptive Name and Location

SPTTRF
CPTTRF

DPTTRF
ZPTTRF

“SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real
Symmetric or Complex Hermitian Tridiagonal Matrix
Factorization)” on page 729

SPTTRS
CPTTRS

DPTTRS
ZPTTRS

“SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real
Symmetric or Complex Hermitian Tridiagonal Matrix Multiple
Right-Hand Solve)” on page 733

SGESVD
CGESVD

DGESVD
ZGESVD

“SGESVD, DGESVD, CGESVD, and ZGESVD (Singular Value
Decomposition for a General Matrix)” on page 859

SGEQRF
CGEQRF

DGEQRF
ZGEQRF

“SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR
Factorization)” on page 868

SGELS
CGELS

DGELS
ZGELS

“SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares
Solution for a General Matrix)” on page 874

SGELSD
CGELSD

DGELSD
ZGELSD

“SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares
Solution for a General Matrix Using the Singular Value
Decomposition)” on page 884

SGEEVX
CGEEVX

DGEEVX
ZGEEVX

“SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and,
Optionally, Right Eigenvectors, Left Eigenvectors, Reciprocal
Condition Numbers for Eigenvalues, and Reciprocal Condition
Numbers for Right Eigenvectors of a General Matrix)” on page 913

SSPEVX
CHPEVX
SSYEVX
CHEEVX

DSPEVX
ZHPEVX
DSYEVX
ZHEEVX

“SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX,
CHEEVX, and ZHEEVX (Eigenvalues and, Optionally, the
Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)”
on page 927

CHPEVD
SSYEVD
CHEEVD

ZHPEVD
DSYEVD
ZHEEVD

“SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD,
CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the
Eigenvectors, of a Real Symmetric or Complex Hermitian Matrix
Using a Divide-and-Conquer Algorithm)” on page 942

SGGEV
CGGEV

DGGEV
ZGGEV

“SGGEV, DGGEV, CGGEV, and ZGGEV (Eigenvalues and,
Optionally, Left and/or Right Eigenvectors of a General Matrix
Generalized Eigenproblem)” on page 955

CHPGVX
SSYGVX
CHEGVX

ZHPGVX
DSYGVX
ZHEGVX

“SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX,
CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the
Eigenvectors of a Positive Definite Real Symmetric or Complex
Hermitian Generalized Eigenproblem)” on page 965

Appendix B. LAPACK 1301

1302 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Appendix C. FFTW Version 3.1.2 to ESSL Wrapper Libraries

This appendix lists the FFTW Version 3.1.2 wrappers that can be used for calling
functions from the ESSL libraries.

Documentation for FFTW Version 3.1.2 can be found at the following URL:

http://www.fftw.org

Additional information about the FFTW Wrapper libraries can be found in the
following files:

AIX /usr/lpp/essl.rte.common/FFTW3/README

Linux /opt/ibmmath/essl/version.release/FFTW3/README

C and Fortran Wrappers

The following tables list the available C and Fortran wrappers.

Table 246. List of available C and Fortran wrappers.

Category C Wrapper Fortran Wrapper

Plan usage
fftw_execute
fftwf_execute
fftw_destroy_plan
fftwf_destroy_plan
fftw_cleanup
fftwf_cleanup

DFFTW_EXECUTE
SFFTW_EXECUTE
DFFTW_DESTROY_PLAN
SFFTW_DESTROY_PLAN
DFFTW_CLEANUP
SFFTW_CLEANUP

Basic interface
(Complex
DFTs)

fftw_plan_dft_1d
fftwf_plan_dft_1d
fftw_plan_dft_2d
fftwf_plan_dft_2d
fftw_plan_dft_3d
fftwf_plan_dft_3d
fftw_plan_dft
fftwf_plan_dft

DFFTW_PLAN_DFT_1D
SFFTW_PLAN_DFT_1D
DFFTW_PLAN_DFT_2D
SFFTW_PLAN_DFT_2D
DFFTW_PLAN_DFT_3D
SFFTW_PLAN_DFT_3D
DFFTW_PLAN_DFT
SFFTW_PLAN_DFT

Basic interface
(Real-data
DFTs)

fftw_plan_dft_r2c_1d
fftwf_plan_dft_r2c_1d
fftw_plan_dft_r2c_2d
fftwf_plan_dft_r2c_2d
fftw_plan_dft_r2c_3d
fftwf_plan_dft_r2c_3d
fftw_plan_dft_r2c
fftwf_plan_dft_r2c
fftw_plan_dft_c2r_1d
fftwf_plan_dft_c2r_1d
fftw_plan_dft_c2r_2d
fftwf_plan_dft_c2r_2d
fftw_plan_dft_c2r_3d
fftwf_plan_dft_c2r_3d
fftw_plan_dft_c2r
fftwf_plan_dft_c2r

DFFTW_PLAN_DFT_R2C_1D
SFFTW_PLAN_DFT_R2C_1D
DFFTW_PLAN_DFT_R2C_2D
SFFTW_PLAN_DFT_R2C_2D
DFFTW_PLAN_DFT_R2C_3D
SFFTW_PLAN_DFT_R2C_3D
DFFTW_PLAN_DFT_R2C
SFFTW_PLAN_DFT_R2C
DFFTW_PLAN_DFT_C2R_1D
SFFTW_PLAN_DFT_C2R_1D
DFFTW_PLAN_DFT_C2R_2D
SFFTW_PLAN_DFT_C2R_2D
DFFTW_PLAN_DFT_C2R_3D
SFFTW_PLAN_DFT_C2R_3D
DFFTW_PLAN_DFT_C2R
SFFTW_PLAN_DFT_C2R

© Copyright IBM Corp. 1986, 2015 1303

||

Table 246. List of available C and Fortran wrappers (continued).

Category C Wrapper Fortran Wrapper

Advanced
interface
(Complex
DFTs)

fftw_plan_many_dft
fftwf_plan_many_dft

DFFTW_PLAN_MANY_DFT
SFFTW_PLAN_MANY_DFT

Advanced
interface
(Real-data
DFTs)

fftw_plan_many_dft_r2c
fftwf_plan_many_dft_r2c
fftw_plan_many_dft_c2r
fftwf_plan_many_dft_c2r

DFFTW_PLAN_MANY_DFT_R2C
SFFTW_PLAN_MANY_DFT_R2C
DFFTW_PLAN_MANY_DFT_C2R
SFFTW_PLAN_MANY_DFT_C2R

Guru interface
(Complex
DFTs)

fftw_plan_guru_dft
fftwf_plan_guru_dft
fftw_execute_dft
fftwf_execute_dft

DFFTW_PLAN_GURU_DFT
SFFTW_PLAN_GURU_DFT
DFFTW_EXECUTE_DFT
SFFTW_EXECUTE_DFT

Guru interface
(Real-data
DFTs)

fftw_plan_guru_dft_r2c
fftwf_plan_guru_dft_r2c
fftw_plan_guru_dft_c2r
fftwf_plan_guru_dft_c2r
fftw_execute_dft_r2c
fftwf_execute_dft_r2c
fftw_execute_dft_c2r
fftwf_execute_dft_c2r

DFFTW_PLAN_GURU_DFT_R2C
SFFTW_PLAN_GURU_DFT_R2C
DFFTW_PLAN_GURU_DFT_C2R
SFFTW_PLAN_GURU_DFT_C2R
DFFTW_EXECUTE_DFT_R2C
SFFTW_EXECUTE_DFT_R2C
DFFTW_EXECUTE_DFT_C2R
SFFTW_EXECUTE_DFT_C2R

Memory
allocation fftw_malloc

fftwf_malloc
fftw_free
fftwf_free

(Not applicable)

Use of the ESSL FFTW Wrapper library has the following restrictions:
v No functions for real-to-real transforms are provided.
v No wrappers for the FFTW Wisdom functions are provided.
v The following flags are treated as equivalent: FFTW_ESTIMATE,

FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE
v The FFTW Wrapper libraries use the same method to specify SMP parallelism as

does ESSL instead of using the fftw_threads_init, fftw_plan_with_threads and
fftw_cleanup_threads functions. These functions are not provided as part of the
FFTW Wrapper libraries.

Using the FFTW Wrapper libraries

Applications using the FFTW Wrapper library can be linked with either the ESSL
Serial Library or the ESSL SMP library in the following environments:
v 32-bit integer, 32-bit pointer
v 32-bit integer, 64-bit pointer (AIX only)

For additional information about how to use the FFTW Wrapper libraries, see
Chapter 5, “Processing Your Program,” on page 183.

1304 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|

|

|

|
|

|
|
|
|

|

Building the FFTW Wrapper libraries on AIX

The C and Fortran wrappers are provided as source code to be compiled using the
IBM C/C++ Compiler. The source code, header files and makefiles can be found in
the /usr/lpp/essl.rte.common/FFTW3 directory.

To build and install the FFTW Wrapper libraries:
1. Change to a writable directory with approximately 512kb of free space.
2. Do one of the following:
v Enter:

cp /usr/lpp/essl.rte.common/FFTW3/src/Makefile
.
make install

—or—

v Enter:

make -f /usr/lpp/essl.rte.common/FFTW3/src/Makefile
install

Building the FFTW Wrapper libraries on Linux

The C and Fortran wrappers are provided as source code to be compiled using the
IBM C/C++ Compiler or the gcc compiler. If ESSL was installed in the default
location, the source code, header files and makefiles can be found in the
/opt/ibmmath/essl/version.release/FFTW3 directory.

Note: For little endian mode only, by default the FFTW Wrapper libraries are
installed in /usr/local/lib64. If you wish to install them to /usr/local/lib instead,
you can change the value of LIBSUBDIR in Makefile or Makefile.gcc.

To build and install the FFTW Wrapper libraries using IBM XL C:
1. Change to a writable directory with approximately 512kb of free space.
2. Do one of the following:
v Enter:

cp /opt/ibmmath/essl/version.release/FFTW3/src/Makefile .
make install

—or—

v Enter:

make -f /opt/ibmmath/essl/version.release/FFTW3/src/Makefile install

To build and install the FFTW Wrapper libraries using gcc:
1. Change to a writable directory with approximately 512kb of free space.
2. Do one of the following:
v Enter:

cp /opt/ibmmath/essl/version.release/FFTW3/src/Makefile .
make -f ./Makefile.gcc install

—or—

Appendix C. FFTW Version 3.1.2 to ESSL Wrapper Libraries 1305

v Enter:

make -f /opt/ibmmath/essl/version.release/FFTW3/src/Makefile.gcc install

1306 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Accessibility Features for ESSL

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility Features
The following list includes the major accessibility features in IBM ESSL. These
features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v Keys that are tactilely discernible and do not activate just by touching them.
v Industry-standard devices for ports and connectors.
v The attachment of alternative input and output devices.

IBM Knowledge Center and its related publications, are accessibility-enabled. The
accessibility features of IBM Knowledge Center are described in the Accessibility
topic at the following URL:
http://www.ibm.com/support/knowledgecenter/

IBM and Accessibility
See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility:
http://www.ibm.com/able/

© Copyright IBM Corp. 1986, 2015 1307

1308 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1986, 2015 1309

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
2455 South Road, P386
Poughkeepsie, New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

1310 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Acrobat, Adobe, and the Adobe logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft is a trademark of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Software Update Protocol
IBM has provided modifications to this software. The resulting software is
provided to you on an "AS IS" basis and WITHOUT A WARRANTY OF ANY
KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Programming Interfaces
This ESSL Guide and Reference manual is intended to help the customer do
application programming. This manual documents General-use Programming
Interface and Associated Guidance Information provided by ESSL.

General-use programming interfaces allow the customer to write programs that
obtain the services of ESSL.

Notices 1311

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1312 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Bibiography

References

Text books and articles covering the mathematical aspects of ESSL are listed here,
as well as several software libraries available from other companies. They are listed
alphabetically as follows:
v Publications are listed by the author's name. IBM publications that include an

order number, other than an IBM Technical Report can be ordered through the
Subscription Library Services System (SLSS). The non-IBM publications listed
here should be obtained through publishers, bookstores, or professional
computing organizations.

v Software libraries are listed by their product name. Each reference includes the
names, addresses, and phone numbers of the companies from which they can be
obtained.

To find ESSL publications available on the Internet, see “Where to Find Related
Publications” on page xvi.

Each citation is shown as a number enclosed in square brackets. It indicates the
number of the item listed in the bibliography. For example, reference [1] cites the
first item listed below.
1. Agarwal, R. C. Dec. 1984. “An Efficient Formulation of the Mixed-Radix FFT

Algorithm.” Proceedings of the International Conference on Computers, Systems,
and Signal Processing, 769–772. Bangalore, India.

2. Agarwal, R. C. August 1988. “A Vector and Parallel Implementation of the FFT
Algorithm on the IBM 3090.” Proceedings from the IFIP WG 2.5 (International
Federation for Information Processing Working Conference 5) , Stanford University.

3. Agarwal, R. C. 1989. “A Vector and Parallel Implementation of the FFT
Algorithm on the IBM 3090.” Aspects of Computation on Asynchronous Parallel
Processors , 45–54. Edited by M. H. Wright. Elsevier Science Publishers, New
York, N. Y.

4. Agarwal, R. C.; Cooley, J. W. March 1986. “Fourier Transform and Convolution
Subroutines for the IBM 3090 Vector Facility.” IBM Journal of Research and
Development , 30(2):145–162 (Order no. G322-0146).

5. Agarwal, R. C.; Cooley, J. W. September 1987. “Vectorized Mixed-Radix
Discrete Fourier Transform Algorithms” IEEE Proceedings , 75:1283–1292.

6. Agarwal, R.; Cooley, J.; Gustavson F.; Shearer J.; Slishman G.; Tuckerman B.
March 1986. “New Scalar and Vector Elementary Functions for the IBM
System/370.” IBM Journal of Research and Development , 30(2):126–144 (Order
no. G322-0146).

7. Agarwal, R.; Gustavson F.; Zubair, M. May 1994. “An Efficient Parallel
Algorithm for the 3-D FFT NAS Parallel Benchmark.” Proceedings of IEEE
SHPCC 94 :129–133.

8. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.;
Greenbaum, A.; Hammarling, S.; McKenney, A.; Ostrouchov, S.; Sorensen, D.
1999. LAPACK User's Guide (third edition), SIAM Publications, Philadelphia,
Pa.
For more information, see:
http://www.netlib.org/lapack/index.html

© Copyright IBM Corp. 1986, 2015 1313

9. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.;
Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D. May 1990.
LAPACK: A Portable Linear Algebra Library for High-Performance Computers.
University of Tennessee, Technical Report CS-90-105.

10. Basic Linear Algebra Subprograms Technical (BLAST) Forum. August 21,
2001.“C Interface to the Legacy BLAS.” Basic Linear Algebra Subprograms
Technical (BLAST) Forum. 180 – 195. University of Tennessee.

11. Bathe, K.; Wilson, E. L. 1976. Numerical Methods in Finite Element Analysis ,
249–258.

12. Bluestein, L. I. 1968. “A linear filtering approach to the computation of the
discrete Fourier transform.” Northeast Electronics Research and Engineering
Meeting Record 10, 218-219.

13. Box, G. E. P.; Muller, Mervin E. 1958. “A Note on the Generation of Random
Normal Deviates.” Annals of Mathematical Statistics 29(2), 610-611.

14. Braman, K.; Byers, R.; Mathias, R. 2002 “The Multi-Shift QR Algorithm, Part I:
Maintaining Well-focused Shifts and Level 3 Performance.” SIAM Journal on
Matrix Analysis and Applications 23(4):929–947.

15. Braman, K.; Byers, R.; Mathias, R. 2002 “The Multi-Shift QR Algorithm, Part II:
Aggressive Early Deflation Maintaining Well-focused Shifts, and Level 3
Performance.” SIAM Journal on Matrix Analysis and Applications 23(4):948–973.

16. Brayton, R. K.; Gustavson F. G.; Willoughby, R. A.; 1970. “Some Results on
Sparse Matrices.” Mathematics of Computation , 24(112):937–954.

17. Borodin, A.; Munro, I. 1975. The Computational Complexity of Algebraic and
Numeric Problems American Elsevier, New York, N. Y.

18. Bunch, James R.; Kaufman, Linda. 1977. “Some Stable Methods for Calculating
Inertia and Solving Symmetric Linear Systems”Mathematics of Computation,
31(137):163-179

19. Carey, G. F.; Oden, J. T. 1984. Finite Elements: Computational Aspects, Vol 3 ,
144–147. Prentice Hall, Englewood Cliffs, N. J.

20. Chan, T. F. March 1982. “An Improved Algorithm for Computing the Singular
Value Decomposition.” ACM Transactions on Mathematical Software 8(1):72–83.

21. Cline, A. K.; Moler, C. B.; Stewart, G. W.; Wilkinson, J. H. 1979. “An Estimate
for the Condition Number of a Matrix.” SIAM Journal of Numerical Analysis
16:368–375.

22. Conte, S. D.; DeBoor, C. 1972. Elementary Numerical Analysis: An Algorithmic
Approach® (second edition), McGraw-Hill, New York, N. Y.

23. Cooley, J. W. 1976. “Fast Fourier Transform.” Encyclopedia of Computer Sciences
Edited by A. Ralston. Auerbach Publishers.

24. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1967. “Application of the Fast
Fourier Transform to Computation of Fourier Integrals, Fourier Series, and
Convolution Integrals.” IEEE Transactions Audio Electroacoustics AU-15:79–84.

25. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1967. “Historical Notes on the
Fast Fourier Transform.” IEEE Transactions Audio Electroacoustics AU-15:76–79.
(Also published Oct. 1967 in Proceedings of IEEE 55(10):1675–1677.)

26. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. March 1969. “The Fast Fourier
Transform Algorithm and its Applications.” IEEE Transactions on Education
E12:27–34.

27. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1969. “The Finite Fast Fourier
Transform.” IEEE Transactions Audio Electroacoustics AU-17:77–85.

1314 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

|
|
|

28. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. July 1970. “The Fast Fourier
Transform: Programming Considerations in the Calculation of Sine, Cosine,
and LaPlace Transforms.” Journal of Sound Vibration and Analysis 12(3):315–337.

29. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. July 1970. “The Application of the
Fast Fourier Transform Algorithm to the Estimation of Spectra and
Cross-Spectra.” Journal of Sound Vibration and Analysis 12(3):339–352.

30. Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. 1977. “Statistical Methods for
Digital Computers.” Mathematical Methods for Digital Computers Chapter 14.
Edited by Ensein, Ralston and Wilf, Wiley-Interscience. John Wiley, New York.

31. Cooley, J. W.; Tukey, J. W. April 1965. “An Algorithm for the Machine
Calculation of Complex Fourier Series.” Mathematics of Computation 19:297.

32. Dahlquist, G.; Bjorck, A.; (Translated by Anderson, N.). 1974. Numerical
Methods , Prentice Hall, Englewoods Cliffs, N. J. (For skyline subroutines, see
169–170.)

33. Davis, P. J.; Rabinowitz, P. 1984. Methods of Numerical Integration , (second
edition), Academic Press, Orlando, Florida.

34. Demmel, J.; Kahan, W. February 1988. “Computing Small Singular Values of
Bidiagonal Matrices with Guaranteed High Relative Accuracy”, LAPACK
Working Note 3, ANL, MCS-TM-110. You can dowload this document from
the following URL: http://www.netlib.org/lapack/lawns/lawn03.ps

35. Delsarte, P.; Genin, Y. V. June 1986. “The Split Levinson Algorithm.” IEEE
Transactions on Acoustics, Speech, and Signal Processing ASSP-34(3):472.

36. Di Chio, P.; Filippone, S. January 1992. “A Stable Partition Sorting Algorithm.”
Report No. ICE-0045 IBM European Center for Scientific and Engineering
Computing, Rome, Italy.

37. Dodson, D. S.; Lewis, J. G. Jan. 1985. “Proposed Sparse Extensions to the Basic
Linear Algebra Subprograms.” ACM SIGNUM Newsletter , 20(1).

38. Dongarra, J. J. July 1997. “Performance of Various Computers Using Standard
Linear Equations Software.” University of Tennessee, CS-89-85.
You can download this document from:
http://www.netlib.org/benchmark/performance.ps

39. Dongarra, J. J.; Bunch, J. R.; Moler C. B.; Stewart, G. W. 1986. LINPACK User's
Guide , SIAM Publications, Philadelphia, Pa.
For more information, see:
http://www.netlib.org/linpack/index.html

40. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Duff, I. March 1990. “A Set of
Level 3 Basic Linear Algebra Subprograms.” ACM Transactions on Mathematical
Software , 16(1):1–17.

41. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Duff, I. March 1990. “Algorithm
679. A Set of Level 3 Basic Linear Algebra Subprograms: Model
Implementation and Test Programs.” ACM Tranactions on Mathematical Software
, 16(1):18–28.

42. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988. “An
Extended Set of Fortran Basic Linear Algebra Subprograms.” ACM Transactions
on Mathematical Software , 14(1):1–17.

43. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988.
“Algorithm 656. An Extended Set of Basic Linear Algebra Subprograms:
Model Implementation and Test Programs.” ACM Tranactions on Mathematical
Software , 14(1):18–32.

Bibiography 1315

44. Dongarra, J. J.; Duff, I. S.; Sorensen, D. C.; Van der Vorst, H. 1991. Solving
Linear Systems on Vector and Shared Memory Computers , SIAM Publications,
ISBN 0-89871-270-X.

45. Dongarra, J. J.; Eisenstat, S. C. May 1983. “Squeezing the Most Out of an
Algorithm in Cray Fortran.” Technical Memorandum 9 Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

46. Dongarra, J. J.; Gustavson, F. G.; Karp, A. Jan. 1984. “Implementing Linear
Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine.” SIAM
Review , 26(1).

47. Dongarra, J. J.; Kaufman, L.; Hammarling, S. Jan. 1985. “Squeezing the Most
Out of Eigenvalue Solvers on High-Performance Computers.” Technical
Memorandum 46 Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, Illinois 60439.

48. Dongarra, J. J.; Kolatis M. October 1994. “Call Conversion Interface (CCI) for
LAPACK/ESSL.” LAPACK Working Note 82, Department of Computer
Science University of Tennessee, Knoxville, Tennessee.
You can download this document from:
http://www.netlib.org/lapack/lawns/lawn82.ps

49. Dongarra, J. J.; Kolatis M. May 1994. “IBM RS/6000-550 & -590 Performance
for Selected Routines in ESSL/LAPACK/NAG/IMSL”, LAPACK Working
Note 71, Department of Computer Science University of Tennessee, Knoxville,
Tennessee.
You can download this document from:
http://www.netlib.org/lapack/lawns/lawn71.ps

50. Dongarra, J. J; Meuer, H. W.; Strohmaier, E. June 1997. “Top500 Supercomputer
Sites.” University of Tennessee, UT-CS-97-365.; University of Mannheim, RUM
50/97.
You can view this document from:
http://www.netlib.org/benchmark/top500.html

51. Dongarra, J. J.; Moler, C. B. August 1983. “EISPACK—A Package for Solving
Matrix Eigenvalue Problems.” Technical Memorandum 12 Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

52. Dongarra, J. J.; Moler, C. B; Bunch, J. R.; Stewart, G. W. 1979. LINPACK Users'
Guide , SIAM, Philadelphia, Pa.

53. Dubrulle, A. A. 1971. “QR Algorithm with Implicit Shift.” IBM licensed
program: PL/MATH.

54. Dubrulle, A. A. November 1979. “The Design of Matrix Algorithms for Fortran
and Virtual Storage.” IBM Palo Alto Scientific Center Technical Report (Order no.
G320-3396).

55. Dubrulle, A. A. November 1988. “A Version of EISPACK for the IBM 3090VF”,
IBM Palo Alto Scientific Center Technical Report (Order no. G320-3510).

56. Duff, I. S.; Erisman, A. M.; Reid, J. K. 1986. Direct Methods for Sparse Matrices
Oxford University Press (Claredon), Oxford. (For skyline subroutines, see
151–153.)

57. Eisenstat, S. C. March 1981. “Efficient Implementation of a Class of
Preconditioned Conjugate Gradient Methods.” SIAM Journal of Scientific
Statistical Computing , 2(1).

58. EISPACK software library; National Energy Software Center, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

1316 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

(312-972-7250); International Mathematical and Statistical Libraries, Inc., Sixth
Floor, GNB Building, 7500 Bellaire Boulevard, Houston, Texas 77036
(713-772-1927)

59. Elmroth, E.; Gustavson, F. "Applying Recursion to Serial and Parallel QR
Factorization Leads to Better Performance." To be Published.IBM J. Res.
Develop. 44, No. 5.

60. Elmroth, E.; Gustavson, F. "A High-Performance Algorithm for the Linear
Least Squares Problem on SMP Systems." Submitted for Publication.Lecture
Notes in Computer Science Springer-Verlag, Berlin, 2000.

61. Elmroth, E.; Gustavson, F. June 1998. "New Serial and Parallel Recursive QR
Factorization Algorithms for SMP Systems." Applied Parallel Computing Large
Scale Scientific and Industrial Problems , 4th International Workshop, PARA'98
Umea, Sweden, June 14-17, 1998 Proceedings:120—128.

62. Filippone, S.; Santangelo, P.; Vitaletti M. Nov. 1990. “A Vectorized Long-Period
Shift Register Random Number Generation.” Proceedings of Supercomputing '90
, 676–684, New York.

63. Forsythe, G. E.; Malcolm, M. A. 1977. Computer Methods for Mathematical
Computations , Prentice Hall, Englewoods Cliffs, N. J.

64. Forsythe, G.E.; Moler, C. 1967. Computer Solution of Linear Algebra Systems ,
Prentice Hall, Englewoods Cliffs, N. J.

65. Francis, J. G. F. 1961. “The QR Tranformation A Unitary Analogue to the LR
Transformation—Part 1”, The Computer Journal Volume 4 Number 3, 265-271,
British Computer Society, London.

66. Francis, J. G. F. 1962. “The QR Tranformation—Part 2”, The Computer Journal
Volume 4 Number 4, 332–345, British Computer Society, London.

67. Freund, R. W. July 28, 1992. “Transpose-Free Quasi-Minimal Residual Methods
for Non-Hermitian Linear Systems.” Numerical Analysis Manuscript 92-07 ,
AT&T Bell Laboratories. (To appear in SIAM Journal of Scientific Statistical
Computing , 1993, Vol. 14.)

68. Gans, D. 1969. Transformations and Geometries Appleton Century Crofts, New
York.

69. Garbow, B. S.; Boyle, J. M.; Dongarra, J. J.; Moler, C. B. 1977. “Matrix
Eigensystem Routines.” EISPACK Guide Extension Lecture Notes in Computer
Science, Vol. 51 Springer-Verlag, New York, Heidelberg, Berlin.

70. George, A.; Liu, J. W. 1981. “Computer Solution of Large Sparse Positive
Definite Systems.” Series in Computational Mathematics Prentice-Hall,
Englewood Cliffs, New Jersey.

71. Gerald, C. F.; Wheatley, P. O. 1985. Applied Numerical Analysis (third edition),
Addison-Wesley, Reading, Mass.

72. Gill, P. E.; Miller, G. R. 1972. “An Algorithm for the Integration of Unequally
Spaced Data.” Computer Journal 15:80–83.

73. Golub, G. H.; Van Loan, C. F. 1996. Matrix Computations , John Hopkins
University Press, Baltimore, Maryland.

74. Gregory, R. T.; Karney, D. L. 1969. A Collection of Matrices for Testing
Computational Algorithms , Wiley-Interscience, New York, London, Sydney,
Toronto.

75. Grimes, R. C.; Kincaid, D. R.; Young, D. M. 1979. ITPACK 2.0 User's Guide ,
CNA-150. Center for Numerical Analysis, University of Texas at Austin.

Bibiography 1317

76. Gustavson, Fred.; Alexander Karaivanov, Minka I. Marinova, Jerzy
Wasniewski, Plamen Yalamov. "A new block packed storage for symmetric
indefinite matrices." Lecture Notes in Computer Science Fifth International
Workshop, Bergen, Norway.

77. Gustavson, F.G. Nov. 1997. "Recursion leads to automatic variable blocking for
dense linear-algebra algorithms." IBM Journal of Research and Development,
Volume 41 Number 6:737—755.

78. Gustavson, F.G. Jan. 1997. "High Performance Linear Algebra Algorithms
Using New Generalized Data Structures for Matrices." IBM Journal of Research
and Development, Volume 47 Number 1.

79. Gustavson, F.; Henriksson, A.; Jonsson, I.; Kagstrom, B.; Ling, P. June 1998.
"Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra
Algorithms." Applied Parallel Computing Large Scale Scientific and Industrial
Problems , 4th International Workshop, PARA'98 Umea, Sweden, June 14-17,
1998 Proceedings:195—215.

80. Hageman, L. A.; Young, D. M.. 1981. Applied Iterative Methods Academic Press,
New York, N. Y.

81. Higham, N. J. 1996. Accuracy and Stability of Numerical Algorithms, SIAM
Publications, Philadelphia, Pa.

82. Higham, N. J. December 1988. Fortran Codes for Estimating the One-Norm of a
Real or Complex Matrix, with Application to Condition Estimating ACM
Transactions on Mathematical Software, 14(4):381–396.

83. Jennings, A. 1977. Matrix Computation for Engineers and Scientists, 153–158, John
Wiley and Sons, Ltd., New York, N. Y.

84. Kagstrom, B.; Ling, P.; Van Loan, C. 1993. “Portable High Performance
GEMM-Based Level 3 BLAS”, Proceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Computing , 339–346. Edited by: R. Sincovec, D.
Keyes, M. Leize, L. Petzold, and D. Reed. SIAM Publications.

85. Kincaid, D. R.; Oppe, T. C.; Respess, J. R.; Young, D. M. 1984. ITPACKV 2C
User's Guide , CNA-191. Center for Numerical Analysis, University of Texas at
Austin.

86. Kirkpatrick, S.; Stoll, E. P. 1981. “A Very Fast Shift-Register Sequence Random
Number Generation.” Journal of Computational Physics , 40:517–526.

87. Knuth, D. E. 1973. The Art of Computer Programming, Vol. 3: Sorting and
Searching , Addison-Wesley, Reading, Mass.

88. Knuth, D. E. 1981. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms , (second edition), Addison-Wesley, Reading, Mass.

89. Lambiotte, J. J.; Voigt, R. G. December 1975. “The Solution of Tridiagonal
Linear Systems on the CDC STAR-100 Computer.” ACM Transactions on
Mathematical Software 1(4):308–329.

90. Lawson, C. L.; Hanson, R. J. 1974. Solving Least Squares Problems Prentice-Hall,
Englewood Cliffs, New Jersey.

91. Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krough, F. T. Sept. 1979. “Basic
Linear Algebra Subprograms for Fortran Usage.” ACM Transactions on
Mathematical Software 5(3):308–323.

92. Lewis, P. A. W.; Goodman, A. S.; Miller, J. M. 1969. “A Pseudo-Random
Number Generator for the System/360.” IBM System Journal , 8(2).

93. Matsumoto, M.; Nishimura, T., 1998. “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator.” ACM
Transactions on Modeling and Computer Simulations, 8(1):3-30.

1318 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

94. Mutsuo, S.; Makoto, M. 2006. “SIMD-Oriented Fast Mersenne Twister: a
128-bit Pseudorandom Number Generator” Monte Carlo and Quasi-Monte Carlo
Methods, 2006: 607-622.

95. Mutsuo, S.; Makoto, M. 2009. “A PRNG Specialized in Double Precision
Floating Point Number Using an Affine Transition” Monte Carlo and
Quasi-Monte Carlo Methods, 2009: 589-602.

96. McCracken, D. D.; Dorn, W. S. 1964. Numerical Methods and Fortran
Programming , John Wiley and Sons, New York.

97. Melhem, R. 1987. “Toward Efficient Implementation of Preconditioned
Conjugate Gradient Methods on Vector Supercomputers.” Journal of
Supercomputer Applications , Vol. 1.

98. Moler, C. B.; Stewart, G. W. 1973. “An Algorithm for the Generalized Matrix
Eigenvalue Problem.” SIAM Journal of Numerical Analysis , 10:241–256.

99. Nichols, B.; Farrell, J.; Buttlar, D. 1996. Pthreads Programming: Using POSIX
Threads O'Reilly & Associates, Inc.

100. Oppenheim, A. V.; Schafer, R. W. 1975. Digital Signal Processing Prentice-Hall,
Englewood Cliffs, New Jersey.

101. Oppenheim, A. V.; Weinstein, C. August 1972. “Effects of Finite Register
Length in Digital Filtering and the Fast Fourier Transform.” IEEE Proceedings
, AU-17:209–215.

102. Parlett, B.; Marques, O. “An implementation of the dqds Algorithm (Positive
Case),” LAPACK Working Note 155.
You can download this document from:
http://www.netlib.org/lapack/lawns/lawn155.ps

103. Saad, Y.; Schultz, M. H. 1986. “GMRES: A Generalized Minimum Residual
Algorithm for Solving Nonsymmetric Linear Systems.” SIAM Journal of
Scientific and Statistical Computing , 7:856–869. Philadelphia, Pa.

104. Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema, V.
C.; Moler, C. B. 1976. “Matrix Eigensystem Routines.” EISPACK Guide Lecture
Notes in Computer Science, Vol. 6 Springer-Verlag, New York, Heidelberg,
Berlin.

105. Sonneveld; Wesseling; DeZeeuv. 1985. Multigrid and Conjugate Gradient
Methods as Convergence Acceleration Techniques in Multigrid Methods for Integral
and Differential Equations , 117–167. Edited by D.J. Paddon and M. Holstein.
Oxford University Press (Claredon), Oxford.

106. Sonneveld, P. January 1989. “CGS, a Fast Lanczos-Type Solver for
Nonsymmetric Linear Systems.” SIAM Journal of Scientific and Statistical
Computing , 10(1):36–52.

107. Stewart, G. 1973. Introduction to Matrix Computations Academic Press, New
York, N. Y.

108. Stewart, G. W. 1976. “The Economical Storage of Plane Rotations.”
Numerische Mathematik , 25(2):137–139.

109. Stroud, A. H.; Secrest, D. 1966. Gaussian Quadrature Formulas Prentice-Hall,
Englewood Cliffs, New Jersey.

110. Suhl, U. H.; Aittoniemi, L. 1987. “Computing Sparse LU-Factorization for
Large-Scale Linear Programming Bases.” Report Number 58 Freie University,
Berlin.

111. Tausworthe, R. C. 1965. “Random Numbers Generated by Linear Recurrence
Modulo Two.” Mathematical Computing, Vol. 19

Bibiography 1319

112. Van der Vorst, H. A. 1992. “Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems.” SIAM
Journal of Scientific Statistical Computing , 13:631–644.

113. Weinstein, C. September 1969. “Round-off Noise in Floating Point Fast
Fourier Transform Calculation.” IEEE Transactions on Audio Electroacoustics
AU-17:209–215.

114. Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem , Oxford University
Press (Claredon), Oxford.

115. Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes , Prentice-Hall,
Englewood Cliffs, New Jersey.

116. Wilkinson, J. H.; Reinsch, C. 1971. Handbook for Automatic Computation, Vol. II,
Linear Algebra , Springer-Verlag, New York, Heidelberg, Berlin.

117. Zierler, N. 1969 “Primitive Trinomials Whose Degree Is a Mersenne
Exponent.” Information and Control , 15:67–69.

118. Zlatev, Z. 1980. “On Some Pivotal Strategies in Gaussian Elimination by
Sparse Technique.” SIAM Journal of Numerical Analysis , 17(1):18–30.

1320 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

Index

Special characters
<complex> or <complex.h> header file

AIX 168
Linux

little endian mode 170

Numerics
3838 Array Processor

3838 Array Processor
general signal processing routines 982

A
abbreviations

for product names xviii
interpreting math and programming xxii

absolute value
maximum 230
minimum 233
notation xxii
sum of all absolute values 242

accessibility 1307
accuracy

considerations for dense and banded linear algebraic
equations 512

considerations for eigensystem analysis 911
considerations for Fourier transforms, convolutions, and

correlations 986
considerations for interpolation 1177
considerations for linear algebra subprograms 228
considerations for matrix operations 421
considerations for numerical quadrature 1199
considerations for related computations 990
considerations for sorting and searching 1157
error of computation 62
of results 6, 61
precisions 61
what accuracy means 61
where to find information on 61

acronyms
associated with programming values xxii
product names xviii

adding
absolute values 242
general matrices or their transposes 424
vector x to vector y and store in vector z 287

address notation xxii
advantages of ESSL 3
AIX

<complex> or <complex.h> header file 168
C++ (C++ programming language)

setting up complex and logical data 169
publications 1313

AIX, supported versions 8
algebra 507
Announcing ESSL brochure 1313
applications in the industry 4
architecture supported by ESSL for AIX on the

workstations 8

architecture supported by ESSL for Linux on the
workstations 8

arguments
coding rules 48
conventions used in the subroutine descriptions xxv
diagnosing ESSL input-argument errors 207
font for ESSL calling xix
list of ESSL input-argument errors 210, 217
passing in C programs 150
passing in C++ programs 165

array
coding in C programs 153
coding in C++ programs 171
coding in Fortran programs 132
conventions for xxi
definition of 46
real and complex elements 132
setting up data structures inside 73
storage techniques overview 46

array data
storage and performance tradeoffs 63

arrow notation, what it means xxii
ation notation xxii
attention error messages, interpreting 209
autocorrelation of one or more sequences 1128, 1132
auxiliary working storage

calculating 51
dynamic allocation 50
list of subroutines using 49
provided by the user 51

B
background books 1313
band matrix

definition of 98
storage layout 99, 101, 104, 105, 108, 109, 112, 113

band matrix subroutines, names of 507
band width 98, 103
banded linear algebraic equation subroutines 507

SGBF and DGBF 739
SGBS and DGBS 693, 743
SGBSV, DGBSV, CGBSV, and ZGBSV 679
SGBTRF, DGBTRF, CGBTRF and ZGBTRF 683
SGBTRS, DGBTRS, CGBTRS, and ZGBTRS 687
SGTF and DGTF 753
SGTNP, DGTNP, CGTNP, and ZGTNP 758
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF 761
SGTNPS, DGTNPS, CGTNPS, and ZGTNPS 764
SGTS and DGTS 756
SGTSV, DGTSV, CGTSV, and ZGTSV 711
SGTTRF, DGTTRF, CGTTRF, and ZGTTRF 715
SGTTRS, DGTTRS, CGTTRS, and ZGTTRS 719
SPBF, DPBF, SPBCHF, and DPBCHF 746
SPBS, DPBS, SPBCHS, and DPBCHS 750
SPBSV, DPBSV, CPBSV, and ZPBSV 696
SPBTRF, DPBTRF, CPBTRF, and ZPBTRF 701
SPBTRS, DPBTRS, CPBTRS, and ZPBTRS 706
SPTF and DPTF 767
SPTS and DPTS 769
SPTSV, DPTSV, CPTSV, and ZPTSV 725

© Copyright IBM Corp. 1986, 2015 1321

banded linear algebraic equation subroutines (continued)
SPTTRF, DPTTRF, CPTTRF, and ZPTTRF 729
SPTTRS, DPTTRS, CPTTRS, and ZPTTRS 733
STBSV, DTBSV, CTBSV, and ZTBSV 401

base program, processing your
under AIX 183

big endian mode
complex data on AIX 152
complex data on Linux 152

binary search 1169
BLAS (Basic Linear Algebra Subprograms) 223

ESSL subprograms 223, 1295
migrating from 203
migrating to ESSL 29

BLAS-general-band storage mode 101
bold letters, usage of xix
books 1313

C
C (C programming language)

coding programs 149
ESSL header file 149, 152
function reference 149
handling errors in your program 156
how to code arrays 153
modifying procedures for using ESSL for AIX 185
modifying procedures for using ESSL for Linux

little endian 191
passing character arguments 150
program calling interface 149
setting up complex and logical data 152

C and C++
publications xvi

C++ (C++ programming language)
coding programs 165
ESSL header file 165, 169
function reference 165
handling errors in your program 173
how to code arrays 171
modifying procedures for using ESSL for AIX 186
modifying procedures for using ESSL for Linux

little endian 194
passing character arguments 165
program calling interface 165
setting up complex and logical data 169

calculating auxiliary working storage 51
calculating transform lengths 56
CALL statement 131
calling sequence

for C programs 149
for C++ programs 165
for Fortran programs 131
specifying the arguments 48
subroutines versus functions 131, 149, 165
syntax description xxiv

cataloged procedures, ESSL 183
CAXPY 245
CAXPYI 316
CCOPY 248
CDOTC 251
CDOTCI 319
CDOTU 251
CDOTUI 319
ceiling notation and meaning xxii
CGBMV 369
CGBSV 679

CGBTRF 683
CGBTRS 687
CGEADD 424
CGECMI 499
CGECMO 502
CGECON 543
CGEEVX 913
CGEF 531
CGEMM 451
CGEMMS 445
CGEMUL 436
CGEMV 324
CGEQRF 868
CGERC 335
CGERU 335
CGES 534
CGESM 538
CGESUB 430
CGESV 518
CGESVD 859
CGETMI 499
CGETMO 502
CGETRF 522
CGETRI 551
CGETRS 527
CGGEV 955
CGTHR 310
CGTHRZ 313
CGTNP 758
CGTNPF 761
CGTNPS 764
character data

conventions xix, 46
characters, special usage of xxii
CHBMV 376
CHEEVD 942
CHEEVX 927
CHEGVX 965
CHEMM 460
CHEMV 343
CHER 352
CHER2 360
CHER2K 491
CHERK 484
choosing the ESSL library 29
choosing the ESSL subroutine 29
CHPEVD 942
CHPEVX 927
CHPGVX 965
CHPMV 343
CHPR 352
CHPR2 360
citations 1313
CLANGE 558
CLANHE 621
CLANHP 621
CLANTP 672
CLANTR 672
CNORM2 268
coding your program

arguments in ESSL calling sequences 48
CALL sequence for C programs 149
CALL sequence for C++ programs 165
CALL sequence for Fortran programs 131
calls to ESSL in C programs 149
calls to ESSL in C++ programs 165
calls to ESSL in Fortran programs 131

1322 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

coding your program (continued)
data types used in your program 46
handling errors with ERRSET, EINFO, ERRSAV, ERRSTR,

and return codes 138, 156, 173
restrictions for application programs 46
techniques that affect performance 63

column vector 73
comparison of accuracy for libraries 6
compilers, required by ESSL for AIX on the workstations 9
compilers, required by ESSL for Linux on the workstations 9
compiling your program

C programs 185, 191
C++ programs 186

little endian 194
Fortran programs 183, 190
under AIX 183

complex and real array elements 132
complex conjugate notation xxii
complex data

AIX
big endian mode 152

conventions xix, 46
Linux

big endian mode 152
little endian mode 153

setting up for C 152
setting up for C++ 169

complex Hermitian band matrix
definition of 106
storage layout 106

complex Hermitian matrix
definition of 88
storage layout 88

complex Hermitian Toeplitz matrix
definition of 90

complex Hermitian tridiagonal matrix 114
definition of 114
storage layout 114

complex matrix 79
complex vector 73
compressed-diagonal storage mode for sparse matrices 116
compressed-matrix storage mode for sparse matrices 115
compressed-vector, definition and storage mode 78
computational areas, overview 4
computational errors

diagnosing 208
list of messages for 215
overview 66

condition number, reciprocal of
general matrix 547, 551
positive definite complex Hermitian matrix 610
positive definite real symmetric matrix 604, 610

conjugate notation xxii
conjugate transpose

of matrix operation results for multiply 439, 449, 455
conjugate transpose of a matrix 80
conjugate transpose of a vector 74
continuation, convention for numerical data xix
conventions xix

for messages 210
mathematical and programming notations xxii
subroutine descriptions xxiv

convolution and correlation
autocorrelation of one or more sequences 1128
direct method

one sequence with another sequence 1107
with decimated output 1123

convolution and correlation (continued)
mixed radix Fourier method

autocorrelation of one or more sequences 1132
one sequence with one or more sequences 1113

one sequence with one or more sequences 1101
convolution and correlation subroutines

accuracy considerations 986
performance and accuracy considerations 988
performance considerations 986
SACOR 1128
SACORF 1132
SCON and SCOR 1101
SCOND and SCORD 1107
SCONF and SCORF 1113
SDCON, DDCON, SDCOR, and DDCOR 1123
usage considerations 983

copy a vector 248
correlation 1101
cosine notation xxii
cosine transform 1041
courier font usage xix
CPBSV 696
CPBTRF 701
CPBTRS 706
CPOCON 596
CPOF 573
CPOSM 585
CPOSV 567
CPOTRF 573
CPOTRI 610
CPOTRS 585
CPPCON 596
CPPSV 561
CPPTRF 573
CPPTRI 610
CPPTRS 585
CPTSV 725
CPTTRF 729
CPTTRS 733
CROT 277
CROTG 271
CSCAL 281
CSCTR 307
CSROT 277
CSSCAL 281
CSWAP 284
CSYAX 299
CSYMM 460
CSYR2K 491
CSYRK 484
CTBMV 395
CTBSV 401
CTPMV 381
CTPSV 388
CTPTRI 664
CTRMM 468
CTRMV 381
CTRSM 476
CTRSV 388
CTRTRI 664
cubic spline interpolating 1188, 1193
customer service, IBM 205
customer support, IBM 205
CVEA 287
CVEM 295
CVES 291
CWLEV 1152

Index 1323

CYAX 299
CZAXPY 302

D
DASUM 242
data

array data 46
conventions for scalar data xix, 46

data structures (vectors and matrices) 73
DAXPY 245
DAXPYI 316
DBSRCH 1169
DBSSV 649
DBSTRF 655
DBSTRS 660
DCFT 1016
DCFT2 1057
DCFT3 1079
DCFTD 992
DCOPY 248
DCOSF 1041
DCRFT 1033
DCRFT2 1071
DCRFT3 1093
DCRFTD 1008
DCSIN2 1193
DCSINT 1188
DDCON 1123
DDCOR 1123
DDOT 251
DDOTI 319
default values in the ESSL error option table 69
dense and banded subroutines

performance and accuracy considerations 512
dense linear algebraic equation subroutines 507

CGESV 518
CPOSV 567
DBSSV 649
DBSTRF 655
DBSTRS 660
DGESV 518
DPOSV 567
SGEF, DGEF, CGEF, and ZGEF 531
SGEFCD and DGEFCD 547
SGES, DGES, CGES, and ZGES 534
SGESM, DGESM, CGESM, and ZGESM 538
SGESV 518
SGETRF, DGETRF, CGETRF and ZGETRF 522
SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and

DGEICD 551
SGETRS, DGETRS, CGETRS, and ZGETRS 527
SPOFCD and DPOFCD 604
SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS,

CPPTRS, ZPPTRS, SPOTRS, DPOTRS, CPOTRS, and
ZPOTRS 585

SPOSV 567
SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD,

SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and
DPPICD 610

SPPF, DPPF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPOF,
DPOF, CPOF, ZPOF, SPOTRF, DPOTRF, CPOTRF,
ZPOTRF 573

SPPFCD and DPPFCD 604
SPPS and DPPS 593
SPPSV, DPPSV, CPPSV, ZPPSV 561

dense linear algebraic equation subroutines (continued)
SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV,

DSPSV, CSPSV, ZSPSV, CHPSV, ZHPSV 626
SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF,

SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF,
ZHPTRF 635

SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS,
SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS,
ZHPTRS 643

STPSV, DTPSV, CTPSV, and ZTPSV 388
STRSM, DTRSM, CTRSM, and ZTRSM 476
STRSV, DTRSV, CTRSV, and ZTRSV 388
STRTRI, DTRTRI,CTRTRI, ZTRTRI, STPTRI, DTPTRI,

CTPTRI, ZTPTRI 664
ZGESV 518
ZPOSV 567

dense matrix, definition 114
descriptions, conventions used in the subroutine xxiv
designing your program

accuracy of results 61
choosing the ESSL library 29
choosing the ESSL subroutine 29
error considerations 65
performance considerations 63
storage considerations 46

determinant
general matrix 547, 551
general skyline sparse matrix 782
matrix notation xxii
positive definite complex Hermitian matrix 610
positive definite real symmetric matrix 604, 610
symmetric skyline sparse matrix 799

DGBF 739
DGBMV 369
DGBS 693, 743
DGBTRF 683
DGBTS 679, 687
DGEADD 424
DGECON 543
DGEEVX 913
DGEF 531
DGEFCD 547
DGEICD 551
DGELLS 904
DGELS 874
DGELSD 884
DGEMM 451
DGEMMS 445
DGEMTX 324
DGEMUL 436
DGEMV 324
DGEMX 324
DGEQRF 868
DGER 335
DGES 534
DGESM 538
DGESUB 430
DGESV 518
DGESVD 859
DGESVF 891
DGESVS 899
DGETMI 499
DGETMO 502
DGETRF 522
DGETRI 551
DGETRS 527
DGGEV 955

1324 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

DGHMQ 1222
DGKFS 782
DGKTRN 1283
DGLGQ 1215
DGLNQ 1206
DGLNQ2 1209
DGRAQ 1218
DGSF 772
DGSS 778
DGTF 753
DGTHR 310
DGTHRZ 313
DGTNP 758
DGTNPF 761
DGTNPS 764
DGTS 756
diagnosis procedures

attention error messages 209
computational errors 208
ESSL messages, list of 209
in your program 205
informational error messages 209
initial problem diagnosis procedures (symptom index) 207
input-argument errors 207
miscellaneous error messages 209
program exceptions 207
resource error messages 208

diagnostics 209
diagonal-out skyline storage mode 122
dimensions of arrays

storage layout 132
direct method

general skyline sparse matrix 782
general sparse matrix 772
symmetric skyline sparse matrix 799

direct sparse matrix solvers
usage considerations 513

disability 1307
distributions of Linux that support ESSL 8
DIZC 1142
DLANGE 558
DLANSP 621
DLANSY 621
DLANTP 672
DLANTR 672
DNAXPY 255
DNDOT 260
DNORM2 268
DNRAND 1242
DNRM2 265
DNRNG 1235
dot product

notation xxii
of dense vectors 251
of sparse vectors 319
special (compute N times) 260

DPBCHF 746
DPBCHS 750
DPBF 746
DPBS 750
DPBSV 696
DPBTRF 701
DPBTRS 706
DPINT 1179
DPOCON 596
DPOF 573
DPOFCD 604

DPOICD 610
DPOLY 1139
DPOSM 585
DPOSV 567
DPOTRF 573
DPOTRI 610
DPOTRS 585
DPPCON 596
DPPF 573
DPPFCD 604
DPPICD 610
DPPS 593
DPPSV 561
DPPTRF 573
DPPTRI 610
DPPTRS 585
DPTF 767
DPTNQ 1203
DPTS 769
DPTSV 725
DPTTRF 729
DPTTRS 733
DQINT 1148
DRCFT 1025
DRCFT2 1064
DRCFT3 1086
DRCFTD 1000
DROT 277
DROTG 271
DSBMV 376
DSCAL 281
DSCTR 307
DSDCG 836
DSDGCG 851
DSDMX 415
DSINF 1049
DSKFS 799
DSKTRN 1288
DSLMX 343
DSLR1 352
DSLR2 360
DSMCG 828
DSMGCG 844
DSMMX 408
DSMTM 411
DSORT 1160
DSORTS 1165
DSORTX 1162
DSPEVD 942
DSPEVX 927
DSPMV 343
DSPR 352
DSPR2 360
DSRIS 817
DSRSM 1279
DSSRCH 1173
DSWAP 284
DSYEVD 942
DSYEVX 927
DSYGVX 965
DSYMM 460
DSYMV 343
DSYR 352
DSYR2 360
DSYR2K 491
DSYRK 484
DTBMV 395

Index 1325

DTBSV 401
DTPINT 1184
DTPMV 381
DTPSV 388
DTPTRI 664
DTREC 1145
DTRMM 468
DTRMV 381
DTRSM 476
DTRSV 388
DTRTRI 664
DURAND 1239
DURNG 1232
DURXOR 1245
DVEA 287
DVEM 295
DVES 291
DWLEV 1152
DYAX 299
dynamic allocation of auxiliary working storage 50
DZASUM 242
DZAXPY 302
DZNRM2 265

E
efficiency of your program 63
eigensystem analysis subroutines

performance and accuracy considerations 911
SGEEVX, DGEEVX, CGEEVX, and ZGEEVX 913
SGGEV, DGGEV, CGGEV, and ZGGEV 955
SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD,

DSYEVD, CHEEVD, ZHEEVD 942
SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX,

CHEEVX, ZHEEVX 927
eigenvalues and eigenvectors 913

complex Hermitian matrix 927, 942
real symmetric matrix 927, 942

eigenvectors and eigenvalues 913
EINFO, ESSL error information-handler

considerations when designing your program 66
diagnosis procedures using 208
subroutine description 1252
using EINFO in C programs 156
using EINFO in C++ programs 173
using EINFO in Fortran programs 139

element of a matrix notation xxii
element of a vector notation xxii
error conditions, conventions used in the subroutine

descriptions xxvi
error messages 209
error option table default values 69
error-handling subroutines

EINFO 1252
ERRSAV 1255
ERRSET 1256
ERRSTR 1258

errors
attention error messages, interpreting 209
attention messages, overview 68
calculating auxiliary storage 49
computational errors 66, 208
EINFO subroutine description 1252
extended error-handling subroutines 27
handling errors in your C program 156
handling errors in your C++ program 173
handling errors in your Fortran program 138

errors (continued)
how errors affect output 65
informational error messages, interpreting 209
input-argument errors 207
input-argument errors, overview 65
miscellaneous error messages, interpreting 209
overview of 65
program exceptions 65, 207
resource error messages, interpreting 208
resource errors, overview 68
types of errors that you can encounter 65
using ERRSAV and ERRSTR 71
values returned for EINFO error codes 1252
when to use ERRSET 69
where to find information on 65

ERRSAV
in workstation environment 27
subroutine description 1255
using with large applications 71

ERRSET
diagnosis procedures using 208
ESSL default values for 69
handling errors in C 156
handling errors in C++ 173
in workstation environment 27
subroutine description 1256
using EINFO in C programs 156
using EINFO in C++ programs 173
using EINFO in Fortran programs 139
using ERRSET, EINFO, and return codes in C 156
using ERRSET, EINFO, and return codes in C++ 173
using ERRSET, EINFO, and return codes in Fortran 139
when to use 66, 69
when to use ERRSAV and ERRSTR with ERRSET 71

ERRSTR
in workstation environment 27
subroutine description 1258
using with large applications 71

ESSL (Engineering and Scientific Subroutine Library)
advantages of 3
attention error messages, interpreting 209
attention messages, overview 68
coding your program 131
computational areas, overview 4
computational errors 66
computational errors, diagnosing 208
designing your program 29
diagnosis procedures for ESSL errors 205
eigensystem analysis subroutines 911
error option table default values 69
extended error-handling subroutines 27
Fourier transform, convolutions and correlations, and

related-computation subroutines 981
functional capability 4
informational error messages, interpreting 209
input-argument errors, diagnosing 207
input-argument errors, overview 65
installation requirements 10
interpolation subroutines 1177
introduction to 3
languages supported 8
linear algebra subprograms 223
linear algebraic equations subroutines 507
matrix operation subroutines 419
message conventions 210
messages, list of 209

1326 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ESSL (Engineering and Scientific Subroutine Library)
(continued)

migrating from one IBM hardware platform to
another 202

migrating programs 199
migrating to future releases or future hardware 202
miscellaneous error messages, interpreting 209
name xviii
names with an underscore, interpreting xvii
number of subroutines in each area 4
numerical quadrature subroutines 1199
ordering publications 1313
overview 3
overview of the subroutines 4
packaging characteristics 10
parallel processing subroutines on the workstations 5
processing your program 183
program exceptions 65
program number for 1313
publications overview 1313
random number generation subroutines 1225
reference information conventions xxiv
related publications 1313
resource error messages, interpreting 208
resource errors, overview 68
setting up your data structures 73
sorting and searching subroutines 1157
usability of subroutines 3
utility subroutines 1249
when coding large applications 71
when to use ERRSET for ESSL errors 69

ESSL libraries
Blue Gene 46
shared 46

ESSL messages 209
ESSL SMP CUDA Library

using 41
ESSL/370, migrating from 203
Euclidean length

with no scaling of input 268
with scaling of input 265

Euclidean norm notation xxii
examples of matrices 79
examples of vectors 73
examples, conventions used in the subroutine

descriptions xxvi
exponential function notation xxii
expressions, special usage of xxii
extended error-handling subroutines

handling errors in C 156
handling errors in C++ 173
handling errors in your Fortran program 138
how they work 65, 71
in ESSL and in Fortran, list of 27
using them in diagnosing problems 207

extended-error-handling subroutines, using
in your C program 156
in your C++ program 173
in your Fortran program 138

extreme eigenvalues and eigenvectors 913
general matrix 913

F
factor and solve

general band matrix with multiple right-hand sides 679
general tridiagonal matrix 711

factoring
complex Hermitian matrix 567
general band matrix 683, 739
general matrix 518, 522, 531, 547
general skyline sparse matrix 782
general sparse matrix 772
general tridiagonal matrix 715, 753
indefinite

complex Hermitian matrix 626, 635
complex symmetric matrix 626, 635
real symmetric matrix 626, 635

positive definite
complex Hermitian band matrix 696, 701, 706
complex Hermitian matrix 561, 573
real symmetric band matrix 696, 701, 706
real symmetric indefinite matrix 655, 660
real symmetric matrix 561, 573, 604
symmetric band matrix 746
symmetric tridiagonal matrix 767

real symmetric matrix 567
symmetric skyline sparse matrix 799
tridiagonal matrix 729, 758, 761

fast Fourier transform (FFT) 988
FFT 988
floor notation and meaning xxii
fonts used xix
formula for transform lengths, interpreting 57
formulas for auxiliary storage, interpreting 51
Fortran

languages required by ESSL for AIX on the
workstations 9

languages required by ESSL for Linux on the
workstations 9

modifying procedures for using ESSL
Linux (little endian mode) 190

modifying procedures for using ESSL for AIX 183
Fortran considerations

coding programs 131
function reference 223
handling errors in your program 139

Fortran function reference 131
Fortran program calling interface 131
Fourier transform 988

one dimension
complex 992, 1016
complex-to-real 1008, 1033
cosine transform 1041
real-to-complex 1000, 1025
sine transform 1049

three dimensions
complex 1079
complex-to-real 1093
real-to-complex 1086

two dimensions
complex 1057
complex-to-real 1071
real-to-complex 1064

fourier transform subroutines
SCFT and DCFT 1016
SCFT2 and DCFT2 1057
SCFT3 and DCFT3 1079
SCFTD and DCFTD 992
SCOSF and DCOSF 1041
SCRFT and DCRFT 1033
SCRFT2 and DCRFT2 1071
SCRFT3 and DCRFT3 1093
SCRFTD and DCRFTD 1008

Index 1327

fourier transform subroutines (continued)
SRCFT and DRCFT 1025
SRCFT2 and DRCFT2 1064
SRCFT3 and DRCFT3 1086
SRCFTD and DRCFTD 1000
SSINF and DSINF 1049

Fourier transform subroutines
accuracy considerations 986
how they achieve high performance 988
performance considerations 986
terminology used for 983
usage considerations 983

Frobenius norm notation xxii
full-matrix storage mode 114
full-vector, definition and storage mode 78
function

calling sequence in C programs 149
calling sequence in C++ programs 165
calling sequence in Fortran programs 131

function reference 223
functional capability of the ESSL subroutines 4
functional description, conventions used in the subroutine

descriptions xxvi
functions, ESSL 223
future migration considerations 202

G
gather vector elements 310, 313
Gaussian quadrature methods

Gauss-Hermite Quadrature 1222
Gauss-Laguerre Quadrature 1215
Gauss-Legendre Quadrature 1206
Gauss-Rational Quadrature 1218
two-dimensional Gauss-Legendre Quadrature 1209

general matrix 507
general matrix subroutines, names of 507
general tridiagonal matrix

definition of 110
storage layout 110

general-band storage mode 99
generation of random numbers 1225
Givens plane rotation, constructing 271
greek letters notation xxii
guide information 1
guidelines for handling problems 205

H
half band width 103
handling errors

in your C program 156
in your C++ program 173
in your Fortran program 138

hardware
required on the workstations 8

header file, ESSL, for C 149, 152
header file, ESSL, for C++ 165, 169
Hermitian band matrix

definition of 106
storage layout 106

Hermitian matrix
definition of 88
definition of, complex 90
storage layout 88

how to use this documentation xv, xvi

Hypertext Markup Language, required products 10

I
i-th zero crossing 982, 1142
IBM products, migrating from 203
IBM publications 1313
IBM Request for Enhancement (RFE) Community xvii
IBSRCH 1169
ICAMAX 230
IDAMAX 230
IDAMIN 233
identify the GPUs ESSL should use 1261
identifying problems 207
IDMAX 236
IDMIN 239
IESSL 1259
indefinite complex Hermitian matrix

definition of 89
storage layout 89

indefinite symmetric matrix 87
definition of 87
storage layout 88

industry areas 4
infinity notation xxii
informational error messages, interpreting 209
informational messages, for ESSL 209
initiate random number generators subroutine

INITRNG 1227
INITRNG 1227
input arguments, conventions used in the subroutine

descriptions xxv
input data, conventions for 46
input-argument errors

diagnosing 207
list of messages for 210, 217
overview 65, 68

int notation and meaning xxii
integer data

conventions xix, 46
integral notation xxii
interchange elements of two vectors 284
interface, ESSL

for C programs 149
for C++ programs 165
for Fortran programs 131

interpolating
cubic spline 1188
local polynomial 1184
polynomial 1179
quadratic 1148
two-dimensional cubic spline 1193

interpolation subroutines
accuracy considerations 1177
performance considerations 1177
SCSIN2 and DCSIN2 1193
SCSINT and DCSINT 1188
SPINT and DPINT 1179
STPINT and DTPINT 1184
usage considerations 1177

introduction to ESSL 3
inverse

general matrix 551
matrix notation xxii
positive definite complex Hermitian matrix 610
positive definite real symmetric matrix 610
triangular matrix 664

1328 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

ISAMAX 230
ISAMIN 233
ISMAX 236
ISMIN 239
ISORT 1160
ISORTS 1165
ISORTX 1162
ISSRCH 1173
italic font usage xix
iterative linear system solver

general sparse matrix 817, 844, 851
sparse negative definite symmetric matrix 828, 836
sparse positive definite symmetric matrix 828, 836
symmetric sparse matrix 817
usage considerations 515

IZAMAX 230

L
l(2) norm

with no scaling of input 268
with scaling of input 265

languages supported by ESSL 8
languages supported by ESSL for AIX 8
LAPACK

ESSL subprograms 1299
LAPACK Dlower-tridiagonal-packed storage mode 110
LAPACK tridiagonal matrices

storage layout 110
LAPACK upper-tridiagonal-packed storage mode 110
LAPACK, migrating from 203
leading dimension for matrices

how it is used for matrices 81
how it is used in three dimensions 129

least squares solution 899
CGEQRF 868
DGEQRF 868
SGEQRF 868
ZGEQRF 868

letters, fonts of xix
level of ESSL, getting 1259
library

ESSL SMP CUDA 41
migrating from a non-IBM 203
migrating from another IBM 203
migrating from ESSL for AIX 5.1 and ESSL for Linux on

Power Version 5 Release 1.1 to Version 5 Release 2 199
migrating from ESSL for Linux on Power Version 5 Release

2 to Version 5 Release 3.1 199
migrating from ESSL for Linux on Power Version 5 Release

3 to Version 5 Release 3.1 199
migrating from ESSL for Linux on Power Version 5 Release

3.1 to Version 5 Release 3.2 199
migrating from ESSL for Linux on Power Version 5 Release

3.2to Version 5 Release4 199
migrating from ESSL for Linux on PowerVersion 5 Release

1 to Version 5 Release 1 200
migrating from ESSL for Linux on PowerVersion 5 Release

2 to Version 5 Release 3 199
migrating from ESSL Version 4 Release 1 to Version 4

Release 2 202
migrating from ESSL Version 4 Release 2 to Version 4

Release 2.1 201
migrating from ESSL Version 4 Release 2.1 to Version 4

Release 2.2 201
migrating from ESSL Version 4 Release 3 to Version 4

Release 4 201

library (continued)
migrating from ESSL Version 4 Release 4 to Version 5

Release 1 200
migrating from LAPACK 203
migrating to ESSL Version 4 Release 3 201
overview 4

Licensed Program Specification, ESSL 1313
linear algebra 507
linear algebra subprograms 223

accuracy considerations 228
list of matrix-vector linear algebra subprograms 225
list of sparse matrix-vector linear algebra

subprograms 227
list of sparse vector-scalar linear algebra subprograms 225
list of vector-scalar linear algebra subprograms 223
overview 223
performance considerations 228
usage considerations 228

linear algebraic equation subroutines
CGECON 543
CLANGE 558
CLANHE 621
CLANHP 621
CLANTP 672
CLANTR 672
CPOCON 596
CPPCON 596
DGECON 543
DLANGE 558
DLANSP 621
DLANSY 621
DLANTP 672
DLANTR 672
DPOCON 596
DPPCON 596
SGECON 543
SLANGE 558
SLANSP 621
SLANSY 621
SLANTP 672
SLANTR 672
SPOCON 596
SPPCON 596
ZGECON 543
ZLANGE 558
ZLANHE 621
ZLANHP 621
ZLANTP 672
ZLANTR 672
ZPOCON 596
ZPPCON 596

linear algebraic equations
accuracy considerations 512
list of banded linear algebraic equation subroutines 509
list of dense linear algebraic equations 507
list of linear least squares subroutines 511
list of sparse linear algebraic equation subroutines 511
overview 507
performance considerations 512
usage considerations 512

linear least squares solution
preparing for 859, 891
QR decomposition with column pivoting 904
QR factorization 874, 884
singular value decomposition 899

linear least squares subroutines 507
CGEQRF 868

Index 1329

linear least squares subroutines (continued)
DGELS 874
DGELSD 884
DGEQRF 868
SGELLS and DGELLS 904
SGELS 874
SGELSD 884
SGEQRF 868
SGESVD, DGESVD, CGESVD, and ZGESVD 859
SGESVF and DGESVF 891
SGESVS and DGESVS 899
ZGELS 874
ZGELSD 884
ZGEQRF 868

linking
C programs 185, 191
C++ programs 186

little endian 194
Fortran programs 183, 190

linking and loading your program
under AIX 183

Linux
little endian mode

<complex> or <complex.h> header file 170
Fortran program procedures 190
processing your program 189

Linux, supported distributions 8
little endian mode

complex data on Linux 153
logical data

conventions xix, 46
setting up for C 152
setting up for C++ 169

long precision
accuracy statement 6
meaning of 61

lower band width 98
lower storage mode 83, 86
lower-band-packed storage mode 105
lower-packed storage mode 83
lower-storage-by-rows for symmetric sparse matrices 120
lower-trapezoidal storage mode 96, 97
lower-trapezoidal-packed storage mode 96
lower-triangular storage mode 92, 94
lower-triangular-band-packed storage mode 108, 109
lower-triangular-packed storage mode 92, 93
lower-tridiagonal storage mode 110, 111
lower-tridiagonal-packed storage mode 111

M
masking underflow

for performance 63
why you should 63

math and programming notations xxii
math background publications 1313
mathematical expressions, conventions for xxii
mathematical functions, overview 4
matrix

band matrix 98
complex Hermitian band matrix 106
complex Hermitian matrix 88, 90
complex Hermitian Toeplitz matrix 90
complex Hermitian tridiagonal matrix 114
conventions for xx
description of 79
font for xix

matrix (continued)
full or dense matrix 114
general tridiagonal matrix 110
indefinite complex Hermitian matrix 89
leading dimension for 81
negative definite complex Hermitian matrix 89
negative definite symmetric matrix 87
positive definite Complex hermitian band matrix 106
positive definite complex Hermitian matrix 89
positive definite complex Hermitian tridiagonal

matrix 114
positive definite symmetric band matrix 105
positive definite symmetric matrix 87
positive definite symmetric tridiagonal matrix 113
sparse matrix 114
storage of 80
symmetric band matrix 103
symmetric matrix 83
symmetric tridiagonal matrix 112
Toeplitz matrix 89
trapezoidal matrices 94
triangular band matrices 107
triangular matrices 91

matrix operation subroutines
accuracy considerations 421
performance considerations 421
SGEADD, DGEADD, CGEADD, and ZGEADD 424
SGEMM, DGEMM, CGEMM, and ZGEMM 451
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS 445
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL 436
SGESUB, DGESUB, CGESUB, and ZGESUB 430
SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI, and

ZGETMI 499
SGETMO, DGETMO, CGETMO, CGECMO, and

ZGETMO 502
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and

ZHEMM 460
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and

ZHER2K 491
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and

ZHERK 484
STRMM, DTRMM, CTRMM, and ZTRMM 468
usage considerations 420

matrix-matrix product
complex Hermitian matrix 460
complex symmetric matrix 460
general matrices, their transposes, or their conjugate

transposes 451
real symmetric matrix 460
triangular matrix 468

matrix-vector linear algebra subprograms
SGBMV, DGBMV, CGBMV, and ZGBMV 369
SGEMX, DGEMX, SGEMTX, DGEMTX, SGEMV, DGEMV,

CGEMV, and ZGEMV 324
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC 335
SSBMV, DSBMV, CHBMV, and ZHBMV 376
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV,

CHEMV, ZHEMV, SSLMX and DSLMX 343
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER,

SSLR1, and DSLR1 352
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2,

ZHER2, SSLR2, and DSLR2 360
STBMV, DTBMV, CTBMV, and ZTBMV 395
STPMV, DTPMV, CTPMV, ZTPMV, STRMV, DTRMV,

CTRMV, and ZTRMV 381
matrix-vector product

complex Hermitian band matrix 376

1330 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

matrix-vector product (continued)
complex Hermitian matrix 343
general band matrix, its transpose, or its conjugate

transpose 369
general matrix, its transpose, or its conjugate

transpose 324
real symmetric band matrix 376
real symmetric matrix 343
sparse matrix 408
sparse matrix or its transpose 415
triangular band matrix, its transpose, or its conjugate

transpose 395
triangular matrix, its transpose, or its conjugate

transpose 381
max notation and meaning xxii
maximum

absolute value 230
value 236

messages
ESSL and attention messages, interpreting 209
ESSL informational messages, interpreting 209
ESSL miscellaneous messages, interpreting 209
ESSL resource messages, interpreting 208
list of ESSL messages 210, 217
message conventions 210

migrating
from ESSL Version 4 Release 1 to Version 4 Release 2 202
from ESSL Version 4 Release 2 to Version 4 Release

2.1 201
from ESSL Version 4 Release 2.1 to Version 4 Release

2.2 201
from ESSL Version 4 Release 3 to Version 4 Release 4 201
from ESSL Version 4 Release 4 to Version 5 Release 1 200
from ESSL/370 203
from LAPACK 203
from non-IBM libraries 203
from one IBM hardware platforom to another 202
from other IBM subroutine libraries 203
future migration considerations 202
migrating from ESSL for AIX 5.1 and ESSL for Linux on

Power Version 5 Release 1.1 to Version 5 Release 2 199
migrating from ESSL for Linux on Power Version 5 Release

2 to Version 5 Release 3.1 199
migrating from ESSL for Linux on Power Version 5 Release

3 to Version 5 Release 3.1 199
migrating from ESSL for Linux on Power Version 5 Release

3.1 to Version 5 Release 3.2 199
migrating from ESSL for Linux on Power Version 5 Release

3.2 to Version 5 Release 4 199
migrating from ESSL for Linux on PowerVersion 5 Release

1 to Version 5 Release 1 200
migrating from ESSL for Linux on PowerVersion 5 Release

2 to Version 5 Release 3 199
programs to ESSL 199
to ESSL Version 4 Release 3 201

min notation and meaning xxii
minimum

absolute value 233
value 239

miscellaneous error messages, interpreting 209
mod notation and meaning xxii
modification level of ESSL, getting 1259
modifying

C programs, for using ESSL for AIX 185
C programs, for using ESSL for Linux

little endian 191
C++ programs, for using ESSL for AIX 186

modifying (continued)
C++ programs, for using ESSL for Linux

little endian 194
Fortran programs, for using ESSL 190
Fortran programs, for using ESSL for AIX 183

modulo notation xxii
multiplying

compute SAXPY or DAXPY N times 255
general matrices using Strassen's algorithm 445
general matrices, their transposes, or their conjugate

transposes 436
notation xxii
sparse vector x by a scalar, add sparse vector y, and store

in vector y 316
vector x by a scalar and store in vector x 281
vector x by a scalar and store in vector y 299
vector x by a scalar, add to vector y, and store in vector

y 245
vector x by a scalar, add to vector y, and store in vector

z 302
vector x by vector y, and store in vector z 295

multithreaded
ESSL subroutines 29

N
name usage restrictions 46
names in ESSL with an underscore (_) prefix, how to

interpret xvii
names of

products and acronyms xviii
the eigensystem analysis subroutines 911
the Fourier transform, convolution and correlation, and

related-computation subroutines 981
the interpolation subroutines 1177
the linear algebra subprograms 223
the linear algebraic equations subroutines 507
the matrix operations subroutines 419
the numerical quadrature subroutines 1199
the random number generation subroutines 1225
the sorting and searching subroutines 1157
the utility subroutines 1249

National Language Support 206
negative definite complex Hermitian matrix

definition of 89
negative definite complex Hermitian Toeplitz matrix

definition of 90
negative definite Hermitian matrix

storage layout 89
negative definite symmetric matrix

definition of 87
storage layout 87

negative definite symmetric Toeplitz matrix
definition of 89

negative stride, for vectors 77
NLS, National Language Support 206
non-IBM library, migrating from 203
norm notation xxii
normally distributed pseudo-random numbers, generate 1235
normally distributed random numbers, generate 1242
notations and conventions xix
notes, conventions used in the subroutine descriptions xxvi
number of subroutines in each area 4
numbers 26

accuracy of computations 62
accuracy of computations, for ESSL 6

Index 1331

numerical quadrature
accuracy considerations 1199
performance considerations 1199
programming considerations for SUBF 1200
usage considerations 1199

numerical quadrature performed
on a function

using Gauss-Hermite Quadrature 1222
using Gauss-Laguerre Quadrature 1215
using Gauss-Legendre Quadrature 1206
using Gauss-Rational Quadrature 1218
using two-dimensional Gauss-Legendre

Quadrature 1209
on a set of points 1203

numerical quadrature subroutines
SGHMQ and DGHMQ 1222
SGLGQ and DGLGQ 1215
SGLNQ and DGLNQ 1206
SGLNQ2 and DGLNQ2 1209
SGRAQ and DGRAQ 1218
SPTNQ and DPTNQ 1203

O
one norm notation xxii
online documentation

required Hypertext Markup Language products 10
operating systems that support ESSL 8
option table, default values for ESSL errors 69
order numbers of the publications 1313
ordering IBM publications 1313
output

accuracy on different processors 6
how errors affect output 65

output arguments, conventions used in the subroutine
descriptions xxv

overflow, avoiding 265
overview

of eigensystem analysis 911
of ESSL 3
of Fourier transforms, convolutions and correlations, and

related computations 981
of interpolation 1177
of linear algebra subprograms 223
of linear algebraic equations 507
of matrix operations 419
of numerical quadrature 1199
of random number generation 1225
of sorting and searching 1157
of the documentation 1313
of utility subroutines 1249

P
packed band storage mode 99
packed-Hermitian-Toeplitz storage mode 91
packed-symmetric-Toeplitz storage mode 90
parallel processing

introduction to 5
performance

achieving better performance in your program 63
aspects of parallel processing on the workstations 5
coding techniques that affect performance 63
considerations for dense and banded linear algebraic

equations 512
considerations for eigensystem analysis 911

performance (continued)
considerations for Fourier transforms, convolutions, and

correlations 986
considerations for interpolation 1177
considerations for linear algebra subprograms 228
considerations for matrix operations 421
considerations for numerical quadrature 1199
considerations for related computations 990
considerations for sorting and searching 1157
how the Fourier transforms achieve high performance 988
information on ESSL run-time performance 65
tradeoffs for convolution and correlation subroutines 988
where to find information on 65

pi notation xxii
PL/I (Programming Language/I)

handling errors in your program 156, 173
plane rotation

applying a 277
constructing a Givens 271

planning your program 29
polynomial

evaluating 1139
interpolating 1179, 1184

positive definite Complex hermitian band matrix
definition of 106
storage layout 106

positive definite complex Hermitian matrix
definition of 89

positive definite complex Hermitian Toeplitz matrix
definition of 90

positive definite complex Hermitian tridiagonal matrix 114
definition of 114
storage layout 114

positive definite Hermitian matrix
storage layout 89

positive definite symmetric band matrix
definition of 105
storage layout 106

positive definite symmetric band matrix subroutines, names
of 507

positive definite symmetric matrix
definition of 87
storage layout 87

positive definite symmetric matrix subroutines, names of 507
positive definite symmetric Toeplitz matrix

definition of 89
positive definite symmetric tridiagonal matrix 113

definition of 113
storage layout 113

positive stride, for vectors 76
precision, meaning of 61
precision, short and long 6
problems, handling 205
problems, IBM support for 205
processing your program

requirements for ESSL for AIX on the workstations 8
requirements for ESSL for Linux on the workstations 8
steps involved in 183
using parallel subroutines on the workstations 5

Processing your program
Linux

little endian mode 189
processor-independent formulas for auxiliary storage,

interpreting 51
product 245

matrix-matrix
complex Hermitian matrix 460

1332 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

product (continued)
matrix-matrix (continued)

complex symmetric matrix 460
general matrices, their transposes, or their conjugate

transposes 451
real symmetric matrix 460
triangular matrix 468

matrix-vector
complex Hermitian band matrix 376
complex Hermitian matrix 343
general band matrix, its transpose, or its conjugate

transpose 369
general matrix, its transpose, or its conjugate

transpose 324
real symmetric band matrix 376
real symmetric matrix 343
sparse matrix 408
sparse matrix or its transpose 415
triangular band matrix, its transpose, or its conjugate

transpose 395
triangular matrix, its transpose, or its conjugate

transpose 381
product names, acronyms for xviii
products, programming

migrating from LAPACK 203
migrating from other IBM 203
required by ESSL for AIX on the workstations,

programming 9
required by ESSL for Linux on the workstations,

programming 9
profile-in skyline storage mode 124
program

attention messages, overview 68
coding 131
computational errors 66
design 29
errors 65
handling errors in your C program 156
handling errors in your C++ program 173
handling errors in your Fortran program 138
input-argument errors, overview 65
interface for C programs 149
interface for C++ programs 165
interface for Fortran programs 131
migrated to ESSL 199
performance, achieving high 63
processing your program 183
resource errors, overview 68
setting up your data structures 73
types of data in your program 46
when coding large applications 71

program exceptions
description of ESSL 65

program exceptions, diagnosing 207
program number for ESSL 1313
programming considerations for SUBF in numerical

quadrature 1200
programming items, font for xix
programming products

required by ESSL for Linux on the workstations 9
required by ESSLfor AIX on the workstations 9

programming publications 1313
pseudo-random number generation

uniformly distributed 1232
pseudo-random number generation subroutines

SURNG and DURNG 1232

PTF
getting the most recent level applied 1259

publications
list of ESSL 1313
math background 1313
related 1313

Q
QR decomposition with column pivoting 904
QR factorization 874, 884
quadratic interpolation 25, 1148

R
random number generation

long period uniformly distributed 1245
normally distributed 1235, 1242
uniformly distributed 1239
usage considerations 1225

random number generation subroutines
SNRAND and DNRAND 1242
SNRNG and DNRNG 1235
SURAND and DURAND 1239
SURXOR and DURXOR 1245

random number generators
initiate 1227

random number generators, initiate 1227
rank-2k update

complex Hermitian matrix 491
complex symmetric matrix 491
real symmetric matrix 491

rank-k update
complex Hermitian matrix 484
complex symmetric matrix 484
real symmetric matrix 484

rank-one update
complex Hermitian matrix 352
general matrix 335
real symmetric matrix 352

rank-two update
complex Hermitian matrix 360
real symmetric matrix 360

real and complex array elements 132
real data

conventions xix, 46
real general matrix eigensystem analysis subroutine 911
real symmetric matrix eigensystem analysis subroutine 911
reciprocal of the condition number

general matrix 547, 551
positive definite complex Hermitian matrix 610
positive definite real symmetric matrix 604, 610

reference information
math background texts and reports 1313
organization of 221
what is in each subroutine description and the conventions

used xxiv
related publications 1313
related-computation subroutines

accuracy considerations 990
CWLEV and ZWLEV 1152
performance considerations 990
SIZC and DIZC 1142
SPOLY and DPOLY 1139
SQINT and DQINT 1148
STREC and DTREC 1145

Index 1333

related-computation subroutines (continued)
SWLEV and DWLEV 1152

release of ESSL, getting 1259
reporting problems to IBM 205
required publications 1313
requirements

auxiliary working storage 50, 51
for ESSL for AIX workstation product 8
for ESSL for Linux workstation product 8
software products on the workstations 9
transforms in storage, lengths of 56
workstation hardware 8

resource error messages, interpreting 208
restrictions, ESSL coding 46
results

accuracy on different processors 6
how accuracy is affected by the nature of the

computation 62
in C programs 149
in C++ programs 165
in Fortran programs 131
multiplication of NaN 62

results transposed and conjugate transposed for matrix
multiplication 439, 449, 455

results transposed for matrix addition 426
results transposed for matrix subtraction 432
return code

in C programs 156
in C++ programs 173
in Fortran programs 139
using during diagnosis 208

rotation
applying a plane 277
constructing a Givens plane 271

routine names 46
row vector 73
run-time performance

optimizing in your program 63
run-time problems, diagnosing

attention error messages, interpreting 209
computational errors 208
informational error messages, interpreting 209
input-argument errors 207
miscellaneous error messages, interpreting 209
resource error messages, interpreting 208

running your program
C programs 185, 191
C++ programs 186

little endian 194
Fortran programs 183, 190

S
SACOR 1128
SACORF 1132
SASUM 242
SAXPY 245
SAXPYI 316
SBSRCH 1169
scalar data

conventions xix, 46
scalar items, font for xix
scale argument used for Fourier transform subroutines 987
scaling, when to use 63
SCASUM 242
scatter vector elements 307
SCFT 1016

SCFT2 1057
SCFT3 1079
SCFTD 992
SCNRM2 265
SCON 1101
SCOND 1107
SCONF 1113
SCOPY 248
SCOR 1101
SCORD 1107
SCORF 1113
SCOSF 1041
SCOSFT, no documentation provided for 981
SCRFT 1033
SCRFT2 1071
SCRFT3 1093
SCRFTD 1008
SCSIN2 1193
SCSINT 1188
SDCON 1123
SDCOR 1123
SDOT 251
SDOTI 319
searching

binary 1169
sequential 1173

selecting an ESSL library 29
selecting an ESSL subroutine 29
sequences

conventions for xx
description of 126
storage layout 126

sequential search 1173
service, IBM 205
set the number of GPUs 1261
SETGPUS

identify the GPUs ESSL should use 1261
set the number of GPUs 1261

setting up
AIX procedures 183

setting up your data 46
SGBF 739
SGBMV 369
SGBS 693, 743
SGBSV 679
SGBTRF 683
SGBTRS 687
SGEADD 424
SGECON 543
SGEEVX 913
SGEF 531
SGEFCD 547
SGEICD 551
SGELLS 904
SGELS 874
SGELSD 884
SGEMM 451
SGEMMS 445
SGEMTX 324
SGEMUL 436
SGEMV 324
SGEMX 324
SGEQRF 868
SGER 335
SGES 534
SGESM 538
SGESUB 430

1334 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

SGESV 518
SGESVD 859
SGESVF 891
SGESVS 899
SGETMI 499
SGETMO 502
SGETRF 522
SGETRI 551
SGETRS 527
SGGEV 955
SGHMQ 1222
SGLGQ 1215
SGLNQ 1206
SGLNQ2 1209
SGRAQ 1218
SGTF 753
SGTHR 310
SGTHRZ 313
SGTNP 758
SGTNPF 761
SGTNPS 764
SGTS 756
short precision

accuracy statement 6
meaning of 61

SIGN notation and meaning xxii
signal processing subroutines 982
simple formulas for auxiliary storage, interpreting 51
sin notation xxii
sine transform 1049
singular value decomposition for a general matrix 859, 891,

899
SIZC 1142
size of array

required for a vector 75
skyline solvers

usage considerations 514
skyline storage mode for sparse matrices, diagonal-out 122
skyline storage mode for sparse matrices, profile-in 124
SL MATH (Subroutine Library–Mathematics)

migrating from 203
SLANGE 558
SLANSP 621
SLANSY 621
SLANTP 672
SLANTR 672
SLSS (Subscription Library Services System) 1313
SMP

ESSL Library, why use it 29
ESSL multithreaded subroutines 29
performance 6

SNAXPY 255
SNDOT 260
SNORM2 268
SNRAND 1242
SNRM2 265
SNRNG 1235
software products

required by ESSL for Linux on the workstations 9
required by ESSLfor AIX on the workstations 9
required by Hypertext Markup Language 10

solve
indefinite

complex Hermitian matrix 643
complex symmetric matrix 643
real symmetric matrix 643

solving
general band matrix 693, 743
general band matrix with multiple right-hand sides 687
general matrix 543, 558, 596, 621, 672
general matrix or its transpose 527, 534
general skyline sparse matrix 782
general sparse matrix or its transpose 778
general tridiagonal matrix 719, 733, 756, 758, 764
iterative linear system solver

general sparse matrix 817, 844, 851
sparse negative definite symmetric matrix 828, 836
sparse positive definite symmetric matrix 828, 836
symmetric sparse matrix 817

multiple right-hand sides
general matrix, its transpose, or its conjugate

transpose 527, 538
positive definite complex Hermitian matrix 585
positive definite real symmetric matrix 585
triangular matrix 476

positive definite
real symmetric matrix 593
symmetric band matrix 750
symmetric tridiagonal matrix 769

symmetric skyline sparse matrix 799
triangular band matrix 401
triangular matrix 388
tridiagonal matrix multiple right-hand side solve 725

sorting
elements of a sequence 1160
index 1162
stable sort 1165

sorting and searching subroutines
accuracy considerations 1157
IBSRCH, SBSRCH, and DBSRCH 1169
ISORT, SSORT, and DSORT 1160
ISORTS, SSORTS, and DSORTS 1165
ISORTX, SSORTX, and DSORTX 1162
ISSRCH, SSSRCH, and DSSRCH 1173
performance considerations 1157
usage considerations 1157

sparse linear algebraic equation subroutines 507
DGKFS 782
DGSF 772
DGSS 778
DSDCG 836
DSDGCG 851
DSKFS 799
DSMCG 828
DSMGCG 844
DSRIS 817

sparse matrix subroutines
direct solvers 513
iterative linear system solvers 515
performance and accuracy considerations 513, 514, 515
skyline solvers 514

sparse matrix-vector linear algebra subprograms
DSDMX 415
DSMMX 408
DSMTM 411

sparse matrix, definition and storage modes 114
sparse vector-scalar linear algebra subprograms

SAXPYI, DAXPYI, CAXPYI, and ZAXPYI 316
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and,

ZDOTCI 319
SGTHR, DGTHR, CGTHR, and ZGTHR 310
SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ 313
SSCTR, DSCTR, CSCTR, and ZSCTR 307

Index 1335

sparse vector, definition and storage modes 78
SPBCHF 746
SPBCHS 750
SPBF 746
SPBS 750
SPBSV 696
SPBTRF 701
SPBTRS 706
special usage

of matrix addition 426
of matrix multiplication 439, 449, 455
of matrix subtraction 432

spectral norm notation xxii
SPINT 1179
SPOCON 596
SPOF 573
SPOFCD 604
SPOICD 610
SPOLY 1139
SPOSM 585
SPOSV 567
SPOTRF 573
SPOTRI 610
SPOTRS 585
SPPCON 596
SPPF 573
SPPFCD 604
SPPICD 610
SPPS 593
SPPSV 561
SPPTRF 573
SPPTRI 610
SPPTRS 585
SPTF 767
SPTNQ 1203
SPTS 769
SPTSV 725
SPTTRF 729
SPTTRS 733
SQINT 1148
square root notation xxii
SRCFT 1025
SRCFT2 1064
SRCFT3 1086
SRCFTD 1000
SROT 277
SROTG 271
SSBMV 376
SSCAL 281
SSCTR 307
SSINF 1049
SSLMX 343
SSLR1 352
SSLR2 360
SSORT 1160
SSORTS 1165
SSORTX 1162
SSP (Scientific Subroutine Package)

migrating from 203
SSPEVD 942
SSPEVX 927
SSPGVX 965
SSPMV 343
SSPR 352
SSPR2 360
SSSRCH 1173
SSWAP 284

SSYEVD 942
SSYEVX 927
SSYGVX 965
SSYMM 460
SSYMV 343
SSYR 352
SSYR2 360
SSYR2K 491
SSYRK 484
stable sort 1165
STBMV 395
STBSV 401
stepping through storage, for matrices 80
stepping through storage, for vectors 76
storage

array storage techniques overview 46
auxiliary working storage requirements 50, 51
compressed-diagonal storage mode for sparse

matrices 116
compressed-matrix storage mode for sparse matrices 115
considerations when designing your program 46
diagonal-out skyline storage mode for sparse matrices 122
for matrices 80
for vectors 75
layout for a complex Hermitian band matrix 106
layout for a complex Hermitian matrix 88
layout for a complex Hermitian tridiagonal matrix 114
layout for a general tridiagonal matrix 110
layout for a indefinite complex Hermitian matrix 89
layout for a indefinite symmetric matrix 88
layout for a negative definite Hermitian matrix 89
layout for a negative definite symmetric matrix 87
layout for a positive definite complex Hermitian

tridiagonal matrix 114
layout for a positive definite Hermitian matrix 89
layout for a positive definite symmetric matrix 87
layout for a positive definite symmetric tridiagonal

matrix 113
layout for a sequence 126, 127, 128
layout for a symmetric tridiagonal matrix 112
layout for a Toeplitz matrix 90, 91
layout for band matrices 99, 101
layout for LAPACK tridiagonal matrices 110
layout for positive definite symmetric band matrices 106
layout for sparse matrices 114
layout for sparse vectors 78
layout for symmetric band matrices 103
layout for symmetric matrices 83
layout for trapezoidal matrices 96
layout for triangular band matrices 108, 109, 112, 113
layout for triangular matrices 92
layout for tridiagonal matrices 111
list of subroutines using auxiliary storage 49
list of subroutines using transforms 56
of arrays in Fortran 132
positive definite Complex hermitian band matrix 106
profile-in skyline storage mode for sparse matrices 124
storage-by-columns for sparse matrices 119
storage-by-indices for sparse matrices 119
storage-by-rows for sparse matrices 120
tradeoffs for input 63
transform length requirements 56

storage conversion subroutine
general skyline sparse matrix 1283
sparse matrix 1279
symmetric skyline sparse matrix 1288

storage-by-columns for sparse matrices 119

1336 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

storage-by-indices for sparse matrices 119
storage-by-rows for sparse matrices 120
STPINT 1184
STPMV 381
STPSV 388
STPTRI 664
Strassen's algorithm, multiplying general matrices 445
STREC 1145
stride

defining vectors in arrays 76
how it is used in three dimensions 129
negative 77
optimizing for your Fourier transforms 987
positive 76
subroutine for optimizing Fourier transforms 1263
zero 77

STRIDE 1263
STRMM 468
STRMV 381
STRSM 476
STRSV 388
STRTRI 664
structures, data (vectors and matrices) 73
subject code for ESSL documentation 1313
subprogram

linear algebra 223
meaning of xvii, 223

subprogram, definition xviii
subroutine

calling sequence format for C programs 149
calling sequence format for C++ programs 165
calling sequence format for Fortran programs 131
choose of 29
conventions used in the description of xxiv
overview of ESSL 4

subroutine, definition xviii
subroutines, ESSL

CAXPY 245
CAXPYI 316
CCOPY 248
CDOTC 251
CDOTCI 319
CDOTU 251
CDOTUI 319
CGBMV 369
CGBSV 679
CGBTRF 683
CGBTRS 687
CGEADD 424
CGECMI 499
CGECMO 502
CGEEVX 913
CGEF 531
CGEMM 451
CGEMMS 445
CGEMUL 436
CGEMV 324
CGEQRF 868
CGERC 335
CGERU 335
CGES 534
CGESM 538
CGESUB 430
CGESV 518
CGESVD 859
CGETMI 499
CGETMO 502

subroutines, ESSL (continued)
CGETRF 522
CGETRI 551
CGETRS 527
CGGEV 955
CGTHR 310
CGTHRZ 313
CGTNP 758
CGTNPF 761
CGTNPS 764
CGTSV 711
CGTTRF 715
CGTTRS 719
CHBMV 376
CHEEVD 942
CHEEVX 927
CHEGVX 965
CHEMM 460
CHEMV 343
CHER 352
CHER2 360
CHER2K 491
CHERK 484
CHESV 626
CHETRF 635
CHETRS 643
CHPEVD 942
CHPEVX 927
CHPGVX 965
CHPMV 343
CHPR 352
CHPR2 360
CHPSV 626
CHPTRF 635
CHPTRS 643
CLANGE 558
CLANHE 621
CLANHP 621
CLANTP 672
CLANTR 672
CNORM2 268
CPBSV 696
CPBTRF 701
CPBTRS 706
CPOF 573
CPOSM 585
CPOSV 567
CPOTRF 573
CPOTRI 610
CPOTRS 585
CPPSV 561
CPPTRF 573
CPPTRI 610
CPPTRS 585
CPTSV 725
CPTTRF 729
CPTTRS 733
CROT 277
CROTG 271
CSCAL 281
CSCTR 307
CSPSV 626
CSPTRF 635
CSPTRS 643
CSROT 277
CSSCAL 281
CSWAP 284

Index 1337

subroutines, ESSL (continued)
CSYAX 299
CSYMM 460
CSYR2K 491
CSYRK 484
CSYSV 626
CSYTRF 635
CSYTRS 643
CTBMV 395
CTBSV 401
CTPMV 381
CTPSV 388
CTPTRI 664
CTRMM 468
CTRMV 381
CTRSM 476
CTRSV 388
CTRTRI 664
CVEA 287
CVEM 295
CVES 291
CWLEV 1152
CYAX 299
CZAXPY 302
DASUM 242
DAXPY 245
DAXPYI 316
DBSRCH 1169
DBSSV 649
DBSTRF 655
DBSTRS 660
DCFT 1016
DCFT2 1057
DCFT3 1079
DCFTD 992
DCOPY 248
DCOSF 1041
DCRFT 1033
DCRFT2 1071
DCRFT3 1093
DCRFTD 1008
DCSIN2 1193
DCSINT 1188
DDCON 1123
DDCOR 1123
DDOT 251
DDOTI 319
DGBF 739
DGBMV 369
DGBS 693, 743
DGBSV 679
DGBTRF 683
DGBTRS 687
DGEADD 424
DGEEVX 913
DGEF 531
DGEFCD 547
DGEICD 551
DGELLS 904
DGELS 874
DGELSD 884
DGEMM 451
DGEMMS 445
DGEMTX 324
DGEMUL 436
DGEMV 324
DGEMX 324

subroutines, ESSL (continued)
DGEQRF 868
DGER 335
DGES 534
DGESM 538
DGESUB 430
DGESV 518
DGESVD 859
DGESVF 891
DGESVS 899
DGETMI 499
DGETMO 502
DGETRF 522
DGETRI 551
DGETRS 527
DGGEV 955
DGHMQ 1222
DGKFS 782
DGKTRN 1283
DGLGQ 1215
DGLNQ 1206
DGLNQ2 1209
DGRAQ 1218
DGSF 772
DGSS 778
DGTF 753
DGTHR 310
DGTHRZ 313
DGTNP 758
DGTNPF 761
DGTNPS 764
DGTS 756
DGTSV 711
DGTTRF 715
DGTTRS 719
DIZC 1142
DLANGE 558
DLANSP 621
DLANSY 621
DLANTP 672
DLANTR 672
DNAXPY 255
DNDOT 260
DNORM2 268
DNRAND 1242
DNRM2 265
DNRNG 1235
DPBCHF 746
DPBCHS 750
DPBF 746
DPBS 750
DPBSV 696
DPBTRF 701
DPBTRS 706
DPINT 1179
DPOF 573
DPOFCD 604
DPOICD 610
DPOLY 1139
DPOSM 585
DPOSV 567
DPOTRF 573
DPOTRI 610
DPOTRS 585
DPPF 573
DPPFCD 604
DPPICD 610

1338 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

subroutines, ESSL (continued)
DPPS 593
DPPSV 561
DPPTRF 573
DPPTRI 610
DPPTRS 585
DPTF 767
DPTNQ 1203
DPTS 769
DPTSV 725
DPTTRF 729
DPTTRS 733
DQINT 1148
DRCFT 1025
DRCFT2 1064
DRCFT3 1086
DRCFTD 1000
DROT 277
DROTG 271
DSBMV 376
DSCAL 281
DSCTR 307
DSDCG 836
DSDGCG 851
DSDMX 415
DSINF 1049
DSKFS 799
DSKTRN 1288
DSLMX 343
DSLR1 352
DSLR2 360
DSMCG 828
DSMGCG 844
DSMMX 408
DSMTM 411
DSORT 1160
DSORTS 1165
DSORTX 1162
DSPEVD 942
DSPEVX 927
DSPMV 343
DSPR 352
DSPR2 360
DSPSV 626
DSPTRF 635
DSPTRS 643
DSRIS 817
DSRSM 1279
DSSRCH 1173
DSWAP 284
DSYEVD 942
DSYEVX 927
DSYGVX 965
DSYMM 460
DSYMV 343
DSYR 352
DSYR2 360
DSYR2K 491
DSYRK 484
DSYSV 626
DSYTRF 635
DSYTRS 643
DTBMV 395
DTBSV 401
DTPINT 1184
DTPMV 381
DTPSV 388

subroutines, ESSL (continued)
DTPTRI 664
DTREC 1145
DTRMM 468
DTRMV 381
DTRSM 476
DTRSV 388
DTRTRI 664
DURAND 1239
DURNG 1232
DURXOR 1245
DVEA 287
DVEM 295
DVES 291
DWLEV 1152
DYAX 299
DZASUM 242
DZAXPY 302
DZNRM2 265
EINFO 1252
ERRSAV 1255
ERRSET 1256
ERRSTR 1258
IBSRCH 1169
ICAMAX 230
IDAMAX 230
IDAMIN 233
IDMAX 236
IDMIN 239
IESSL 1259
INITRNG 1227
ISAMAX 230
ISAMIN 233
ISMAX 236
ISMIN 239
ISORT 1160
ISORTS 1165
ISORTX 1162
ISSRCH 1173
IZAMAX 230
SACOR 1128
SACORF 1132
SASUM 242
SAXPY 245
SAXPYI 316
SBSRCH 1169
SCASUM 242
SCFT 1016
SCFT2 1057
SCFT3 1079
SCFTD 992
SCNRM2 265
SCON 1101
SCOND 1107
SCONF 1113
SCOPY 248
SCOR 1101
SCORD 1107
SCORF 1113
SCOSF 1041
SCRFT 1033
SCRFT2 1071
SCRFT3 1093
SCRFTD 1008
SCSIN2 1193
SCSINT 1188
SDCON 1123

Index 1339

subroutines, ESSL (continued)
SDCOR 1123
SDOT 251
SDOTI 319
SETGPUS 1261
SGBF 739
SGBMV 369
SGBS 693, 743
SGBSV 679
SGBTRF 683
SGBTRS 687
SGEADD 424
SGEEVX 913
SGEF 531
SGEFCD 547
SGEICD 551
SGELLS 904
SGELS 874
SGELSD 884
SGEMM 451
SGEMMS 445
SGEMTX 324
SGEMUL 436
SGEMV 324
SGEMX 324
SGEQRF 868
SGER 335
SGES 534
SGESM 538
SGESUB 430
SGESV 518
SGESVD 859
SGESVF 891
SGESVS 899
SGETMI 499
SGETMO 502
SGETRF 522
SGETRI 551
SGETRS 527
SGGEV 955
SGHMQ 1222
SGLGQ 1215
SGLNQ 1206
SGLNQ2 1209
SGRAQ 1218
SGTF 753
SGTHR 310
SGTHRZ 313
SGTNP 758
SGTNPF 761
SGTNPS 764
SGTS 756
SGTSV 711
SGTTRF 715
SGTTRS 719
SIZC 1142
SLANGE 558
SLANSP 621
SLANSY 621
SLANTP 672
SLANTR 672
SNAXPY 255
SNDOT 260
SNORM2 268
SNRAND 1242
SNRM2 265
SNRNG 1235

subroutines, ESSL (continued)
SPBCHF 746
SPBCHS 750
SPBF 746
SPBS 750
SPBSV 696
SPBTRF 701
SPBTRS 706
SPINT 1179
SPOF 573
SPOFCD 604
SPOICD 610
SPOLY 1139
SPOSM 585
SPOSV 567
SPOTRF 573
SPOTRI 610
SPOTRS 585
SPPF 573
SPPFCD 604
SPPICD 610
SPPS 593
SPPSV 561
SPPTRF 573
SPPTRI 610
SPPTRS 585
SPTF 767
SPTNQ 1203
SPTS 769
SPTSV 725
SPTTRF 729
SPTTRS 733
SQINT 1148
SRCFT 1025
SRCFT2 1064
SRCFT3 1086
SRCFTD 1000
SROT 277
SROTG 271
SSBMV 376
SSCAL 281
SSCTR 307
SSINF 1049
SSLMX 343
SSLR1 352
SSLR2 360
SSORT 1160
SSORTS 1165
SSORTX 1162
SSPEVD 942
SSPEVX 927
SSPGVX 965
SSPMV 343
SSPR 352
SSPR2 360
SSPSV 626
SSPTRF 635
SSPTRS 643
SSSRCH 1173
SSWAP 284
SSYEVD 942
SSYEVX 927
SSYGVX 965
SSYMM 460
SSYMV 343
SSYR 352
SSYR2 360

1340 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

subroutines, ESSL (continued)
SSYR2K 491
SSYRK 484
SSYSV 626
SSYTRF 635
SSYTRS 643
STBMV 395
STBSV 401
STPINT 1184
STPMV 381
STPSV 388
STPTRI 664
STREC 1145
STRIDE 1263
STRMM 468
STRMV 381
STRSM 476
STRSV 388
STRTRI 664
SURAND 1239
SURNG 1232
SURXOR 1245
SVEA 287
SVEM 295
SVES 291
SWLEV 1152
SYAX 299
SZAXPY 302
ZAXPY 245
ZAXPYI 316
ZCOPY 248
ZDOTC 251
ZDOTCI 319
ZDOTU 251
ZDOTUI 319
ZDROT 277
ZDSCAL 281
ZDYAX 299
ZGBMV 369
ZGBSV 679
ZGBTRF 683
ZGBTRS 687
ZGEADD 424
ZGECMI 499
ZGECMO 502
ZGEEVX 913
ZGEF 531
ZGELS 874
ZGELSD 884
ZGEMM 451
ZGEMMS 445
ZGEMUL 436
ZGEMV 324
ZGEQRF 868
ZGERC 335
ZGERU 335
ZGES 534
ZGESM 538
ZGESUB 430
ZGESV 518
ZGESVD 859
ZGETMI 499
ZGETMO 502
ZGETRF 522
ZGETRI 551
ZGETRS 527
ZGGEV 955

subroutines, ESSL (continued)
ZGTHR 310
ZGTHRZ 313
ZGTNP 758
ZGTNPF 761
ZGTNPS 764
ZGTSV 711
ZGTTRF 715
ZGTTRS 719
ZHBMV 376
ZHEEVD 942
ZHEEVX 927
ZHEGVX 965
ZHEMM 460
ZHEMV 343
ZHER 352
ZHER2 360
ZHER2K 491
ZHERK 484
ZHESV 626
ZHETRF 635
ZHETRS 643
ZHPEVD 942
ZHPEVX 927
ZHPGVX 965
ZHPMV 343
ZHPR 352
ZHPR2 360
ZHPSV 626
ZHPTRF 635
ZHPTRS 643
ZLANGE 558
ZLANHE 621
ZLANHP 621
ZLANTP 672
ZLANTR 672
ZNORM2 268
ZPBSV 696
ZPBTRF 701
ZPBTRS 706
ZPOF 573
ZPOSM 585
ZPOSV 567
ZPOTRF 573
ZPOTRI 610
ZPOTRS 585
ZPPSV 561
ZPPTRF 573
ZPPTRI 610
ZPPTRS 585
ZPTSV 725
ZPTTRF 729
ZPTTRS 733
ZROT 277
ZROTG 271
ZSCAL 281
ZSCTR 307
ZSPSV 626
ZSPTRF 635
ZSPTRS 643
ZSWAP 284
ZSYMM 460
ZSYR2K 491
ZSYRK 484
ZSYSV 626
ZSYTRF 635
ZSYTRS 643

Index 1341

subroutines, ESSL (continued)
ZTBMV 395
ZTBSV 401
ZTPMV 381
ZTPSV 388
ZTPTRI 664
ZTRMM 468
ZTRMV 381
ZTRSM 476
ZTRSV 388
ZTRTRI 664
ZVEA 287
ZVEM 295
ZVES 291
ZWLEV 1152
ZYAX 299
ZZAXPY 302

subroutines, Parallel ESSL
CGECON 543
CPOCON 596
CPPCON 596
DGECON 543
DPOCON 596
DPPCON 596
SGECON 543
SPOCON 596
SPPCON 596
ZGECON 543
ZPOCON 596
ZPPCON 596

subscript notation, what it means xxii
subtracting

general matrices or their transposes 430
vector y from vector x and store in vector z 291

sum, calculating
absolute values 242

summ xxii
superscript notation, what it means xxii
support, IBM 205
SURAND 1239
SURNG 1232
SURXOR 1245
SVEA 287
SVEM 295
SVES 291
swap elements of two vectors 284
SWLEV 1152
SYAX 299
symbols, special usage of xxii
symmetric band matrix

definition of 103
storage layout 103

symmetric indefinite matrix
symmetric indefinite matrix

real symmetric indefinite matrix 649
symmetric matrix

definition of 83
storage layout 83

symmetric tridiagonal matrix 112
definition of 112
storage layout 112

symmetric-tridiagonal storage mode 112
symptoms, identifying problem 207
syntax rules for call statements and data 48
syntax, conventions used in the subroutine descriptions xxiv
SZAXPY 302

T
table, default values for ESSL error option 69
termination, program

attention messages 68
computational errors 66
input-argument errors 65
resource errors 68

terminology used for Fourier transforms, convolutions, and
correlations 983

terminology, names of products xviii
textbooks cited 1313
thread-safe

ESSL Library, why use it 29
three-dimensional data structures, how stride is used for 129
time-varying recursive filter 25, 1145
times notation, multiply xxii
timings, achieving high performance in your program 63
Toeplitz matrix 89

definition of 89, 90
storage layout 90, 91

traceback map, using during diagnosis 208
transform lengths, calculating 56
transpose

conjugate, of a matrix 80
conjugate, of a vector 74
notation xxii
of a matrix 80
of a matrix inverse notation xxii
of a vector 74, 75
of a vector or matrix notation xxii
of matrix operation results for add 426
of matrix operation results for multiply 439, 449, 455
of matrix operation results for subtract 432

transposing
general matrix (In-Place) 499
general matrix (Out-of-Place) 502
sparse matrix 411

trapezoidal matrices
storage layout 96

trapezoidal matrices, upper and lower
definition of 94

triangular band matrices
storage layout 108

triangular band matrices, upper and lower
definition of 107

triangular matrices
storage layout 92

triangular matrices, upper and lower
definition of 91

tridiagonal matrices
storage layout 111

tridiagonal matrix
definition of 110
storage layout 110

tridiagonal storage mode 110
truncation

how truncation affects output 62
type font usage xix

U
underflow

avoiding underflow 265
why mask it 63

uniformly distributed pseudo-random numbers,
generate 1232

1342 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

uniformly distributed random numbers, generate 1239, 1245
upper band width 98
upper storage mode 83, 87
upper-band-packed storage mode 104
upper-packed storage mode 83, 85
upper-storage-by-rows for symmetric sparse matrices 120
upper-trapezoidal storage mode 96
upper-trapezoidal-packed storage mode 96
upper-triangular storage mode 92, 93
upper-triangular-band-packed storage mode 108, 112, 113
upper-triangular-packed storage mode 92
upper-tridiagonal storage mode 110, 111
upper-tridiagonal-packed storage mode 111
usability of subroutines 3
usability of the ESSL subroutines 4
usage considerations

direct sparse matrix solvers 513
for Fourier transforms, convolutions, and correlations 983
for interpolation 1177
for linear algebra subprograms 228
for linear algebraic equations 512
for matrix operations 420
for numerical quadrature 1199
for random number generation 1225
for sorting and searching 1157
for utility subroutines 1249
sparse matrix subroutines (iterative linear system

solvers) 515
sparse matrix subroutines (skyline solvers) 514

usage, special
conventions used in the subroutine description xxvi
for matrix addition 426
for matrix multiplication 439, 449, 455
for matrix subtraction 432

user applications 4
using this documentation xv, xvi
utility subroutines

DGKTRN 1283
DSKTRN 1288
DSRSM 1279
EINFO 1252
ERRSAV 1255
ERRSET 1256
ERRSTR 1258
IESSL 1259
SETGPUS 1261
STRIDE 1263
usage considerations 1249

V
vector

compressed vector 78
conventions for xx
description of 73
font for xix
full vector 78
number of array elements needed for 75
sparse vector 78
storage of 75
stride for 76

vector-scalar linear algebra subprograms
ISAMAX, ICAMAX, IDAMAX, and IZAMAX 230
ISAMIN and IDAMIN 233
ISMAX and IDMAX 236
ISMIN and IDMIN 239
SASUM, DASUM, SCASUM, and DZASUM 242

vector-scalar linear algebra subprograms (continued)
SAXPY, DAXPY, CAXPY, and ZAXPY 245
SCOPY, DCOPY, CCOPY, and ZCOPY 248
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and

ZDOTC 251
SNAXPY and DNAXPY 255
SNDOT and DNDOT 260
SNORM2, DNORM2, CNORM2, and ZNORM2 268
SNRM2, DNRM2, SCNRM2, and DZNRM2 265
SROT, DROT, CROT, ZROT, CSROT, and ZDROT 277
SROTG, DROTG, CROTG, and ZROTG 271
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and

ZDSCAL 281
SSWAP, DSWAP, CSWAP, and ZSWAP 284
SVEA, DVEA, CVEA, and ZVEA 287
SVEM, DVEM, CVEM, and ZVEM 295
SVES, DVES, CVES, and ZVES 291
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX 299
SZAXPY, DZAXPY, CZAXPY, and ZZAXPY 302

version of ESSL, getting 1259
versions of subroutines 4

W
Wiener-Levinson filter coefficients 1152
Wiener-Levinson filter coefficients subroutine 25
working auxiliary storage, list of subroutines using 49
working storage for band matrix 99
workstations

migrating from one IBM hardware platform to
another 202

required for ESSL for AIX 8
required for ESSL for Linux 8

Z
ZAXPY 245
ZAXPYI 316
ZCOPY 248
ZDOTC 251
ZDOTCI 319
ZDOTU 251
ZDOTUI 319
ZDROT 277
ZDSCAL 281
ZDYAX 299
zero stride, for vectors 77
ZGBMV 369
ZGBSV 679
ZGBTRF 683
ZGBTRS 687
ZGEADD 424
ZGECMI 499
ZGECMO 502
ZGECON 543
ZGEEVX 913
ZGEF 531
ZGELS 874
ZGELSD 884
ZGEMM 451
ZGEMMS 445
ZGEMUL 436
ZGEMV 324
ZGEQRF 868
ZGERC 335
ZGERU 335

Index 1343

ZGES 534
ZGESM 538
ZGESUB 430
ZGESV 518
ZGESVD 859
ZGETMI 499
ZGETMO 502
ZGETRF 522
ZGETRI 551
ZGETRS 527
ZGGEV 955
ZGTHR 310
ZGTHRZ 313
ZGTNP 758
ZGTNPF 761
ZGTNPS 764
ZHBMV 376
ZHEEVD 942
ZHEEVX 927
ZHEGVX 965
ZHEMM 460
ZHEMV 343
ZHER 352
ZHER2 360
ZHER2K 491
ZHERK 484
ZHPEVD 942
ZHPEVX 927
ZHPGVX 965
ZHPMV 343
ZHPR 352
ZHPR2 360
ZLANGE 558
ZLANHE 621
ZLANHP 621
ZLANTP 672
ZLANTR 672
ZNORM2 268
ZPBSV 696
ZPBTRF 701
ZPBTRS 706
ZPOF 573
ZPOSM 585
ZPOSV 567
ZPOTRF 573
ZPOTRI 610
ZPOTRS 585
ZPPCON 596
ZPPSV 561
ZPPTRF 573
ZPPTRI 610
ZPPTRS 585
ZPTSV 725
ZPTTRF 729
ZPTTRS 733
ZROT 277
ZROTG 271
ZSCAL 281
ZSCTR 307
ZSWAP 284
ZSYMM 460
ZSYR2K 491
ZSYRK 484
ZTBMV 395
ZTBSV 401
ZTPMV 381
ZTPSV 388

ZTPTRI 664
ZTRMM 468
ZTRMV 381
ZTRSM 476
ZTRSV 388
ZTRTRI 664
ZVEA 287
ZVEM 295
ZVES 291
ZWLEV 1152
ZYAX 299
ZZAXPY 302

1344 ESSL for AIX, 5.3, and ESSL for Linux on POWER, 5.4: Guide and Reference

IBM®

Product Number: 5765-H25
5765-L51

Printed in USA

SA23-2268-07

	Contents
	Tables
	About this information
	How to Use This Information
	Where to Find Related Publications
	Using Bibliography References

	IBM Request for Enhancement (RFE) Community
	How to Find a Subroutine Description
	How to Interpret the Subroutine Names with a Prefix Underscore
	Special Terms
	Short and Long Precision
	Subroutines and Subprograms

	Abbreviated Names
	Conventions and terminology used
	Fonts
	Special Notations and Conventions
	Scalar Data
	Vectors
	Matrices
	Sequences
	Arrays

	Special Characters, Symbols, Expressions, and Abbreviations

	How to Interpret the Subroutine Descriptions
	Description
	Syntax
	On Entry
	On Return
	Notes
	Function
	Special Usage
	Error Conditions
	Examples

	How to Send Your Comments

	Summary of Changes
	Future Migration

	Part 1. Guide Information
	Chapter 1. Introduction and Requirements
	Overview of ESSL
	Performance and Functional Capability
	Usability
	The Variety of Mathematical Functions
	Areas of Application
	What ESSL Provides

	Accuracy of the Computations
	High Performance of ESSL
	Algorithms
	Obtaining High Performance
	SMT Mode
	Mathematical Techniques

	The Fortran Language Interface to the Subroutines

	Software and Hardware Products That Can Be Used with ESSL
	Hardware Products Supported by ESSL
	Operating Systems Supported by ESSL
	Software Products Required by ESSL
	Software Products Required by ESSL for AIX
	Software Products Required by ESSL for Linux

	Software Products for Installing and Customizing ESSL
	Software Products for Installing and Customizing ESSL for AIX
	Software Products for Installing and Customizing ESSL for Linux

	Software Products for Displaying ESSL Documentation

	List of ESSL Subroutines
	Linear Algebra Subprograms
	Vector-Scalar Linear Algebra Subprograms
	Sparse Vector-Scalar Linear Algebra Subprograms
	Matrix-Vector Linear Algebra Subprograms
	Sparse Matrix-Vector Linear Algebra Subprograms

	Matrix Operations
	Linear Algebraic Equations
	Dense Linear Algebraic Equations
	Banded Linear Algebraic Equations
	Sparse Linear Algebraic Equations
	Linear Least Squares

	Eigensystem Analysis
	Fourier Transforms, Convolutions and Correlations, and Related Computations
	Fourier Transforms
	Convolutions and Correlations
	Related Computations

	Sorting and Searching
	Interpolation
	Numerical Quadrature
	Random Number Generation
	Utilities

	Chapter 2. Planning Your Program
	Selecting an ESSL Subroutine
	What ESSL Library Do You Want to Use?
	Serial and SMP Libraries Provided by ESSL

	Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL
	SIMD Algorithms on VSX-Enabled Processors
	SIMD Algorithms on POWER 6 AltiVec-Enabled Processors

	Multithreaded Subroutines Provided by ESSL
	Using the ESSL SMP CUDA Library
	NVIDIA GPU Power Capping
	What Type of Data Are You Processing in Your Program?
	How Is Your Data Structured? And What Storage Technique Are You Using?
	What about Performance and Accuracy?

	Avoiding Conflicts with Internal ESSL Routine Names That are Exported
	Setting Up Your Data
	How Do You Set Up Your Scalar Data?
	How Do You Set Up Your Arrays?
	How Should Your Array Data Be Aligned?
	What Storage Mode Should You Use for Your Data?
	How Do You Convert from One Storage Mode to Another?
	Conversion Subroutines
	Sample Programs

	Setting Up Your ESSL Calling Sequences
	What Is an Input-Output Argument?
	What Are the General Rules to Follow when Specifying Data for the Arguments?
	What Happens When a Value of 0 Is Specified for N?
	How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?

	Using Auxiliary Storage in ESSL
	Dynamic Allocation of Auxiliary Storage
	Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used
	Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?
	How Do You Calculate the Size of Auxiliary Storage Using the Formulas?
	How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

	Providing a Correct Transform Length to ESSL
	Who Do You Want to Calculate the Transform Length? You or ESSL?
	How Do You Calculate the Transform Length Using the Table or Formula?
	How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?
	Having ESSL Calculate the Transform Length with Unrecoverable Error 2030
	Having ESSL Calculate the Transform Length with Recoverable Error 2030
	Example of Input-Argument Error Recovery for Transform Lengths
	Coding Your Program to Obtain Transform Lengths

	Getting the Best Accuracy
	What Precisions Do ESSL Subroutines Operate On?
	How does the Nature of the ESSL Computation Affect Accuracy?
	What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?
	How is Underflow Handled?
	Where Can You Find More Information on Accuracy?
	What about Bitwise-Identical Results?

	Getting the Best Performance
	What General Coding Techniques Can You Use to Improve Performance?
	Where Can You Find More Information on Performance?

	Dealing with Errors when Using ESSL
	What Can You Do about Program Exceptions?
	What Can You Do about ESSL Input-Argument Errors?
	All Input-Argument Errors
	Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values in the NAUX, N and NSINFO Arguments

	What Can You Do about ESSL Computational Errors?
	All Computational Errors
	Recoverable Computational Errors Can Return Values Through EINFO

	What Can You Do about ESSL Resource Errors?
	All Resource Errors

	What Can You Do about ESSL Attention Messages?
	All Attention Messages

	How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?
	What Values Are Set in the ESSL Error Option Table?
	How Can You Change the Values in the Error Option Table?
	When Do You Change the Values in the Error Option Table?
	How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?

	How does Error Handling Work in a Threaded Environment?
	Where Can You Find More Information on Errors?

	Chapter 3. Setting Up Your Data Structures
	Concepts
	Vectors
	Transpose of a Vector
	Conjugate Transpose of a Vector
	Vector Storage Representation
	How Stride Is Used for Vectors
	Positive Stride
	Zero Stride
	Negative Stride

	Sparse Vector
	In Storage

	Matrices
	Transpose of a Matrix
	Conjugate Transpose of a Matrix
	Matrix Storage Representation
	How Leading Dimension Is Used for Matrices
	Symmetric Matrix
	Symmetric Matrix Storage Representation

	Positive Definite or Negative Definite Symmetric Matrix
	Positive Definite or Negative Definite Symmetric Matrix Storage Representation

	Indefinite Symmetric Matrix
	Indefinite Symmetric Matrix Storage Representation

	Complex Hermitian Matrix
	Complex Hermitian Matrix Storage Representation

	Positive Definite or Negative Definite Complex Hermitian Matrix
	Positive Definite or Negative Definite Complex Hermitian Matrix Storage Representation

	Indefinite Complex Hermitian Matrix
	Indefinite Complex Hermitian Matrix Storage Representation

	Positive Definite or Negative Definite Symmetric Toeplitz Matrix
	Positive Definite or Negative Definite Symmetric Toeplitz Matrix Storage Representation

	Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix
	Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix Storage Representation

	Triangular Matrix
	Triangular Matrix Storage Representation

	Trapezoidal Matrix
	Trapezoidal Matrix Storage Representation

	General Band Matrix
	General Band Matrix Storage Representation

	Symmetric Band Matrix
	Symmetric Band Matrix Storage Representation

	Positive Definite Symmetric Band Matrix
	Positive Definite Symmetric Band Matrix Storage Representation

	Complex Hermitian Band Matrix
	Complex Hermitian Band Matrix Storage Representation

	Positive Definite Complex Hermitian Band Matrix
	Triangular Band Matrix
	Triangular Band Matrix Storage Representation

	General Tridiagonal Matrix
	General Tridiagonal Matrix Storage Representation

	Symmetric Tridiagonal Matrix
	Symmetric Tridiagonal Matrix Storage Representation

	Positive Definite Symmetric Tridiagonal Matrix
	Positive Definite Symmetric Tridiagonal Matrix Storage Representation

	Complex Hermitian Tridiagonal Matrix
	Complex Hermitian Tridiagonal Storage Representation

	Postive Definite Complex Hermitian Tridiagonal Matrix
	Positive Definite Complex Hermitian Tridiagonal Matrix Storage Representation

	Sparse Matrix
	Sparse Matrix Storage Representation

	Sequences
	Real and Complex Elements in Storage
	One-Dimensional Sequences
	One-Dimensional Sequence Storage Representation

	Two-Dimensional Sequences
	Two-Dimensional Sequence Storage Representation

	Three-Dimensional Sequences
	Three-Dimensional Sequence Storage Representation

	How Stride Is Used for Three-Dimensional Sequences

	Chapter 4. Coding Your Program
	Fortran Programs
	Calling ESSL Subroutines and Functions in Fortran
	Setting Up a User-Supplied Subroutine for ESSL in Fortran
	Setting Up Scalar Data in Fortran
	Setting Up Arrays in Fortran
	Real and Complex Array Elements
	One-Dimensional Array
	Two-Dimensional Array
	Three-Dimensional Array

	Creating Multiple Threads and Calling ESSL from Your Fortran Program
	Handling Errors in Your Fortran Program
	Input-Argument Errors in Fortran
	Input-Argument Errors in Fortran Example
	Computational Errors in Fortran
	Computational Errors in Fortran Example 1
	Computational Errors in Fortran Example 2
	Computational Errors in Fortran Example 3

	Example of Handling Errors in a Multithreaded Application Program

	C Programs
	Calling ESSL Subroutines and Functions in C
	Before You Call ESSL
	Coding the Calling Sequences

	Passing Arguments in C
	About the Syntax Shown in this Documentation
	No Optional Arguments
	Arguments That Must Be Passed by Value
	Arguments That Must Be Passed by Reference

	Setting Up a User-Supplied Subroutine for ESSL in C
	Setting Up Scalar Data in C
	Setting Up Complex Data Types in C
	Complex Data on AIX
	Complex Data on Linux (little endian mode)

	Using Logical Data in C
	Setting Up Arrays in C
	Creating Multiple Threads and Calling ESSL from Your C Program
	Handling Errors in Your C Program
	Input-Argument Errors in C
	Input-Argument Errors in C Example
	Computational Errors in C
	Computational Errors in C Example

	C++ Programs
	Calling ESSL Subroutines and Functions in C++
	Before You Call ESSL
	Coding the Calling Sequences

	Passing Arguments in C++
	About the Syntax Shown in this Documentation
	No Optional Arguments
	Arguments That Must Be Passed by Value
	Arguments That Must Be Passed by Reference

	Setting Up a User-Supplied Subroutine for ESSL in C++
	Setting Up Scalar Data in C++
	Using Complex Data in C++
	On AIX—Selecting the <complex> or <complex.h> Header File
	On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++
	On Linux (little endian mode) —Selecting the <complex> or <complex.h> Header File

	Using Logical Data in C++
	Setting Up Arrays in C++
	Creating Multiple Threads and Calling ESSL from Your C++ Program
	Handling Errors in Your C++ Program
	Input-Argument Errors in C++
	Input-Argument Errors in C++ Example
	Computational Errors in C++
	Computational Errors in C++ Example

	Chapter 5. Processing Your Program
	Processing Your Program on AIX
	Fortran Program Procedures on AIX
	C Program Procedures on AIX
	C++ Program Procedures on AIX

	Processing Your Program on Linux (little endian mode)
	Fortran Program Procedures on Linux (little endian mode)
	C Program Procedures on Linux (little endian mode)
	C++ Program Procedures on Linux (little endian mode)

	Chapter 6. Migrating Your Programs
	Migrating Programs from ESSL for Linux on Power Version 5 Release 3.2 to Version 5 Release 4
	Migrating Programs from ESSL for Linux on Power Version 5 Release 3.1 to Version 5 Release 3.2
	Migrating Programs from ESSL for Linux on Power Version 5 Release 2 or ESSL Version 5 Release 3 to Version 5 Release 3.1
	Migrating Programs from ESSL for Linux on Power Version 5 Release 2 to Version 5 Release 3
	Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on Power Version 5 Release 1.1 to Version 5 Release 2
	Migrating Programs from ESSL for Linux on Power Version 5 Release 1 to Version 5 Release 1.1
	Migrating Programs from ESSL Version 4 Release 4 to Version 5 Release 1
	Migrating Programs from ESSL Version 4 Release 3 to Version 4 Release 4
	Migrating Programs from ESSL Version 4 Release 2.2 or Later to ESSL Version 4 Release 3
	Migrating Programs from ESSL Version 4 Release 2.1 to Version 4 Release 2.2
	Migrating Programs from ESSL Version 4 Release 2 to Version 4 Release 2.1
	Migrating Programs from ESSL Version 4 Release 1 to Version 4 Release 2
	Planning for Future Migration
	Migrating From One Hardware Platform to Another
	Auxiliary Storage
	Bitwise-Identical Results

	Migrating from Other Libraries to ESSL
	Migrating from ESSL/370
	Migrating from Another IBM Subroutine Library
	Migrating from LAPACK
	Migrating from FFTW Version 3.1.2
	Migrating from a Non-IBM Subroutine Library

	Chapter 7. Handling Problems
	Where to Find More Information About Errors
	Getting Help from IBM Support
	National Language Support
	Dealing with Errors
	Program Exceptions
	ESSL Input-Argument Error Messages
	ESSL Computational Error Messages
	ESSL Resource Error Messages
	ESSL Informational and Attention Messages
	Informational Messages
	ESSL Attention Messages

	Miscellaneous Error Messages

	Messages
	Message Conventions
	About Upper- and Lowercase
	Message Format

	Input-Argument Error Messages(2001-2099)
	Computational Error Messages(2100-2199)
	Input-Argument Error Messages(2200-2299)
	Resource Error Messages(2400-2499)
	Informational and Attention Error Messages(2600-2699)
	Miscellaneous Error Messages(2700-2799)

	Part 2. Reference Information
	Chapter 8. Linear Algebra Subprograms
	Overview of the Linear Algebra Subprograms
	Vector-Scalar Linear Algebra Subprograms
	Sparse Vector-Scalar Linear Algebra Subprograms
	Matrix-Vector Linear Algebra Subprograms
	Sparse Matrix-Vector Linear Algebra Subprograms

	Use Considerations
	Performance and Accuracy Considerations
	Vector-Scalar Subprograms
	ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)
	ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value)
	ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector Element Having the Maximum Value)
	ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Value)
	SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)
	SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)
	SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)
	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)
	SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)
	SNDOT and DNDOT (Compute Special Dot Products N Times)
	SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)
	SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector with No Scaling of Input)
	SROTG, DROTG, CROTG, and ZROTG (Construct a Given Plane Rotation)
	SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)
	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)
	SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)
	SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in a Vector Z)
	SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and Store in a Vector Z)
	SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and Store in a Vector Z)
	SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a Scalar and Store in a Vector Y)
	SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z)
	Sparse Vector-Scalar Subprograms
	SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode)
	SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in Compressed-Vector Storage Mode)
	SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y)
	SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, and Store in the Vector Y)
	SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y in Full-Vector Storage Mode)
	Matrix-Vector Subprograms
	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose)
	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)
	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix)
	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian Matrix)
	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix)
	SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)
	SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)
	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose)
	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand Side)
	STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)
	STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)
	Sparse Matrix-Vector Subprograms
	DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)
	DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)
	DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

	Chapter 9. Matrix Operations
	Overview of the Matrix Operation Subroutines
	Use Considerations
	Specifying Normal, Transposed, or Conjugate Transposed Input Matrices
	Transposing or Conjugate Transposing:
	On Input
	On Output

	Performance and Accuracy Considerations
	In General
	For Large Matrices
	For Combined Operations

	Matrix Operation Subroutines
	SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General Matrices or Their Transposes)
	SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General Matrices or Their Transposes)
	SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes)
	SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's Algorithm)
	SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes)
	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian)
	STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)
	STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)
	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)
	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)
	SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place])
	SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place])

	Chapter 10. Linear Algebraic Equations
	Overview of the Linear Algebraic Equation Subroutines
	Dense Linear Algebraic Equation Subroutines
	Banded Linear Algebraic Equation Subroutines
	Sparse Linear Algebraic Equation Subroutines
	Linear Least Squares Subroutines

	Dense and Banded Linear Algebraic Equation Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Direct Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Skyline Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Sparse Matrix Iterative Solver Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Linear Least Squares Considerations
	Use Considerations
	Performance and Accuracy Considerations

	Dense Linear Algebraic Equation Subroutines
	SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)
	SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)
	SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)
	SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)
	SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate Transpose Solve)
	SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve)
	SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)
	SGEFCD and DGEFCD (General Matrix Factorization, Condition Number Reciprocal, and Determinant)
	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)
	SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)
	SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)
	SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)
	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization)
	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)
	SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)
	SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive Definite Real Symmetric or Complex Hermitian Matrix)
	SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant)
	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)
	SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)
	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, ZHPSV (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)
	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, ZHPTRF (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Factorization)
	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, ZHPTRS (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)
	DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)
	DBSTRF (Symmetric Indefinite Matrix Factorization)
	DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)
	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)
	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)
	Banded Linear Algebraic Equation Subroutines
	SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)
	SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)
	SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)
	SGBS and DGBS (General Band Matrix Solve)
	SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple Right-Hand Side Solve)
	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)
	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand Side Solve)
	SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)
	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)
	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)
	SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)
	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)
	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand Solve)
	SGBF and DGBF (General Band Matrix Factorization)
	SGBS and DGBS (General Band Matrix Solve)
	SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization)
	SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band Matrix Solve)
	SGTF and DGTF (General Tridiagonal Matrix Factorization)
	SGTS and DGTS (General Tridiagonal Matrix Solve)
	SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting)
	SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix Factorization with No Pivoting)
	SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix Solve with No Pivoting)
	SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix Factorization)
	SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)
	Sparse Linear Algebraic Equation Subroutines
	DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)
	DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns)
	DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode)
	DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode)
	DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows)
	DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode)
	DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)
	DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)
	DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)
	Linear Least Squares Subroutines
	SGESVD, DGESVD, CGESVD, and ZGESVD (Singular Value Decomposition for a General Matrix)
	SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)
	SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)
	SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)
	SGESVF and DGESVF (Singular Value Decomposition for a General Matrix)
	SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)
	SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix with Column Pivoting)

	Chapter 11. Eigensystem Analysis
	Overview of the Eigensystem Analysis Subroutines
	Performance and Accuracy Considerations
	Eigensystem Analysis Subroutines
	SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)
	SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)
	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)
	SGGEV, DGGEV, CGGEV, and ZGGEV (Eigenvalues and, Optionally, Left and/or Right Eigenvectors of a General Matrix Generalized Eigenproblem)
	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

	Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations
	Overview of the Signal Processing Subroutines
	Fourier Transforms Subroutines
	Convolution and Correlation Subroutines
	Related-Computation Subroutines

	Fourier Transforms, Convolutions, and Correlations Considerations
	Use Considerations
	Understanding the Terminology and Conventions Used for Your Array Data
	Concerns about Lengths of Transforms
	Determining an Acceptable Length of a Transform
	Acceptable Lengths for the Transforms
	Understanding Auxiliary Working Storage Requirements

	Initializing Auxiliary Working Storage
	Determining the Amount of Auxiliary Working Storage That You Need

	Performance and Accuracy Considerations
	When Running on the Workstation Processors
	Defining Arrays
	Fourier Transform Considerations
	Setting Up Your Data
	Using the Scale Argument

	How the Fourier Transform Subroutines Achieve High Performance
	Convolution and Correlation Considerations
	Performance Tradeoffs between Subroutines
	Special Uses of SCORD
	Special Uses of _DCON and _DCOR
	Accuracy When Direct Methods Are Used
	Accuracy When Fourier Methods Are Used
	Convolutions and Correlations by Fourier Methods

	Related Computation Considerations
	Accuracy Considerations

	Fourier Transform Subroutines
	SCFTD and DCFTD (Multidimensional Complex Fourier Transform)
	SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)
	SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)
	SCFT and DCFT (Complex Fourier Transform)
	SRCFT and DRCFT (Real-to-Complex Fourier Transform)
	SCRFT and DCRFT (Complex-to-Real Fourier Transform)
	SCOSF and DCOSF (Cosine Transform)
	SSINF and DSINF (Sine Transform)
	SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)
	SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two Dimensions)
	SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two Dimensions)
	SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)
	SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three Dimensions)
	SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three Dimensions)
	Convolution and Correlation Subroutines
	SCON and SCOR (Convolution or Correlation of One Sequence with One or More Sequences)
	SCOND and SCORD (Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method)
	SCONF and SCORF (Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method)
	SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with Decimated Output Using a Direct Method)
	SACOR (Autocorrelation of One or More Sequences)
	SACORF (Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method)
	Related-Computation Subroutines
	SPOLY and DPOLY (Polynomial Evaluation)
	SIZC and DIZC (I-th Zero Crossing)
	STREC and DTREC (Time-Varying Recursive Filter)
	SQINT and DQINT (Quadratic Interpolation)
	SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

	Chapter 13. Sorting and Searching
	Overview of the Sorting and Searching Subroutines
	Use Considerations
	Performance and Accuracy Considerations
	Sorting and Searching Subroutines
	ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)
	ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)
	ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)
	IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a Sequence X in a Sorted Sequence Y)
	ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a Sequence X in the Sequence Y)

	Chapter 14. Interpolation
	Overview of the Interpolation Subroutines
	Use Considerations
	Performance and Accuracy Considerations
	Interpolation Subroutines
	SPINT and DPINT (Polynomial Interpolation)
	STPINT and DTPINT (Local Polynomial Interpolation)
	SCSINT and DCSINT (Cubic Spline Interpolation)
	SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

	Chapter 15. Numerical Quadrature
	Overview of the Numerical Quadrature Subroutines
	Use Considerations
	Choosing the Method

	Performance and Accuracy Considerations
	Programming Considerations for the SUBF Subroutine
	Designing SUBF
	Coding and Setting Up SUBF in Your Program

	Numerical Quadrature Subroutines
	SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)
	SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature)
	SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)
	SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature)
	SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature)
	SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature)

	Chapter 16. Random Number Generation
	Overview of the Random Number Generation Subroutines
	Use Considerations
	Random Number Generation Subroutines
	INITRNG (Initialize Random Number Generators)
	SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers)
	SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers)
	SURAND and DURAND (Generate a Vector of Uniformly Distributed Random Numbers)
	SNRAND and DNRAND (Generate a Vector of Normally Distributed Random Numbers)
	SURXOR and DURXOR (Generate a Vector of Long Period Uniformly Distributed Random Numbers)

	Chapter 17. Utilities
	Overview of the Utility Subroutines
	Use Considerations
	Determining the Level of ESSL Installed
	Finding the Optimal Stride(s) for Your Fourier Transforms
	Converting Sparse Matrix Storage

	Utility Subroutines
	EINFO (ESSL Error Information-Handler Subroutine)
	ERRSAV (ESSL ERRSAV Subroutine)
	ERRSET (ESSL ERRSET Subroutine)
	ERRSTR (ESSL ERRSTR Subroutine)
	IESSL (Determine the Level of ESSL Installed)
	SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)
	STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines)
	DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)
	DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)
	DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

	Part 3. Appendixes
	Appendix A. Basic Linear Algebra Subprograms (BLAS)
	Appendix B. LAPACK
	Appendix C. FFTW Version 3.1.2 to ESSL Wrapper Libraries
	Accessibility Features for ESSL
	Accessibility Features
	IBM and Accessibility

	Notices
	Trademarks
	Software Update Protocol
	Programming Interfaces

	Bibiography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

